@article{AMBP_1995__2_1_191_0, author = {P.N. Natarajan}, title = {Weighted means in non-archimedean fields}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {191--200}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {2}, number = {1}, year = {1995}, doi = {10.5802/ambp.30}, zbl = {0836.40003}, mrnumber = {1342815}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.30/} }
TY - JOUR TI - Weighted means in non-archimedean fields JO - Annales Mathématiques Blaise Pascal PY - 1995 DA - 1995/// SP - 191 EP - 200 VL - 2 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.30/ UR - https://zbmath.org/?q=an%3A0836.40003 UR - https://www.ams.org/mathscinet-getitem?mr=1342815 UR - https://doi.org/10.5802/ambp.30 DO - 10.5802/ambp.30 LA - en ID - AMBP_1995__2_1_191_0 ER -
P.N. Natarajan. Weighted means in non-archimedean fields. Annales Mathématiques Blaise Pascal, Volume 2 (1995) no. 1, pp. 191-200. doi : 10.5802/ambp.30. https://ambp.centre-mersenne.org/articles/10.5802/ambp.30/
[1] Introduction to p-adic numbers and valuation theory, Academic Press, 1964. | MR: 169847 | Zbl: 0192.40103
,[2] Divergent Series, Oxford, 1949. | MR: 30620 | Zbl: 0032.05801
,[3] Sur le théorème de Banach-Steinhauss, Indag. Math. 25(1963) , 121-131. | MR: 151823 | Zbl: 0121.32703
,[4] Criterion for regular matrices in non-archimedean fields J. Ramanujan Math. Soc. 6 (1991) , 185-195. | MR: 1132355 | Zbl: 0751.40003
,[5] Regular matrix transformations,Mc Graw-Hill, London, 1966. | MR: 225045 | Zbl: 0159.35401
,[6] On certain summation processes in the p-adic field, Indag. Math. 27 ( 1965) , 368-374. | MR: 196334 | Zbl: 0128.28004
,Cited by Sources: