Perturbed linear rough differential equations
Annales mathématiques Blaise Pascal, Volume 21 (2014) no. 1, pp. 103-150.

We study linear rough differential equations and we solve perturbed linear rough differential equations using the Duhamel principle. These results provide us with a key technical point to study the regularity of the differential of the Itô map in a subsequent article. Also, the notion of linear rough differential equations leads to consider multiplicative functionals with values in Banach algebras more general than tensor algebras and to consider extensions of classical results such as the Magnus and the Chen-Strichartz formula.

Nous étudions les équations différentielles linéaires rugueuses et résolvons des équations linéaires rugueuses perturbées à l’aide du principe de Duhamel. Ces résultats donnent un argument technique pour étudier la différentiabilité de l’application d’Itô. La notion d’équation différentielle rugueuses nous condition à considérer des fonctionnelles multiplicatives à valeurs dans des algèbres de Banach plus générales que celle des algèbres tensorielles, ainsi que des extensions de résultats classiques tels que les formules de Magnus et Chen-Strichartz.

DOI: 10.5802/ambp.338
Classification: 34A25,  60H10
Keywords: Rough paths, Rough differential equations, Banach algebra, Magnus formula Chen-Strichartz formula, perturbation formula, Duhamel’s principle
Laure Coutin 1; Antoine Lejay 2

1 Institut de Mathématiques de Toulouse, F-31062 Toulouse Cedex 9, France.
2 Université de Lorraine, Institut Élie Cartan, UMR 7502, Vandœuvre-lès-Nancy, F-54600, France CNRS, Institut Élie Cartan, UMR 7502, Vandœuvre-lès-Nancy, F-54600, France Inria, Villers-lès-Nancy, F-54600, France
@article{AMBP_2014__21_1_103_0,
     author = {Laure Coutin and Antoine Lejay},
     title = {Perturbed linear rough differential equations},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {103--150},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {21},
     number = {1},
     year = {2014},
     doi = {10.5802/ambp.338},
     mrnumber = {3248224},
     zbl = {06329059},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.338/}
}
TY  - JOUR
AU  - Laure Coutin
AU  - Antoine Lejay
TI  - Perturbed linear rough differential equations
JO  - Annales mathématiques Blaise Pascal
PY  - 2014
DA  - 2014///
SP  - 103
EP  - 150
VL  - 21
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.338/
UR  - https://www.ams.org/mathscinet-getitem?mr=3248224
UR  - https://zbmath.org/?q=an%3A06329059
UR  - https://doi.org/10.5802/ambp.338
DO  - 10.5802/ambp.338
LA  - en
ID  - AMBP_2014__21_1_103_0
ER  - 
%0 Journal Article
%A Laure Coutin
%A Antoine Lejay
%T Perturbed linear rough differential equations
%J Annales mathématiques Blaise Pascal
%D 2014
%P 103-150
%V 21
%N 1
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.338
%R 10.5802/ambp.338
%G en
%F AMBP_2014__21_1_103_0
Laure Coutin; Antoine Lejay. Perturbed linear rough differential equations. Annales mathématiques Blaise Pascal, Volume 21 (2014) no. 1, pp. 103-150. doi : 10.5802/ambp.338. https://ambp.centre-mersenne.org/articles/10.5802/ambp.338/

[1] Shigeki Aida Notes on Proofs of Continuity Theorem in Rough Path Analysis, 2006 (Unpublished note, Osaka University)

[2] Ismaël Bailleul Flows driven by rough paths, 2012 (Preprint arxiv:1203.0888)

[3] Andrew Baker Matrix groups. An introduction to Lie group theory, Springer Undergraduate Mathematics Series, Springer-Verlag London Ltd., London, 2002, pp. xii+330 | DOI | MR | Zbl

[4] Fabrice Baudoin An introduction to the geometry of stochastic flows, Imperial College Press, London, 2004, pp. x+140 | DOI | MR | Zbl

[5] Fabrice Baudoin; Xuejing Zhang Taylor expansion for the solution of a stochastic differential equation driven by fractional Brownian motions, Electron. J. Probab., Volume 17 (2012), pp. no. 51, 21 | DOI | MR | Zbl

[6] Gérard Ben Arous Flots et séries de Taylor stochastiques, Probab. Theory Related Fields, Volume 81 (1989) no. 1, pp. 29-77 | DOI | MR | Zbl

[7] S. Blanes; F. Casas; J. A. Oteo; J. Ros The Magnus expansion and some of its applications, Phys. Rep., Volume 470 (2009) no. 5-6, pp. 151-238 | DOI | MR

[8] A. Bonfiglioli; E. Lanconelli; F. Uguzzoni Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007, pp. xxvi+800 | MR | Zbl

[9] Andrea Bonfiglioli; Roberta Fulci Topics in noncommutative algebra. The theorem of Campbell, Baker, Hausdorff and Dynkin, Lecture Notes in Mathematics, 2034, Springer, Heidelberg, 2012, pp. xxii+539 | DOI | MR | Zbl

[10] M. Caruana; P. K. Friz; H. Oberhauser A (rough) pathwise approach to a class of non-linear stochastic partial differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 28 (2011) no. 1, pp. 27-46 | DOI | Numdam | MR | Zbl

[11] Michael Caruana; Peter Friz Partial differential equations driven by rough paths, J. Differential Equations, Volume 247 (2009) no. 1, pp. 140-173 | DOI | MR | Zbl

[12] Fabienne Castell Asymptotic expansion of stochastic flows, Probab. Theory Related Fields, Volume 96 (1993) no. 2, pp. 225-239 | DOI | MR | Zbl

[13] Fabienne Castell; Jessica Gaines The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations, Ann. Inst. H. Poincaré Probab. Statist., Volume 32 (1996) no. 2, pp. 231-250 | EuDML | Numdam | MR | Zbl

[14] Kuo-Tsai Chen Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. of Math. (2), Volume 65 (1957), pp. 163-178 | DOI | MR | Zbl

[15] Kuo-Tsai Chen Integration of paths—a faithful representation of paths by non-commutative formal power series, Trans. Amer. Math. Soc., Volume 89 (1958), pp. 395-407 | MR | Zbl

[16] Kuo-Tsai Chen Formal differential equations, Ann. of Math. (2), Volume 73 (1961), pp. 110-133 | DOI | MR | Zbl

[17] Kuo-Tsai Chen Expansion of solutions of differential systems, Arch. Rational Mech. Anal., Volume 13 (1963), pp. 348-363 | DOI | MR | Zbl

[18] L. Coutin Rough paths via sewing Lemma, ESAIM Probab. Stat., Volume 16 (2012), pp. 479-526 | DOI | EuDML | Numdam | Zbl

[19] L. Coutin; A. Lejay Sensitivity of rough differential equations, 2013 (Preprint)

[20] A.M. Davie Differential Equations Driven by Rough Signals: an Approach via Discrete Approximation, Appl. Math. Res. Express. AMRX, Volume 2 (2007), pp. Art. ID abm009 | MR | Zbl

[21] A. Deya; M. Gubinelli; S. Tindel Non-linear rough heat equations, Probab. Theory Related Fields, Volume 153 (2012) no. 1-2, pp. 97-147 | DOI | MR | Zbl

[22] Aurélien Deya; Samy Tindel Rough Volterra equations. I. The algebraic integration setting, Stoch. Dyn., Volume 9 (2009) no. 3, pp. 437-477 | DOI | MR | Zbl

[23] Aurélien Deya; Samy Tindel Rough Volterra equations 2: Convolutional generalized integrals, Stochastic Process. Appl., Volume 121 (2011) no. 8, pp. 1864-1899 | DOI | MR | Zbl

[24] Ronald G. Douglas Banach algebra techniques in operator theory, Graduate Texts in Mathematics, 179, Springer-Verlag, New York, 1998, pp. xvi+194 | DOI | MR | Zbl

[25] F. J. Dyson The radiation theories of Tomonaga, Schwinger, and Feynman, Physical Rev. (2), Volume 75 (1949), pp. 486-502 | DOI | MR | Zbl

[26] Denis Feyel; Arnaud de La Pradelle Curvilinear integrals along enriched paths, Electron. J. Probab., Volume 11 (2006), p. no. 34, 860-892 (electronic) | DOI | EuDML | MR | Zbl

[27] Denis Feyel; Arnaud de La Pradelle; Gabriel Mokobodzki A non-commutative sewing lemma, Electron. Commun. Probab., Volume 13 (2008), pp. 24-34 | DOI | EuDML | MR | Zbl

[28] Peter K. Friz; Nicolas B. Victoir Multidimensional stochastic processes as rough paths. Theory and applications, Cambridge Studies in Advanced Mathematics, 120, Cambridge University Press, Cambridge, 2010, pp. xiv+656 | MR | Zbl

[29] Massimiliano Gubinelli Abstract integration, combinatorics of trees and differential equations, Combinatorics and physics (Contemp. Math.), Volume 539, Amer. Math. Soc., Providence, RI, 2011, pp. 135-151 | DOI | MR | Zbl

[30] Massimiliano Gubinelli; Antoine Lejay; Samy Tindel Young integrals and SPDEs, Potential Anal., Volume 25 (2006) no. 4, pp. 307-326 | DOI | MR | Zbl

[31] Ernst Hairer; Christian Lubich; Gerhard Wanner Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics, 31, Springer, Heidelberg, 2010, pp. xviii+644 Reprint of the second (2006) edition | MR | Zbl

