On étudie ici les notions d’algèbre de Gerstenhaber à homotopie près et d’homologie des algèbres de Gerstenhaber du point de vue de la théorie des opérades. Précisément, on donne une description explicite des -algèbres à homotopie près (c’est-à-dire d’algèbres sur le modèle minimal de l’opérade des algèbres de Gerstenhaber). On décrit également le complexe calculant l’homologie des -algèbres. On donne une suite spectrale qui converge vers cette homologie et quelques exemples de calculs. Enfin on explicite la structure d’algèbre de Poisson à homotopie près.
@article{AMBP_2004__11_1_95_0, author = {Gr\'egory Ginot}, title = {Homologie et mod\`ele minimal des alg\`ebres de {Gerstenhaber}}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {95--126}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {11}, number = {1}, year = {2004}, doi = {10.5802/ambp.187}, mrnumber = {2077240}, zbl = {02207860}, language = {fr}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.187/} }
TY - JOUR TI - Homologie et modèle minimal des algèbres de Gerstenhaber JO - Annales Mathématiques Blaise Pascal PY - 2004 DA - 2004/// SP - 95 EP - 126 VL - 11 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.187/ UR - https://www.ams.org/mathscinet-getitem?mr=2077240 UR - https://zbmath.org/?q=an%3A02207860 UR - https://doi.org/10.5802/ambp.187 DO - 10.5802/ambp.187 LA - fr ID - AMBP_2004__11_1_95_0 ER -
Grégory Ginot. Homologie et modèle minimal des algèbres de Gerstenhaber. Annales Mathématiques Blaise Pascal, Volume 11 (2004) no. 1, pp. 95-126. doi : 10.5802/ambp.187. https://ambp.centre-mersenne.org/articles/10.5802/ambp.187/
[1] The homology of spaces, , The homology of iterated loop spaces, Springer-Verlag, 1976, pp. 207-351
[2] Letter to Stasheff, Gerstenhaber, May, Schechtman, Drinfeld (May 17, 1993)
[3] Homologie de Quillen pour les algèbres de Poisson, C. R. Acad. Sci. Paris Sér. I Math., Volume 326 (1998) no. 9, pp. 1053-1058 | Article | MR: 1647186 | Zbl: 0922.17014
[4] Théorie des opérades de Koszul et homologie des algèbres de Poisson (1998) (Prépublication)
[5] The cohomology structure of an associative ring, Ann. of Math, Volume 78 (1963) no. 2, pp. 267-288 | Article | MR: 161898 | Zbl: 0131.27302
[6] Homotopy -algebras and moduli space operad, Internat. Math. Res. Notices, Volume 3 (1995), pp. 141-153 | Article | MR: 1321701 | Zbl: 0827.18004
[7] Operads, homotopy algebras and iterated loop spaces, 1994 (hep-th/9403055)
[8] Koszul duality for operads, Duke Math. J, Volume 76 (1994) no. 1, pp. 203-272 | Article | MR: 1301191 | Zbl: 0855.18006
[9] Tamarkin’s proof of Kontsevich formality conjecture, Forum Math., Volume 15 (2003) no. 4, pp. 591-614 | Article | MR: 1978336 | Zbl: 01916218
[10] Measuring the noncommutativity of DG-algebras (prépublication)
[11] Operads and motives in deformation quantization, Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 35-72 | Article | MR: 1718044 | Zbl: 0945.18008
[12] Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I, Volume 21, Kluwer Acad. Publ., Dordrecht, 2000 | MR: 1805894 | Zbl: 0972.18005
[13] Introduction to SH Lie algebras for physicists, Internat. J. Theoret. Phys, Volume 32 (1993) no. 7, pp. 1087-1103 | Article | MR: 1235010 | Zbl: 0824.17024
[14] Homotopy Algebras are Homotopy Algebras (math.AT/9907138)
[15] Distributive laws and Koszulness, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 2, pp. 307-323 | Article | Numdam | MR: 1393517 | Zbl: 0853.18005
[16] Models for operads, Comm. Algebra, Volume 24 (1996) no. 4, pp. 1471-1500 | Article | MR: 1380606 | Zbl: 0848.18003
[17] Operads, algebras and modules, Operads : Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Volume 202, Amer. Math. Soc., Providence, 1997 | MR: 1436914 | Zbl: 0879.18002
[18] Homotopy associativity of -spaces I, II, Trans. Amer. Math. Soc., Volume 108 (1963), p. 275-292, 293-312 | Article | MR: 158400 | Zbl: 0114.39402
[19] Another proof of Kontsevich formality conjecture (math.QA/9803183)
[20] Noncommutative differential calculus, homotopy BV algebras and formality conjectures, Methods Funct. Anal. Topology, Volume 6 (2000) no. 2, pp. 85-100 | MR: 1783778 | Zbl: 0965.58010
[21] Homotopy Gerstenhaber algebras, Conférence Moshé Flato 1999, Vol. II, Volume 22, Kluwer Acad. Publ., Dordrecht, 2000, pp. 307-331 | MR: 1805923 | Zbl: 0974.16005
Cited by Sources: