@article{AMBP_1995__2_1_181_0, author = {A.Yu Khrennikov}, title = {The problems of the non-archimedean analysis generated by quantum physics}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {181--190}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {2}, number = {1}, year = {1995}, doi = {10.5802/ambp.29}, zbl = {0868.46058}, mrnumber = {1342814}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.29/} }
TY - JOUR TI - The problems of the non-archimedean analysis generated by quantum physics JO - Annales Mathématiques Blaise Pascal PY - 1995 DA - 1995/// SP - 181 EP - 190 VL - 2 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.29/ UR - https://zbmath.org/?q=an%3A0868.46058 UR - https://www.ams.org/mathscinet-getitem?mr=1342814 UR - https://doi.org/10.5802/ambp.29 DO - 10.5802/ambp.29 LA - en ID - AMBP_1995__2_1_181_0 ER -
%0 Journal Article %T The problems of the non-archimedean analysis generated by quantum physics %J Annales Mathématiques Blaise Pascal %D 1995 %P 181-190 %V 2 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://doi.org/10.5802/ambp.29 %R 10.5802/ambp.29 %G en %F AMBP_1995__2_1_181_0
A.Yu Khrennikov. The problems of the non-archimedean analysis generated by quantum physics. Annales Mathématiques Blaise Pascal, Volume 2 (1995) no. 1, pp. 181-190. doi : 10.5802/ambp.29. https://ambp.centre-mersenne.org/articles/10.5802/ambp.29/
1. p-adic quantum mechanics. Commun. Math. Phys., 123, 659-676 (1989). | MR: 1006299 | Zbl: 0688.22004
and ,2. p-adic Numbers in Mathematical Physics, World Scientific Publ., Singapoure (1993) | MR: 1288093 | Zbl: 0812.46076
, , and ,3. Number Theory as the Ultimate Physical Theory, CERN, Geneva. Preprint TH. 4781/87 (1987).
,4. p-adic string. Class. Quant. Gra. , 4, 83-87 (1987). | MR: 895889
,5. Harmonic analysis and p-adic strings. Lett. Math. Phys., 16 , 61-64 (1988). | MR: 958464 | Zbl: 0668.43006
,6. Non-Archimedean strings. Phys. Lett. B, 199, 186-190 (1987). | MR: 919703
and ,7. Adelic string amplitudes. Phys. Lett. B , 199, 191-195 (1987). | MR: 919704
and ,8. p-adic analyticity and Virasoro algebras for conformal theories in more than two dimensions. Phys. Lett. B . 201, 306-310 (1988). | MR: 927481
,9. Open and closed p-adic strings and quadratic extensions of number fields. Phys. Lett. B ., 200, 512-516 (1988). | MR: 926670
, and ,10. Quantum mechanics and p-adic numbers. Found. Phys., 2, 1-7, (1972). | MR: 331996
and ,11. p-adic string N-point function. Phys. Rev. Lett. B , 60, 484-486 (1988). | MR: 925747
and ,12. Generalized functions and Gaussian functional integrals with respect to non-Archimedean functional spaces. Izv. Akad. Nauk SSSR, Ser. Mat., 55, No. 4, 780-814 (1991). | MR: 1137586 | Zbl: 0755.46047
13. The unboundedness of the p-adic Gaussian distribution. Izv. Akad. Nauk SSSR, Ser. Mat. . 56. No. 4, 456-476 (1992).
,14. Axiomatics of the p-adic theory of probabilities. Dokl. Acad. Nauk SSSR, sr. Matem., 326, No. 5, 1075-1079 (1992). | MR: 1198776
,15. p-adic quantum mechanics with p-adic valued functions. J. Math. Phys., 32. No. 4, 932-937 (1991). | MR: 1097779 | Zbl: 0746.46067
,16. p-adic valued distributions in mathematical physics , Kluwer Academic Publ. , Dordrecht, 1994 | MR: 1325924 | Zbl: 0833.46061
,17. p-adic superanalysis, 1. Infinitely generated Banach superalgebras and algebraic groups. J. Math. Phys., 34. No. 5, 1995-1999, (1993). | MR: 1214503 | Zbl: 0809.46091
and ,18. Can p-adic numbers be useful to regularize divergent expectation values of quantum observables ? Preprint, Depart. Math., Univ. Genova, November (1993). To be published in Int. J. of Theor. Phys., 1994. | MR: 1285249 | Zbl: 0842.60096
and ,19. Generalized functions with non-Archimedean values and their applications to quantum mechanics and field theory. Analysis-3, Modern Mathematics and its Applications , VINITI, Moscow (1993) .
,20. Gauge connection between real and p-adic space-time , Proc . of Marcel Grossmann Meeting on General Relativity , Kyoto , 1991 , ( Sato H . Nakamura T . ) . World scientific publ. Singapore, 498-500 (1992) | MR: 1236881
,21. p-adic theory of probability and its applications. A principle of the statistical stabilization of frequencies. Teoret. and Matem. Fizika, 97, No 3 , 348-363 (1993). | MR: 1257875 | Zbl: 0839.60005
,Cited by Sources: