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Quantum Isometry Group of Deformation: A Counterexample

Debashish Goswami
Arnab Mandal

Abstract

We give a counterexample to show that the quantum isometry group of a deformed finite dimensional
spectral triple may not be isomorphic with a deformation of the quantum isometry group of the undeformed
spectral triple.

1. Introduction

Quantum groups play an important role in several areas of mathematics and physics, often
as some kind of generalised symmetry objects. Beginning from the pioneering work by
Drinfeld, Jimbo, Manin, Woronowicz and others nearly three decades ago ([9, 12, 19, 21]
and references therein) there is now a vast literature on quantum groups both from
algebraic and analytic (operator algebraic) viewpoints. Generalizing the concept of group
actions on spaces, notions of (co)actions of quantum groups on possibly noncommutative
spaces have been formulated and studied by many mathematicians in recent years. In
1998, S. Wang [20] initiated this programme by defining quantum automorphism groups
of certain mathematical structures (typically finite sets, matrix algebras etc.). After that, a
number of mathematicians including Banica, Bichon and others ([1, 2, 8] and references
therein) formulated the notion of quantum symmetries of finite metric spaces and finite
graphs. With the motivation of connecting Wang’s quantum automorphism groups with
a more geometric framework, one of the authors of the present article [14] defined and
proved existence of an analogue of the group of isometries of a Riemannian manifold,
in the framework of the so-called compact quantum groups à la Woronowicz. In fact,
he considered the more general setting of noncommutative manifold, given by spectral
triples defined by Connes [10] and under some mild regularity conditions, he proved the
existence of a universal compact quantum group (termed as the quantum isometry group)
acting on the C∗-algebra underlying the noncommutative manifold such that the action
also commutes with a natural analogue of Laplacian of the spectral triple. We refer the
reader to the original article [14] and the recently published book [7] for the details of
the theory of quantum isometry groups. In this context, a very natural and important
question is whether the quantum isometry group of deformation of some noncommutative
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manifold is isomorphic with certain deformed version of the quantum isometry group of
the original undeformed noncommutative manifold. That is, whether the functor “QISO”
which assigns to a noncommutative manifold its quantum isometry group “commutes”
with the functor of deformation. This question has been answered in the affirmative for
Rieffel type cocycle deformation by Goswami, Bhowmick, Joardar [5, 15] and for the
more general “monoidal deformation” by Sadeleer [11]. The computation of the quantum
isometry groups of Podles spheres [6] indicates that there may be an affirmative answer
for a bigger class of deformations. However, it is not true in general as the isometry
group of a classical Riemannian manifold may drastically change by a slight perturbation
of the Riemannian metric. The aim of the present article is to give an example of flat
deformation of finite dimensional spectral triples on the C∗-algebras of finite groups for
which the corresponding quantum isometry groups are not flat deformation. Note that
such examples can’t be produced for classical Riemannian geometry since there exists
only one Riemannian metric, so that there is no room for deformations.

2. Background Materials

We very briefly discuss the basic definitions and recall some standard facts about
noncommutative geometry and quantum isometry groups. We refer [10, 17, 21] for more
details. Let us fix some notational convention. We denote the algebraic tensor product and
spatial (minimal) C∗-tensor product by ⊗ and ⊗̌ respectively. We’ll use the leg-numbering
notation. LetH be a complex Hilbert space, K(H) the C∗-algebra of compact operators
on it, and Q a unital C∗-algebra. The multiplier algebraM(K(H) ⊗̌ Q) has two natural
embeddings intoM(K(H) ⊗̌ Q ⊗̌ Q), one obtained by extending the map x 7→ x ⊗ 1 and
the second one is obtained by composing this map with the flip on the last two factors.
We will write ω12 and ω13 for the images of an element ω ∈ M(K(H) ⊗̌ Q) under
these two maps respectively. We’ll denote by H ⊗̄ Q the Hilbert C∗-module obtained
by completingH ⊗ Q with respect to the norm induced by the Q valued inner product
〈〈ξ ⊗ q, ξ ′ ⊗ q′〉〉 := 〈ξ, ξ ′〉q∗q′, where ξ, ξ ′ ∈ H and q, q′ ∈ Q.

2.1. Spectral triple and compact quantum groups

Definition 2.1. A spectral triple is a triple (A∞,H,D) whereH is a separable Hilbert
space, A∞ is a ∗-subalgebra of B(H), (not necessarily norm closed) and D is a self
adjoint (typically unbounded) operator such that for all a ∈ A∞, the operator [D, a] has a
bounded extension. Such spectral triple is also called an odd spectral triple. If in addition,
we have γ ∈ B(H) satisfying γ = γ∗ = γ−1, Dγ = −γD and [a, γ] = 0 for all a ∈ A∞,
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then we say the quadruplet (A∞,H,D, γ) is an even spectral triple. The operator D is
called the Dirac operator corresponding to the spectral triple.

We say that the spectral triple is of compact type if A∞ is unital and D has compact
resolvent. In this article, we will consider only odd spectral triple.

Definition 2.2. A compact quantum group (CQG in short) is a pair (Q,∆), where Q
is a unital C∗- algebra and ∆ : Q → Q ⊗̌ Q is a unital C∗-homomorphism (called the
comultiplication), such that

(1) (∆ ⊗ id)∆ = (id ⊗ ∆)∆ as homomorphism Q → Q ⊗̌ Q ⊗̌ Q (coassociativity).

(2) The spaces ∆(Q)(1 ⊗ Q) = Span{∆(b)(1 ⊗ a) | a, b ∈ Q} and ∆(Q)(Q ⊗ 1) =
Span{∆(b)(a ⊗ 1) | a, b ∈ Q} are dense in Q ⊗̌ Q.

A CQG morphism from (Q1,∆1) to another (Q2,∆2) is a unital C∗-homomorphism
π : Q1 7→ Q2 such that (π ⊗ π)∆1 = ∆2π.

Definition 2.3. We say that a CQG (Q,∆) acts on a unital C∗-algebra B if there is a unital
C∗-homomorphism (called action) α : B → B ⊗̌ Q satisfying the following:

(1) (α ⊗ id)α = (id ⊗ ∆)α.

(2) The linear span of α(B)(1 ⊗ Q) is norm-dense in B ⊗̌ Q.

Definition 2.4. Let (Q,∆) be a CQG. A unitary representation of Q on a Hilbert space
H is a C-linear map U fromH to the Hilbert moduleH ⊗̄ Q such that

(1) 〈〈U(ξ),U(η)〉〉 = 〈ξ, η〉 1Q , where ξ, η ∈ H .

(2) (U ⊗ id)U = (id ⊗ ∆)U.

(3) Span{U(H)Q} is dense inH ⊗̄ Q.

Given such a unitary representation we have a unitary element Ũ belonging to
M(K(H) ⊗̌ Q) given by Ũ(ξ ⊗ b) = U(ξ)b, (ξ ∈ H, b ∈ Q) satisfying (id ⊗ ∆)(Ũ) =
Ũ12Ũ13.
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2.2. Quantum isometry groups

In [14] the first author introduced the notion of quantum isometry group of a spectral triple
satisfying certain regularity conditions. We refer to [3, 4, 14] for the original formulation
of quantum isometry groups and its various avatars including the quantum isometry group
for orthogonal filtrations.

Definition 2.5. Let (A∞,H,D) be a spectral triple of compact type (à la Connes).
Consider the category Q(D) ≡ Q(A∞,H,D) whose objects are (Q,U), where (Q,∆) is
a CQG having a unitary representation U on the Hilbert spaceH satisfying the following:

(1) Ũ commutes with (D ⊗ 1Q).

(2) (id ⊗ φ) ◦ adŨ (a) ∈ (A
∞)′′ for all a ∈ A∞ and φ is any state on Q, where

adŨ (x) := Ũ(x ⊗ 1)Ũ∗ for x ∈ B(H). Note that adŨ is faithful on A∞.

A morphism between two such objects (Q,U) and (Q ′,U ′) is a CQG morphism ψ : Q →
Q ′ such that U ′ = (id ⊗ ψ)U. If a universal object exists in Q(D) then we denote it by�QISO+(A∞,H,D) and the corresponding largest Woronowicz subalgebra for which
adŨ0

is faithful, whereU0 is the unitary representation of �QISO+(A∞,H,D), is called the
quantum group of orientation preserving isometries and denoted by QISO+(A∞,H,D).

Let us state Theorem 2.23 of [4] which gives a sufficient condition for the existence of
QISO+(A∞,H,D).

Theorem 2.6. Let (A∞,H,D) be a spectral triple of compact type. Assume that D has
one dimensional kernel spanned by a vector ξ ∈ H which is cyclic and separating for
A∞ and each eigenvector of D belongs to A∞ξ. Then QISO+(A∞,H,D) exists.

Here we briefly discuss a specific case of interest for us. For more details see [16,
Section 2.2].

Let Γ be a finitely generated discrete group with a symmetric generating set S not
containing the identity of Γ (symmetric means g ∈ S if and only if g−1 ∈ S) and let l be
the corresponding word length function. We define an operator DΓ by DΓ(δg) = l(g)δg,
where δg denotes the vector in l2(Γ) which takes value 1 at the point g and 0 at all other
points. Note that δg, g ∈ Γ forms an orthonormal basis of l2(Γ). Let τ be the faithful
positive functional on the reduced group C∗-algebra C∗r (Γ) given by τ(

∑
g cgλg) = ce,

where e is the identity element of Γ. Then QISO+(CΓ, l2(Γ),DΓ) exists by Theorem 2.6,
taking δe as the cyclic separating vector for CΓ.

We also refer to [3] for the related notion of orthogonal filtration and note that
the above quantum isometry group is the quantum symmetry group of the orthogonal
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filtration on CΓ with respect to the tracial state τ and the filtration Fl = (V1,k)k≥0, where
V1,k = Span{λg : l(g) = k}. Moreover, we make the following useful observation:

Theorem 2.7. Let P0 and P1 be the orthogonal projections onto the subspaces V1,0,V1,1
respectively and let P2 = 1 − (P0 + P1). Define D = P1 + 2P2. Then for a finite group Γ,
QISO+(CΓ, l2(Γ),D) exists and is isomorphic with QISO+(CΓ, l2(Γ),DΓ).

Proof. Let Q1 = QISO+(CΓ, l2(Γ),DΓ) and Q2 = QISO+(CΓ, l2(Γ),D). It follows from
Theorem 2.10 and Theorem 3.2 of [3] that Q2 is the quantum symmetry group of the
orthogonal filtration FD = (V2,k)k=0,1,2 and with respect to the trace τ, where V2,k = V1,k
for k = 0, 1 and V2,2 = ∪k≥2V1,k = Span{λg | l(g) ≥ 2}. As Fl is a refinement of FD , it is
clear that Q1 is a subobject of Q2 (in the category of FD preserving quantum groups).
Hence it suffices to show that Q2 is also a subobject of Q1 in the category of Fl preserving
quantum groups. But by definition, the coaction of Q2 leaves V1,1 invariant and preserves
the trace τ, hence it is an object in the category Cτ introduced in [16]. By Lemma 2.14
of [16] we conclude that Q2 is a subobject of Q1. �

Let Γ1 and Γ2 be two finite groups with identity elements e and e′ respectively. Assume
that F1 = (Vi)i=0,1,...,k and F2 = (Ṽj)j=0,1,...,l are two orthogonal filtrations of C∗(Γ1)

and C∗(Γ2) with respect to the canonical traces τ1 and τ2 respectively. Moreover, let
QFi be the quantum isometry groups of C∗(Γi) for i = 1, 2. For each g ∈ Γ1, g

′ ∈ Γ2
consider the subspaces V(i,g′) = Span{b⊗ λg′ | b ∈ Vi} and Ṽ(g, j) = Span{λg ⊗ a | a ∈ Ṽj}

forall i = 0, 1, . . . , k and j = 0, 1, . . . , l inside the vector space C∗(Γ1) ⊗ C∗(Γ2). Clearly,
F = (V(i,g′))i=0,1,...,k,g′∈Γ2 and F ′ = (Ṽ(g, j))j=0,1,...,l,g∈Γ1 are two orthogonal filtrations for
C∗(Γ1) ⊗ C∗(Γ2), i.e. C∗(Γ1) ⊗ C∗(Γ2) =

⊕
i,g′ V(i,g′) and C∗(Γ1) ⊗ C∗(Γ2) =

⊕
i,g Ṽ(g,i)

with respect to the state τ1 ⊗ τ2. Let QF and QF′ be the quantum isometry groups of
C∗(Γ1) ⊗C∗(Γ2) corresponding to the filtrations F and F ′ respectively. Let us assume that
{s1, . . . , sp} is a generating set of the group Γ1 andV1 = Span{λs1, . . . , λsp }. Furthermore,
assume that the action of QF1 on C∗(Γ1) is defined by α1(λsi ) =

∑p
j=1 λsj ⊗ qji , where

the underlying C∗-algebra of QF1 is generated by qi j’s for i, j = 1, . . . , p.

Theorem 2.8. QF � QF1 ⊗ C∗(Γ2).

Proof. First of all, note that any action α on C∗(Γ1)⊗C∗(Γ2) is determined by α(λsi ⊗λe′)
and α(λe ⊗ λg′) forall i = 1, . . . , p and g′ ∈ Γ2. Let αF be the action of QF on
C∗(Γ1) ⊗ C∗(Γ2). As V(0,g′) and V(1,e′) are members of the filtration F , αF must preserve
each of them and hence αF must satisfy αF(λe ⊗ λg′) = λe ⊗ λg′ ⊗ qg′ ∀ g′ ∈ Γ2
and αF(λsi ⊗ λe′) =

∑p
j=1 λsj ⊗ λe′ ⊗ q′ji forall i = 1, . . . , p where {qg′, q′ji, g

′ ∈

Γ2, i, j = 1, . . . , p} ⊆ QF . In fact, as {λe ⊗ λg′, λsi ⊗ λe′, g′ ∈ Γ2, i = 1, . . . , p} is
a set of generators for the C∗-algebra C∗(Γ1) ⊗ C∗(Γ2) and αF is faithful, the set
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{qg′, q′ji, g
′ ∈ Γ2, i, j = 1, . . . , p} is a set of generators of the C∗-algebra QF . Now define

β : C∗(Γ1) ⊗ C∗(Γ2) 7→ C∗(Γ1) ⊗ C∗(Γ2) ⊗ QF1 ⊗ C∗(Γ2) by β = σ23 ◦ (α1 ⊗ ∆Γ2 ),

where σ23 denotes the isomorphism between C∗(Γ1) ⊗ QF1 ⊗ C∗(Γ2) ⊗ C∗(Γ2) and
C∗(Γ1) ⊗ C∗(Γ2) ⊗ QF1 ⊗ C∗(Γ2) which interchanges the second and third tensor copies
and ∆Γ2 is the usual coproduct on C∗(Γ2). Clearly, β is a C∗-action of QF1 ⊗ C∗(Γ2) on
C∗(Γ1) ⊗ C∗(Γ2) and it satisfies β(λe ⊗ λg′) = λe ⊗ λg′ ⊗ 1QF1

⊗ λg′ ∀ g′ ∈ Γ2 and
β(λsi ⊗ λe′) =

∑p
j=1 λsj ⊗ λe′ ⊗ qji ⊗ λe′ forall i = 1, . . . , p, where 1QF1

is the unit of
QF1 . Thus, β preserves the filtration F which implies the existence of a well defined
surjective C∗-homomorphism from QF to QF1 ⊗ C∗(Γ2) sending qg′ to λg′ and q′ji to
qji, g

′ ∈ Γ2, i, j = 1, . . . , p. We claim that there is an inverse of this morphism, namely a
C∗-homomorphism from QF1 ⊗ C∗(Γ2) to QF which sends λg′ to qg′ and qji to q′ji . To
this end, observe that as αF is a C∗-homomorphism and αF(λe ⊗ λg′) = λe ⊗ λg′ ⊗ qg′ , we
must have (λg′1 ⊗ qg′1 )(λg′2 ⊗ qg′2 ) = λg′1g′2 ⊗ qg′1g′2 forall g

′
1, g
′
2 ∈ Γ2, i.e. qg′1 · qg′2 = qg′1g′2 .

Similarly, qe′ = 1 and qg′−1 = (qg′)−1 = q∗g′ . Thus, g
′ 7→ qg′ is a group homomorphism

from Γ2 to the group of unitaries of QF , hence by the universality of C∗(Γ2) we get a
C∗-homomorphism (say ρ) from C∗(Γ2) to QF such that ρ(λg′) = qg′ ∀ g′ ∈ Γ2. Next,
note that αF preserves the C∗-subalgebra C∗(Γ1) ⊗ λe′(� C∗(Γ1)) ⊆ C∗(Γ1) ⊗C∗(Γ2), and
clearly the restriction of αF to this subalgebra gives a F1- preserving action on C∗(Γ1).
Hence we get a C∗-homomorphism, say θ, from QF1 to QF such that θ(qji) = q′ji ∀
i, j = 1, . . . , p. Moreover, as C∗(Γ1) ⊗ λe′ and λe ⊗ C∗(Γ2) are commutative subalgebras
of C∗(Γ1) ⊗C∗(Γ2), their images under αF must commute too. From this, it easily follows
that qg′ · q′ji = q′ji · qg′ ∀ g′ ∈ Γ2, i, j = 1, . . . , p. Thus, the images of θ and ρ commute
implying the existence of a C∗-homomorphism θ ⊗ ρ : QF1 ⊗ C∗(Γ2) 7→ QF which sends
qji ⊗ λg′ to qg′ · q′ji . �

Similarly, it can be shown that QF′ � QF2 ⊗ C∗(Γ1).

2.3. Deformation

There are different notions of deformation of spaces, algebras and operators found in the
literature. Let us specify the notion which we are concerned with. For a more general,
abstract setting of deformation theory we refer to the seminal work of Gerstenhaber and
others (see, e.g. [13] and references therein).

We will consider families of vector spaces Wh , h ∈ I, where I is an open interval in R.

Definition 2.9. Let {Wh}h∈I be a family of vector subspaces of some finite dimen-
sional vector space W. {Wh} is called a continuous deformation of Wh0 if there
are W-valued continuous functions wi,h, i = 1, . . . , n (where dim(W) = n) such that
Wh = Span{w1(h), . . . ,wn(h)} ∀ h ∈ I.
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From now on, we just call it deformation by dropping the word continuous. Moreover,
{Wh}h∈I is called a flat deformation of Wh0 if dim(Wh) does not depend on h.

Definition 2.10. Let {Vh}h∈I be a family of filtered vector spaces, i.e. Vh = ∪i≥0Fi(Vh)

with the conditon F0(Vh) ⊆ . . . Fi(Vh) ⊆ · · · ⊆ Vh of finite dimensional subspaces of Vh.
{Vh} is called a deformation of Vh0 if for each i, the family of subspaces {Fi(Vh)} is a
deformation of Fi(Vh0 ) as in Definition 2.9.

Such deformation is called a flat deformation if dim(Fi(Vh)) does not depend on h for
any fixed i.

Definition 2.11. Let {Ah}h∈I be a family of filtered unital algebras, i.e. Ah = ∪i≥0Fi(Ah)

with the conditons F0(Ah) ⊆ . . . Fi(Ah) ⊆ · · · ⊆ Ah of finite dimensional subspaces of
Ah and Fi(Ah).Fj(Ah) ⊆ Fi+j(Ah) ∀ i, j. Moreover, we assume that F0(Ah) = C.1 for all
h. Then Ah is called a deformation of Ah0 if for each i, there is a finite dimensional vector
space Vi and Vi valued continuous functions wi, j(h), j = 1, . . . , ni (where dim(Vi) = ni)
such that Fi(Vh) = Span{wi,1(h), . . . ,wi,ni (h)} and the map h 7→ wi,k(h).wj,l(h) is
continuous forall i, j, k, l with 1 ≤ k ≤ ni, 1 ≤ l ≤ nj .

Remark 2.12. Any finitely generated algebra can be considered as a filtered algebra. Given
such an algebra A with a unit 1 and a finite set of generators {a1, . . . , ak}, we consider the
filtration given by A0 = C1, A1 = Span{1, a1, . . . , ak}, An = Span{1, ai1 . . . aim, 1 ≤ m ≤
n, il ∈ {1, . . . , k} ∀ l}. Hence the definition of deformation of filtered algebras applies to
any arbitrary finitely generated algebra.

Definition 2.13. The family of filtered algebras {Ah}h∈I is called a flat deformation of
Ah0 if for any fixed i, the dimension of Fi(Ah) does not depend on h.

Remark 2.14. It is clear that a flat deformation {Ah} of Ah0 is uniquely determined
by a family •h of associative algebra multiplication from Ah0 ⊗ Ah0 to Ah0 such that
h 7→ ω(a •h b) is continuous for all ω ∈ A′

h0
(dual vector space), a, b ∈ Ah0 . In fact, one

can take this as a definition of flat deformation, for not necessarily filtered algebra Ah0 .

Definition 2.15. A family (Ah,Hh,Dh) of finite dimensional spectral triples of compact
type will be called a flat deformation if

(1) There exists continuous functions λi(h), i = 1, . . . , N such that λi(h) , λj(h) ∀
i , j, {λi(h)} is the set of eigenvalues of Dh .

(2) IfVi(h) denotes the eigenspaces of Dh corresponding to λi(h), then {Vi(h), h ∈ I}
is a flat deformation of finite dimensional vector spaces ∀ i.

(3) {Ah}h∈I is a flat deformation of filtered unital *-algebras too.
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Finally, we need an appropriate notion of flat deformation of Hopf algebras, which are
finitely generated as algebras.

Definition 2.16. Let {(Qh,∆h)}h∈I be a family of Hopf algebras with ∆h denoting the
coproduct. Suppose that each {Qh}h∈I is finitely generated as an algebra and {Qh}h∈I

is a flat deformation of Qh0 with respect to the filtered algebra structure corresponding
to a finite generating set of Qh0 . Thus by Remark 2.14 we can identify each Qh with
Qh0 for any fixed h0 ∈ I so that the multiplication map •h is continuous in the sense
discussed in that remark. If furthermore, ∆h viewed as a map from Qh0 to Qh0 ⊗ Qh0 is
continuous in a similar sense, i.e. h 7→ (β ⊗ id)(∆h(q)) is continuous ∀ q ∈ Qh0 and for
all linear functional β on Qh0 ⊗ Qh0 , we say that (Qh,∆h)}h∈I is a flat deformation of
finitely generated Hopf algebras.

Remark 2.17. By construction of [3] the underlying Hopf algebra of the quantum isometry
group for an orthogonal filtration is always finitely generated, hence the above definition
applies to such Hopf algebras. A similar remark can be made about the underlying Hopf
algebra of QISO(A,H,D) of a finite dimensional spectral triple.

3. The Counterexample

It is now natural to ask the following question: does the quantum isometry groups of a flat
deformation of spectral triples again form a flat deformation of compact quantum groups?
The answer to this question is negative even if the spectral triples considered are finite
dimensional, as shown by the counterexample given by the anonymous referee, which is
briefly described below.

Consider A∞ = C2 acting on the 2 dimensional Hilbert spaceH = C2 and two Dirac
operators

D0 = 1/2
(
1 1
1 1

)
, D1 = 1/5

(
1 2
2 4

)
,

which are rank 1 projections. We take a homotopy Dt connecting D0 and D1 via
rank 1 projections, then (A∞,H,Dt ) is a flat deformation of spectral triples, satisfying
the assumption of Theorem 2.6. Notice that the only quantum automorphism group
of A∞ is Z2, which preserves D0 but not D1. Hence QISO+(A∞,H,D0) is Z2 but
QISO+(A∞,H,D1) is trivial.

However, we would like to give another counterexample, where the initial and final
spectral triples of the deformed family arise from a finite group with two different
generating sets. From now onwards the two groups Z9 × Z3 and Z9 o Z3 are denoted by
Γ1 and Γ2 respectively. Moreover, we denote the identity elements of Γ1 and Γ2 by e and
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e′ respectively. Note that

Γ1 = {a, b | ab = ba, a9 = b3 = e}, Γ2 = {x, y | xyx−1 = y4, x3 = y9 = e′}.

ConsiderV0 = Cλe,V1 = Span{λa, λa−1, λb, λb−1 } andV2 = Span{λt | t ∈ Γ1−{e, a, a−1, b, b−1}}.
Observe that F1 = (Vi)i=0,1,2 gives an orthogonal filtration for C∗(Γ1). Similarly, consider
Ṽ0 = Cλe′ , Ṽ1 = Span{λx, λx−1, λy, λy−1 }, Ṽ2 = Span{λs | s ∈ Γ2−{e′, x, x−1, y, y−1}} and
F2 = (Ṽi)i=0,1,2 is an orthogonal filtration for C∗(Γ2). Moreover, for each g ∈ Γ1, g

′ ∈ Γ2
and i = 0, 1, 2 we can consider the subspaces Ṽ(g,i) = Span{λg ⊗ a | a ∈ Ṽi} and
V(i,g′) = Span{b ⊗ λg′ | b ∈ Vi} inside C∗(Γ1) ⊗ C∗(Γ2). Clearly, F = (V(i,g′))i=0,1,2,g′∈Γ2

and F ′ = (Ṽ(g,i))i=0,1,2,g∈Γ1 are two orthogonal filtrations for C∗(Γ1) ⊗ C∗(Γ2), i.e.
C∗(Γ1)⊗C∗(Γ2) =

⊕
(i,g′) V(i,g′) andC∗(Γ1)⊗C∗(Γ2) =

⊕
(g,i) Ṽ(g,i). Assume that g′ 7→ g

is a bijective map from Γ2 to Γ1. We can consider a unitary operator U on l2(Γ1) ⊗ l2(Γ2)

such that U(V(i,g′)) = Ṽ(g,i). Observe that σ(U) is a finite subset of the unit circle as
l2(Γ1) ⊗ l2(Γ2) is a finite dimensional vector space. Using an appropriate branch of loga-
rithm not intersecting the set σ(U) we get a self adjoint matrix S such that U = eiS . Then
we can define a family of unitary operators Uh = eihS ∀ h ∈ [0, 1]. Consider the spaces
V(i,g′),h = Uh(V(i,g′)) forall h and define the operators Dh =

∑
i=0,1,2,g′∈Γ2 n(i, g′)P(i,g′),h

on l2(Γ1) ⊗ l2(Γ2), where n(i, g′) ∈ N ∪ {0}, n(i1, g′1) , n(i2, g′2) if (i1, g
′
1) , (i2, g

′
2)

and P(i,g′),h is the orthogonal projection onto V(i,g′),h. Observe that V(i,g′),0 = V(i,g′) and
V(i,g′),1 = Ṽ(g,i) for each g′ ∈ Γ2 and i = 0, 1, 2. Consider the family of spectral triples
(Ah,Hh,Dh), where Ah = C∗(Γ1) ⊗ C∗(Γ2),Hh = l2(Γ1) ⊗ l2(Γ2) forall h and Dh is
defined as above. Note that this family is clearly a flat deformation in the sense of
Definition 2.15 and QISO+(C∗(Γ1) ⊗ C∗(Γ2), l2(Γ1) ⊗ l2(Γ2),Dh) exists by Theorem 2.6,
taking ξ = δe ⊗ δe′ as a cyclic, separating vector for C∗(Γ1) ⊗ C∗(Γ2). Moreover, using
Theorem 2.7, we have

QF1 � QISO+(C∗(Γ1), l2(Z9) ⊗ l2(Z3),DΓ1 ),

QF2 � QISO+(C∗(Γ2), l2(Z9) ⊗ l2(Z3),DΓ2 ).

However, QISO+(C∗(Γ1), l2(Z9) ⊗ l2(Z3),DΓ1 ) and QISO+(C∗(Γ2), l2(Z9) ⊗ l2(Z3),

DΓ2 ) have been already computed in [16, 18] respectively and one has the following:

QISO+(C∗(Γ1), l2(Z9) ⊗ l2(Z3),DΓ1 ) � [C
∗(Z9) ⊕ C∗(Z9)] ⊗ [C∗(Z3) ⊕ C∗(Z3)],

QISO+(C∗(Γ2), l2(Z9) ⊗ l2(Z3),DΓ2 ) � C∗(Z9 o Z3) ⊕ C∗(Z9 o Z3)

with the coproduct structures discussed in [16] and [18] respectively. From this, we can
easily conclude the following:

Theorem 3.1. QISO+(C∗(Γ1) ⊗ C∗(Γ2), l2(Γ1) ⊗ l2(Γ2),Dh) is not a flat deformation.
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Proof. Note that the dimension of the underlying vector space of QISO+(C∗(Γ1),

l2(Z9) ⊗l2(Z3),DΓ1 ) is 108, whereas the dimension of the underlying vector space
of QISO+(C∗(Γ2) , l2(Z9) ⊗ l2(Z3),DΓ2 ) is 54. Thus, by Theorem 2.8, the dimensions
of the underlying vector spaces of QISO+(C∗(Γ1) ⊗ C∗(Γ2), l2(Γ1) ⊗ l2(Γ2),D0) and
QISO+(C∗(Γ1) ⊗ C∗(Γ2), l2(Γ1) ⊗ l2(Γ2),D1) are 2916 and 1458 respectively. Hence the
family QISO+(C∗(Γ1) ⊗C∗(Γ2), l2(Γ1) ⊗ l2(Γ2),Dh) can’t be a flat deformation. �
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