[32] M. Hairer; D. Kelly Geometric versus non-geometric rough paths, 2012 (Preprint arxiv:1210.9294) | Zbl

[33] Brian C. Hall Lie groups, Lie algebras, and representations. An elementary introduction, Graduate Texts in Mathematics, 222, Springer-Verlag, New York, 2003, pp. xiv+351 | MR | Zbl

[34] Keisuke Hara; Masanori Hino Fractional order Taylor’s series and the neo-classical inequality, Bull. Lond. Math. Soc., Volume 42 (2010) no. 3, pp. 467-477 | DOI | MR | Zbl

[35] Antoine Lejay An introduction to rough paths, Séminaire de Probabilités XXXVII (Lecture Notes in Math.), Volume 1832, Springer, Berlin, 2003, pp. 1-59 | DOI | MR | Zbl

[36] Antoine Lejay On rough differential equations, Electron. J. Probab., Volume 14 (2009), pp. no. 12, 341-364 | DOI | EuDML | MR | Zbl

[37] Antoine Lejay Yet another introduction to rough paths, Séminaire de Probabilités XLII (Lecture Notes in Math.), Volume 1979, Springer, Berlin, 2009, pp. 1-101 | DOI | MR | Zbl

[38] Antoine Lejay Controlled differential equations as Young integrals: a simple approach, J. Differential Equations, Volume 249 (2010) no. 8, pp. 1777-1798 | DOI | MR | Zbl

[39] Antoine Lejay Global solutions to rough differential equations with unbounded vector fields, Séminaire de Probabilités XLIV (Lecture Notes in Math.), Volume 2046, Springer, Heidelberg, 2012, pp. 215-246 | DOI | MR | Zbl

[40] Antoine Lejay; Nicolas Victoir On (p,q)-rough paths, J. Differential Equations, Volume 225 (2006) no. 1, pp. 103-133 | DOI | MR | Zbl

[41] Gabriel Lord; Simon J. A. Malham; Anke Wiese Efficient strong integrators for linear stochastic systems, SIAM J. Numer. Anal., Volume 46 (2008) no. 6, pp. 2892-2919 | DOI | MR | Zbl

[42] Terry Lyons; Zhongmin Qian System control and rough paths, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2002, pp. x+216 | DOI | MR | Zbl

[43] Terry J. Lyons Differential equations driven by rough signals, Rev. Mat. Iberoamericana, Volume 14 (1998) no. 2, pp. 215-310 | DOI | EuDML | MR | Zbl

[44] Terry J. Lyons; Michael Caruana; Thierry Lévy Differential equations driven by rough paths (Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004), Lecture Notes in Mathematics, 1908, Springer, Berlin, 2007, pp. xviii+109 | MR | Zbl

[45] Terry J. Lyons; Nadia Sidorova On the radius of convergence of the logarithmic signature, Illinois J. Math., Volume 50 (2006) no. 1-4, p. 763-790 (electronic) http://projecteuclid.org/getRecord?id=euclid.ijm/1258059491 | MR | Zbl

[46] Terry J. Lyons; Weijun Xu A uniform estimate for rough paths, Bull. Sci. Math., Volume 137 (2013) no. 7, pp. 867-879 | DOI | MR | Zbl

[47] Wilhelm Magnus On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., Volume 7 (1954), pp. 649-673 | DOI | MR | Zbl

[48] Bogdan Mielnik; Jerzy Plebański Combinatorial approach to Baker-Campbell-Hausdorff exponents, Ann. Inst. H. Poincaré Sect. A (N.S.), Volume 12 (1970), pp. 215-254 | EuDML | Numdam | MR | Zbl

[49] Per Christian Moan; Jitse Niesen Convergence of the Magnus series, Found. Comput. Math., Volume 8 (2008) no. 3, pp. 291-301 | DOI | MR | Zbl

[50] Rimhak Ree Lie elements and an algebra associated with shuffles, Ann. of Math. (2), Volume 68 (1958), pp. 210-220 | DOI | MR | Zbl

[51] Christophe Reutenauer Free Lie algebras, London Mathematical Society Monographs. New Series, 7, The Clarendon Press Oxford University Press, New York, 1993, pp. xviii+269 | MR | Zbl

[52] Irene A. Stegun Pocketbook of mathematical functions (Abridged edition of Handbook of mathematical functions edited by Milton Abramowitz and Irene A. Stegun), Verlag Harri Deutsch, Thun, 1984, pp. 468 | MR | Zbl

[53] Robert S. Strichartz The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, J. Funct. Anal., Volume 72 (1987) no. 2, pp. 320-345 | DOI | MR | Zbl

[54] L. C. Young An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., Volume 67 (1936) no. 1, pp. 251-282 | DOI | JFM | MR | Zbl

Cited by Sources: