Homologie et modèle minimal des algèbres de Gerstenhaber
Annales Mathématiques Blaise Pascal, Volume 11 (2004) no. 1, pp. 95-126.

On étudie ici les notions d’algèbre de Gerstenhaber à homotopie près et d’homologie des algèbres de Gerstenhaber du point de vue de la théorie des opérades. Précisément, on donne une description explicite des 𝒢-algèbres à homotopie près (c’est-à-dire d’algèbres sur le modèle minimal de l’opérade 𝒢 des algèbres de Gerstenhaber). On décrit également le complexe calculant l’homologie des 𝒢-algèbres. On donne une suite spectrale qui converge vers cette homologie et quelques exemples de calculs. Enfin on explicite la structure d’algèbre de Poisson à homotopie près.

@article{AMBP_2004__11_1_95_0,
     author = {Gr\'egory Ginot},
     title = {Homologie et mod\`ele minimal des alg\`ebres de {Gerstenhaber}},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {95--126},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {11},
     number = {1},
     year = {2004},
     doi = {10.5802/ambp.187},
     mrnumber = {2077240},
     zbl = {02207860},
     language = {fr},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.187/}
}
TY  - JOUR
TI  - Homologie et modèle minimal des algèbres de Gerstenhaber
JO  - Annales Mathématiques Blaise Pascal
PY  - 2004
DA  - 2004///
SP  - 95
EP  - 126
VL  - 11
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.187/
UR  - https://www.ams.org/mathscinet-getitem?mr=2077240
UR  - https://zbmath.org/?q=an%3A02207860
UR  - https://doi.org/10.5802/ambp.187
DO  - 10.5802/ambp.187
LA  - fr
ID  - AMBP_2004__11_1_95_0
ER  - 
%0 Journal Article
%T Homologie et modèle minimal des algèbres de Gerstenhaber
%J Annales Mathématiques Blaise Pascal
%D 2004
%P 95-126
%V 11
%N 1
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.187
%R 10.5802/ambp.187
%G fr
%F AMBP_2004__11_1_95_0
Grégory Ginot. Homologie et modèle minimal des algèbres de Gerstenhaber. Annales Mathématiques Blaise Pascal, Volume 11 (2004) no. 1, pp. 95-126. doi : 10.5802/ambp.187. https://ambp.centre-mersenne.org/articles/10.5802/ambp.187/

[1] F.R. Cohen The homology of 𝒞 n+1 spaces, n0, The homology of iterated loop spaces, Springer-Verlag, 1976, pp. 207-351

[2] P. Deligne Letter to Stasheff, Gerstenhaber, May, Schechtman, Drinfeld (May 17, 1993)

[3] B. Fresse Homologie de Quillen pour les algèbres de Poisson, C. R. Acad. Sci. Paris Sér. I Math., Volume 326 (1998) no. 9, pp. 1053-1058 | Article | MR: 1647186 | Zbl: 0922.17014

[4] B. Fresse Théorie des opérades de Koszul et homologie des algèbres de Poisson (1998) (Prépublication)

[5] M. Gerstenhaber The cohomology structure of an associative ring, Ann. of Math, Volume 78 (1963) no. 2, pp. 267-288 | Article | MR: 161898 | Zbl: 0131.27302

[6] M. Gerstenhaber; A. Voronov Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices, Volume 3 (1995), pp. 141-153 | Article | MR: 1321701 | Zbl: 0827.18004

[7] E. Getzler; J.D.S. Jones Operads, homotopy algebras and iterated loop spaces, 1994 (hep-th/9403055)

[8] V. Ginzburg; M. Kapranov Koszul duality for operads, Duke Math. J, Volume 76 (1994) no. 1, pp. 203-272 | Article | MR: 1301191 | Zbl: 0855.18006

[9] V. Hinich Tamarkin’s proof of Kontsevich formality conjecture, Forum Math., Volume 15 (2003) no. 4, pp. 591-614 | Article | MR: 1978336 | Zbl: 01916218

[10] T. Kadeishvili Measuring the noncommutativity of DG-algebras (prépublication)

[11] M. Kontsevich Operads and motives in deformation quantization, Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 35-72 | Article | MR: 1718044 | Zbl: 0945.18008

[12] M. Kontsevich; Y. Soibelman Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I, Volume 21, Kluwer Acad. Publ., Dordrecht, 2000 | MR: 1805894 | Zbl: 0972.18005

[13] T. Lada; J. Stasheff Introduction to SH Lie algebras for physicists, Internat. J. Theoret. Phys, Volume 32 (1993) no. 7, pp. 1087-1103 | Article | MR: 1235010 | Zbl: 0824.17024

[14] M. Markl Homotopy Algebras are Homotopy Algebras (math.AT/9907138)

[15] M. Markl Distributive laws and Koszulness, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 2, pp. 307-323 | Article | Numdam | MR: 1393517 | Zbl: 0853.18005

[16] M. Markl Models for operads, Comm. Algebra, Volume 24 (1996) no. 4, pp. 1471-1500 | Article | MR: 1380606 | Zbl: 0848.18003

[17] J.P. May Operads, algebras and modules, Operads : Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Volume 202, Amer. Math. Soc., Providence, 1997 | MR: 1436914 | Zbl: 0879.18002

[18] J. Stasheff Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc., Volume 108 (1963), p. 275-292, 293-312 | Article | MR: 158400 | Zbl: 0114.39402

[19] D. Tamarkin Another proof of Kontsevich formality conjecture (math.QA/9803183)

[20] D. Tamarkin; B. Tsygan Noncommutative differential calculus, homotopy BV algebras and formality conjectures, Methods Funct. Anal. Topology, Volume 6 (2000) no. 2, pp. 85-100 | MR: 1783778 | Zbl: 0965.58010

[21] A. Voronov Homotopy Gerstenhaber algebras, Conférence Moshé Flato 1999, Vol. II, Volume 22, Kluwer Acad. Publ., Dordrecht, 2000, pp. 307-331 | MR: 1805923 | Zbl: 0974.16005

Cited by Sources: