@article{AMBP_1995__2_1_117_0, author = {N. De Grande-De Kimpe and C. Perez-Garcia}, title = {Limited spaces}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {117--129}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {2}, number = {1}, year = {1995}, doi = {10.5802/ambp.24}, zbl = {0833.46059}, mrnumber = {1342809}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.24/} }
TY - JOUR TI - Limited spaces JO - Annales Mathématiques Blaise Pascal PY - 1995 DA - 1995/// SP - 117 EP - 129 VL - 2 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.24/ UR - https://zbmath.org/?q=an%3A0833.46059 UR - https://www.ams.org/mathscinet-getitem?mr=1342809 UR - https://doi.org/10.5802/ambp.24 DO - 10.5802/ambp.24 LA - en ID - AMBP_1995__2_1_117_0 ER -
N. De Grande-De Kimpe; C. Perez-Garcia. Limited spaces. Annales Mathématiques Blaise Pascal, Volume 2 (1995) no. 1, pp. 117-129. doi : 10.5802/ambp.24. https://ambp.centre-mersenne.org/articles/10.5802/ambp.24/
[1] A question of Valdivia on quasinormable Fréchet spaces, Canad. Math. Bull. 34 (3) (1991), 301-304. | MR: 1127750 | Zbl: 0698.46002
,[2] Two theorems of Josefson-Nissenzweig type for Fréchet spaces, Proc. Amer. Math. Soc. 117 (1993), 363-364. | MR: 1136233 | Zbl: 0785.46002
, , and ,[3] Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58. | MR: 774176 | Zbl: 0601.47019
and ,[4] On spaces of operators between locally K-convex spaces, Proc. Kon. Ned. Akad. v. Wet. A75 (1972), 113-129. | MR: 303351 | Zbl: 0235.46013
,[5] =====, Structure theorems for locally K-convex spaces, Proc. Kon. Ned. Akad. v. Wet. A80 (1977), 11-22. | MR: 430720 | Zbl: 0343.46005
[6] =====, Non-archimedean nuclearity, Groupe d'étude d'analyse ultramétrique, Institut Henri-Pincaré, Paris (1982).
[7] Non-archimedean nuclearity and spaces of continuous functions, Indag. Math. N.S., 2 (1991), 201-206. | MR: 1123361 | Zbl: 0746.54004
and ,[8] =====, The non-archimedean space BC(X) with the strict topology, Publicacions Matemátiques 37 (1993).
[9] Non-archimedean GP-spaces, Bulletin of the Belgian Mathematical Society, Simon Stevin 1 (1994), 99-105. | EuDML: 229286 | MR: 1314924 | Zbl: 0812.46075
and ,[10] =====, Two new operator-ideals in non-archimedean Banach spaces, In: p-adic Functional Analysis, N. De Grande-De Kimpe, S. Navarro and W.H. Schikhof, Universidad de Santiago, Chile (1994), 33-43.
[11] Non-archimedean t-frames and FM-spaces, Canad. Math. Bull. 35 (2) (1992), 1-9. | MR: 1191506 | Zbl: 0739.46057
, and ,[12] Locally convex spaces, B.G. Teubner, Stuttgart, 1981. | MR: 632257 | Zbl: 0466.46001
,[13] Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Math. 13 (1975), 78-89. | MR: 374871 | Zbl: 0303.46018
,[14] Non-archimedean Kõthe sequence spaces, Bolletino U.M.I (7), 5-B (1991), 703-725. | MR: 1127019 | Zbl: 0779.46053
,[15] On spaces of compact operators in non-archimedean Banach spaces, Canad. Math. Bull. 32 (4) (1989), 450-458. | MR: 1019411 | Zbl: 0685.46053
,[16] Topological vector spaces I, Springer-Verlag, Berlin, 1969. | Zbl: 0179.17001
,[17] A characterization of Schwartz spaces, Math. Z. 198 (1988), 423-430. | MR: 946613 | Zbl: 0653.46007
,[18] On limitedness in locally convex spaces, Arch. Math. 53 (1989), 65-74. | MR: 1005171 | Zbl: 0685.46001
and ,[19] w*-sequential convergence, Israel J. Math 22 (1975), 266-272. | MR: 394134 | Zbl: 0341.46012
,[20] On compactoidity in non-archimedean locally convex spaces with a Schauder basis, Proc. Kon. Ned. Akad. v. Wet. A91 (1988), 85-88. | MR: 934476 | Zbl: 0648.46069
,[21] Compact operators and the Orlicz-Pettis property in p-adic analysis, Report 9101, Department of Mathematics, Catholic University, Nijmegen, The Netherlands (1991), 1-27. | MR: 1252732
and ,[22] Operators ideals, North-Holland, Amsterdam, 1980. | MR: 582655 | Zbl: 0434.47030
,[23] Locally convex spaces over non-spherically complete valued fields I-II, Bull. Soc. Math. Belgique (ser.B) XXXVIII (1986), 187-224. | MR: 871313 | Zbl: 0615.46071
,[24] =====, The continuous linear image of a p-adic compactoid, Proc. Kon. Ned. Akad. v. Wet. A92 (1989), 119-123. | MR: 993683 | Zbl: 0696.46053
[25] Non-archimedean Functional Analysis, Marcel Dekker, New York, 1978. | MR: 512894 | Zbl: 0396.46061
,Cited by Sources: