Separating maps and the nonarchimedean Hewitt theorem
Annales Mathématiques Blaise Pascal, Volume 2 (1995) no. 1, pp. 19-27.
@article{AMBP_1995__2_1_19_0,
     author = {J. Araujo and E. Beckenstein and L. Narici},
     title = {Separating maps and the nonarchimedean {Hewitt} theorem},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {19--27},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {2},
     number = {1},
     year = {1995},
     doi = {10.5802/ambp.16},
     zbl = {0844.46053},
     mrnumber = {1342801},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.16/}
}
TY  - JOUR
TI  - Separating maps and the nonarchimedean Hewitt theorem
JO  - Annales Mathématiques Blaise Pascal
PY  - 1995
DA  - 1995///
SP  - 19
EP  - 27
VL  - 2
IS  - 1
PB  - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.16/
UR  - https://zbmath.org/?q=an%3A0844.46053
UR  - https://www.ams.org/mathscinet-getitem?mr=1342801
UR  - https://doi.org/10.5802/ambp.16
DO  - 10.5802/ambp.16
LA  - en
ID  - AMBP_1995__2_1_19_0
ER  - 
%0 Journal Article
%T Separating maps and the nonarchimedean Hewitt theorem
%J Annales Mathématiques Blaise Pascal
%D 1995
%P 19-27
%V 2
%N 1
%I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
%U https://doi.org/10.5802/ambp.16
%R 10.5802/ambp.16
%G en
%F AMBP_1995__2_1_19_0
J. Araujo; E. Beckenstein; L. Narici. Separating maps and the nonarchimedean Hewitt theorem. Annales Mathématiques Blaise Pascal, Volume 2 (1995) no. 1, pp. 19-27. doi : 10.5802/ambp.16. https://ambp.centre-mersenne.org/articles/10.5802/ambp.16/

[1] J. Araujo, Distance from an isometry to the Banach-Stone maps. In p-adic Functional Analysis, edited by J. M. Bayod, N. de Grande-de Kimpe, J. Martinez-Maurica, Lect. Notes in Pure and Appl. Math. 137, Dekker, New York, 1992, 1-12. | MR: 1152564 | Zbl: 0780.46041

[2] J. Araujo and J. Martínez-Maurica, The nonarchimedean Banach-Stone theorem. In p-adic Analysis, edited by F. Baldassarri, S. Bosch and B. Dwork, Lect. Notes in Math. 1454, Springer-Verlag, Berlin, -Heidelberg-New York1990, 64-79. | MR: 1094847 | Zbl: 0731.46043

[3] J. Araujo and J. Martínez-Maurica, Isometries between non-Archimedean spaces of continuous functions. In Papers on General Topology and Applications, edited by S. Andima, R. Kopperman, P. Ram Misra, A. R. Todd, Annals of the New York Academy of Sciences, 659, 1992, 12-17. | MR: 1485265

[4] G. Bachman, E. Beckenstein, L. Narici and S. Warner, Rings of continuous functions with values in a topological field. Trans. A. M. S. 204 (1975), 91-112. | MR: 402687 | Zbl: 0299.54016

[5] E. Beckenstein and L. Narici, A nonarchimedean Banach-Stone theorem. Proc. A.M.S. 100 (1987), 242-246. | MR: 884460 | Zbl: 0645.46065

[6] E. Beckenstein and L. Narici, Automatic continuity of certain linear isomorphisms. Acad. Royale Belg. Bull. Cl. Sci. 73(5) (1987), 191-200. | MR: 949991 | Zbl: 0664.46079

[7] E. Beckenstein, L. Narici and C. Suffel, Topological algebras. Mathematics Studies 24, North Holland, Amsterdam 1977. | MR: 473835 | Zbl: 0348.46041

[8] E. Beckenstein, L. Narici and A.R. Todd, Automatic continuity of linear maps on spaces of continuous functions. Manuscripta Math., 62 (1988), 257-275. | MR: 966626 | Zbl: 0666.46018

[9] L. Gillman and M. Jerison, Rings of continuous functions. University Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1960. | MR: 116199 | Zbl: 0093.30001

[10] E. Hewitt, Rings of real-valued continuous functions. I. Trans. A. M. S. 64 (1948), 45-99. | MR: 26239 | Zbl: 0032.28603

[11] K. Jarosz, Automatic continuity of separating linear isomorphisms. Canad. Math. Bull., 33(2) (1990) 139-144. | MR: 1060366 | Zbl: 0714.46040

[12] L. Narici, E. Beckenstein and J. Araujo, Separating maps on rings of continuous functions. In p-adic Functional Analysis, edited by N. de Grande-de Kimpe, S. Navarro and W. H. Schikhof. Universidad de Santiago, Santiago, Chile, 1994, 69-82.

[13] A.C.M. Van Rooij, Non-archimedean Functional Analysis. Dekker, New York 1978. | MR: 512894 | Zbl: 0396.46061

[13] J. Araujo, E. Beckenstein and L. Narici Biseparating maps and homeomorphic realcompactifications to appear in J. Math. Ann. Appl. | MR: 1329423 | Zbl: 0828.47024

[14] J. Araujo, P. Fernandez-Ferreiros and J. Martinez-Maurica Pseudocompact and P-spaces in non archimedean Functional Analysis p-Adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics, 137. Dekker 1992, pags 13-21 | MR: 1152565 | Zbl: 0780.46042

Cited by Sources: