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Universal edge fluctuations of discrete interlaced particle systems

Erik Duse
Anthony Metcalfe

Abstract

We impose the uniform probability measure on the set of all discrete Gelfand–Tsetlin patterns of
depth n with the particles on row n in deterministic positions. These systems equivalently describe a
broad class of random tilings models, and are closely related to the eigenvalue minor processes of a broad
class of random Hermitian matrices. They have a determinantal structure, with a known correlation kernel.
We rescale the systems by 1

n , and examine the asymptotic behaviour, as n→∞, under weak asymptotic
assumptions for the (rescaled) particles on row n: The empirical distribution of these converges weakly to
a probability measure with compact support, and they otherwise satisfy mild regulatory restrictions.

We prove that the correlation kernel of particles in the neighbourhood of “typical edge points”
convergences to the extended Airy kernel. To do this, we first find an appropriate scaling for the
fluctuations of the particles. We give an explicit parameterisation of the asymptotic edge, define an
analogous non-asymptotic edge curve (or finite n-deterministic equivalent), and choose our scaling such
that the particles fluctuate around this with fluctuations of orderO(n−

1
3 ) andO(n−

2
3 ) in the tangent and

normal directions respectively. While the final results are quite natural, the technicalities involved in
studying such a broad class of models under such weak asymptotic assumptions are unavoidable and
extensive.

Universalité au bord pour la fluctuation de systèmes discrets de particules
entrelacées

Résumé

Nous considérons la mesure uniforme sur l’ensemble des configurations de Gelfand–Tsetlin de
profondeur n après avoir fixé la position des particules de la n-ième ligne. De maniere équivalente, ces
systèmes décrivent une grande classe de modèles de pavages aléatoires et ont un rapport étroit avec les
processus de valeurs propres de mineurs d’une grande classe de matrices aléatoires hermitiennes. Ils ont
une structure déterminantale et leur noyau de corrélation est connu. Nous redimensionnons le système
par un facteur 1/n, et examinons son comportement asymptotique lorsque n → ∞, sous l’hypothèse
faible pour les particules sur la rangée n, que la distribution empirique redimensionnée de ces dernières
converge faiblement vers une mesure de probabilité avec support compact, et que cette dernière satisfasse
un minimum de régularité.

Nous prouvons que le noyau de corrélation des particules dans le voisinage d’un « point typique
du bord » converge vers le noyau de Airy étendu. A cette fin, nous trouvons dans un premier temps
un dimensionnement adéquat pour la fluctuation des particules. Nous donnons une paramétrisation
explicite du noyau asymptotique, définissons une courbe non-asymptotique analogue (et son équivalent
en dimension n), et choisissons notre scaling de telle sorte que les particules fluctuent autour de cette
courbe avec des ordres O(n−

1
3 ) et O(n−

2
3 ), dans les directions respectivement tangentes et normales.

Bien que les résultats de l’article soient naturels, les difficultés techniques liées Ã l’etude d’une si grande
classe de modèles sous des hypothèses si faibles sont substantielles et inévitables.

Keywords: Random lozenge tilings, Universal edge fluctuations, Steepest descent.
2010 Mathematics Subject Classification: 60B20.
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1. Introduction

1.1. Overview of the model, the asymptotic assumptions, and results

In this paper we consider universal edge behaviour of random systems of discrete interlaced
particles referred to as Gelfand–Tsetlin patterns. A discrete Gelfand–Tsetlin pattern of
depth n is an n-tuple, (y(1), y(2), . . . , y(n)) ∈ Z×Z2×· · ·×Zn, which satisfies the interlacing
constraint,

y
(r+1)
1 ≥ y

(r)
1 > y

(r+1)
2 ≥ y

(r)
2 > · · · ≥ y

(r)
r > y

(r+1)
r+1 , (1.1)

for all r ∈ {1, . . . , n − 1}, denoted y(r+1) � y(r). Equivalently this can be considered as an
interlaced configuration of 1

2 n(n + 1) particles in Z × {1, 2, . . . , n} by placing a particle at
position (u, r) ∈ Z × {1, 2, . . . , n} whenever u is an element of y(r). A Gelfand–Tsetlin
pattern of depth 4 is shown on the left of Figure 1.1.

For each n ≥ 1, fix x(n) ∈ Zn with x(n)1 > x(n)2 > · · · > x(n)n . Consider the uniform
probability measure, νn, on the set of discrete Gelfand–Tsetlin patterns of depth n with
the particles on row n in the deterministic positions defined by x(n):

νn[(y
(1), y(2), . . . , y(n))] :=

1
Zn
·

{
1 when x(n) = y(n) � y(n−1) � · · · � y(1),

0 otherwise,
(1.2)

where Zn > 0 is a normalisation constant. This measure, and the equivalent description
of Gelfand–Tsetlin patterns given above, induces a random point process on interlaced
configurations of particles in Z × {1, 2, . . . , n}. In [8], we show that this process is
determinantal. See Johansson, [14], for an introduction to such processes. (1.3), below,
recalls our expression for the correlation kernel of this process, denoted Kn : (Z ×
{1, 2, . . . , n})2 → C. Loosely speaking, Kn is a function on pairs of particle positions
which conveniently encodes the densities and correlations of the particles. Kn was also,
independently, obtained by Petrov, [23].

As discussed in Sections 1.1 and 1.2 of Duse and Metcalfe, [8], our motivation for
studying these processes is that they are an equivalent description of uniform random
tilings of “half-hexagons” with lozenges, and of perfect matchings of dimer configurations
of honeycomb lattices. The set of “half-hexagons” is a class of polygons with quite general
boundaries. The boundary is determined by the (arbitrary) choice of the above x(n) ∈ Zn,
and particular choices of x(n) recover well-studied models. For example, if we fix p, q, r ∈
Z+, and choose n = p+ r and x(n) = (p+ q+ r, p+ q+ r −1, . . . , p+ q+1, p, p−1, . . . , 1),
then we recover the uniform random tiling of a hexagon with sides of length p, q, r, p, q, r .
Cohn et al., [5], studied the asymptotic shape of a “typical” such tiling as n→∞, under
the assumption that p

q and p
r converge. Analogous limit shapes for other random tilings

models have been studied, for example, in [17] and [16].
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Figure 1.1. Left: A visualisation of a Gelfand–Tsetlin pattern of
depth 4. Right: {(χ, η) ∈ [a, b] × [0, 1] : b ≥ χ ≥ χ + η − 1 ≥ a}.
Assumption 1.2 implies that the bulk of the rescaled particles of the
Gelfand–Tsetlin patterns lie asymptotically in this region as n→∞.

As we will discuss in more detail below, we rescale our systems by 1
n , and examine the

asymptotic behaviour, as n→∞, under weak asymptotic assumptions: We assume that
the empirical distribution of 1

n x(n) converges weakly to a probability measure, µ, with
compact support (Assumption 1.2), and that 1

n x(n) otherwise satisfies only mild regulatory
restrictions (Assumptions 1.7 and 2.4). We avoid only that degenerate case where µ is
Lebesgue measure on a single interval of length 1, and allow all other µ which can be
obtained via the weak convergence. Note, as n→∞, the interlacing constraint implies
that the bulk of the rescaled particles of the Gelfand–Tsetlin patterns lie asymptotically in
the polygon shown on the right of Figure 1.1. The technicalities involved in studying the
asymptotic behaviours of these systems, under such weak asymptotic assumptions, are
unavoidable and extensive. A positive aspect of this is that we uncovered many unexpected
situations. Indeed, we have written 4 papers on these rich systems of models. Papers [8, 9]
explore the possible global asymptotic shapes, and this paper and [7] examine the local
asymptotic fluctuations of the particles in neighbourhoods of the possible edges. Paper [8]
examines “classic” global asymptotic shapes, and [9] finds novel global asymptotic
behaviours. Figure 1.2 depicts some example asymptotic shapes obtained using the results
of those papers. In [7], we find novel local asymptotic edge fluctuations.

In this paper, we examine universal local asymptotic fluctuations at “typical edge
points”. To do this, we must first find an appropriate scaling for the fluctuations of the
particles. We start with the explicit parameterisation of the asymptotic edge obtained in [8]
(see (1.15)), and a define a natural subset of the asymptotic edge called the set of typical
edge points (see Definition 1.5). This set is always non-empty, and the difference between
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it and the whole edge is either empty or discrete. Next, we use the parameterisation to
define an analogous non-asymptotic edge curve for each n, sometimes referred to in the
literature as the finite n-deterministic equivalent (see Definition 1.8). We fix a typical
edge point, denoted by (χ, η), and (for each n) we let (χn, ηn) denote the analogous point
on the non-asymptotic edge. Our asymptotic assumptions imply that (χn, ηn) → (χ, η) as
n→∞, but we have no control of the rate of convergence. Nevertheless, Theorems 1.10
and 1.11 essentially prove the following:

Theorem 1.1. Let {(un, rn)}n≥1, {(vn, sn)}n≥1 ⊂ Z×{1, 2, . . . , n} be sequences of particle
positions chosen as follows: For all n sufficiently large, both 1

n (un, rn) and
1
n (vn, sn)

fluctuate around (χn, ηn), with fluctuations of order O(n−
1
3 ) and O(n−

2
3 ) respectively in

the tangent and normal directions of the non-asymptotic edge curve. Then the asymptotic
behaviour of n

1
3 Kn((un, rn), (vn, sn)) is governed by the extended Airy kernel as n→∞.

A steepest descent analysis of an equivalent contour integral expression for
Kn((un, rn), (vn, sn)) (see (1.7), below) is used to prove the asymptotics in Theorems 1.10
and 1.11. The length of this paper reflects the extensive technicalities needed to do the
analysis rigorously under our weak assumptions. In Section 2, we examine the roots of the
derivatives of the appropriate steepest descent functions (see (1.8), (1.9) and (1.10)). In
Section 3, we perform the steepest descent analysis. In particular, we highlight Lemmas 3.5
and 3.6, which prove the existence of appropriate contours of descent/ascent. The proofs
of these are given in Section 4. This is, by far, the most difficult part of the paper. Indeed,
our weak assumptions necessitate that we need to prove existence of different contours
for 12 distinct cases (see Lemma 2.2).

Note, while convergence to the extended Airy kernel is the only case which we consider
rigorously in this paper, we will briefly discuss other natural asymptotic situations in
Section 1.5. We will discuss known results in the literature, and conjecture analogous
asymptotic results for this model. Unfortunately, the length of this paper necessitates that
we do not attempt to study these situations in greater detail here.

We end this section by comparing our result with analogous results in the literature.
Perhaps the closest result to ours is in Petrov, [23]. Theorem 8.1 of [23] proves a similar
asymptotic result for the special case where µ is given by Lebesgue measure on a disjoint
union, [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [ak, bk], where k ≥ 2 and

∑
i(bi − ai) = 1. By contrast,

here, Assumption 1.2 avoids only that degenerate case where µ is Lebesgue measure on
a single interval of length 1, and allows all other µ with compact support which can be
obtained via the weak convergence. Petrov further specialises by assuming that 1

n x(n)

is essentially densely packed in the above disjoint union of intervals. By contrast, here,
Assumption 1.2 implies that the empirical distribution of 1

n x(n) converges weakly to µ,
and Assumptions 1.7 and 2.4 otherwise impose only mild regulatory restrictions on 1

n x(n).
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The stronger assumptions of Petrov give a fast rate of convergence, and indeed it can
be shown that (χn, ηn) = (χ, η) +O(n−1) for all n sufficiently large under these. Petrov,
therefore, can ignore (χn, ηn) (the non-asymptotic edge), and fluctuate simply around
(χ, η) (the asymptotic edge). By contrast, we have no control of the rate of convergence.
The fast rate of convergence in [23] also allows Petrov to avoid many subtle technical
points.

Theorem 8.1 of [23] furthermore chooses a somewhat different scaling for the
sequences of particle positions: Petrov fixes parameters (τ1, σ1) ∈ R

2 and (τ2, σ2) ∈ R
2,

and fluctuates around the asymptotic edge. For all n sufficiently large, the fluctuations have
order O(n−

1
3 ) and O(n−

2
3 ) respectively in the tangent direction (of the asymptotic edge)

and the direction (1, 0), τ1 and τ2 measure the size of the O(n−
1
3 ) fluctuations, and σ1 − τ

2
1

and σ2 − τ
2
2 measure the size of the O(n−

2
3 ) fluctuations. Petrov chooses this scaling to

ensure convergence to the form of the extended Airy kernel defined in [24], evaluated
at (τ1, σ1) and (τ2, σ2). A contour integral expression for that kernel was obtained in [2].
By contrast, here, we fix parameters (u, r) ∈ R2 and (v, s) ∈ R2, and fluctuate around
the non-asymptotic edge. For all n sufficiently large, the fluctuations have order O(n−

1
3 )

and O(n−
2
3 ) respectively in the tangent and normal directions of the non-asymptotic

edge, u and v measure the size of the O(n−
1
3 ) fluctuations, and r and s measure the size

of the O(n−
2
3 ) fluctuations (see (1.28), (1.29)). The scaling is thus naturally related to

the geometric behaviour of the edge. We use the scaling in Lemma 2.9 to show that
the relevant roots and derivatives of the steepest descent functions have well-behaved
asymptotic behaviours, and these result in simple Taylor expansions for the steepest
descent functions give in Corollary 3.3. We then use these in Theorems 1.10 and 1.11 to
prove convergence to the form of the extended Airy kernel given in (1.21), evaluated at
(u, r) and (v, s). Note that this expression is simpler than that given in [23], but equivalent,
as can be seen via a change of variables and the removal of a conjugation factor.

Our results also have interesting connections with those of Kenyon et al., [17, 16].
Those papers study the global asymptotic shapes of random tilings of a class of polygons.
In papers [8, 9], we explore the global asymptotic shapes of random tilings of a more
restricted class of polygons, but we allow more general boundary/asymptotic conditions
which results in some important differences. For example, the asymptotic boundaries
in [17, 16] are shown to be algebraic, and this is not necessarily true in [8].Moreover, in [9],
we find novel global asymptotic behaviours. Also, in [8, 9], we obtain parameterisations
of the boundaries. This enables us to prove the asymptotic fluctuations seen in this
paper and [7], in neighbourhoods of the edges. It is intuitively clear that these universal
fluctuations will also appear in the models of [17, 16], under analogous conditions. For
example, in Figure 1 of [16], the asymptotic frozen boundary of the polygon in seen to
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be a cardioid. In [7], we consider the asymptotic fluctuations in neighbourhoods of an
analogous cusp, and show that they are governed by a novel point process, which we call
the Cusp Airy process.

More generally, we believe that our techniques can be of use in other random tiling
models, or random perfect matchings, or systems of random non-intersecting paths, etc.,
that can equivalently be described as interacting particle systems. For example, [3] is a
recent work concerning the asymptotics of random domino tilings of rectangular Aztec
diamonds. In it, the authors find explicit parameterisations of the possible asymptotic
boundaries using almost identical methods to those that we used in [8], and find analogous
results. It is therefore reasonable to expect that the results we found in [9], this paper, and
in [7], also have natural analogues for random domino tilings, and the techniques of those
papers would be sufficient to prove these results. There has been significant interest in
related models. See, for example, [2, 4, 6, 12, 13].

Other closely connected models arise from random matrices. For each n ≥ 1, let
An ∈ C

n×n be a random Hermitian matrix whose distribution is unitarily invariant. For
each r ≤ n, let λ(r) ∈ Rr be the eigenvalues (in decreasing order) of the r th principal
sub-matrix of An consisting of the first r rows and columns. The asymptotic behaviour of
λ(n) (the eigenvalues of An) as n→∞ has been studied for many different ensembles of
random matrices (i.e. for different choices of An), and universal behaviours have been
found. See, for example, [1, 22] for reviews of known results. See also the recent work
of Hachem et al., [10], which studies the asymptotic behaviour of the edge of λ(n) as
n→∞ when An is a complex correlated Wishart matrix. In [10], the model is shown to
be determinantal, the edge asymptotic behaviour is examined via a closely related saddle
point problem to that seen in this paper, and it is shown that this behaviour is governed by
the standard Airy kernel.

Note, for general Hermitian An, an elementary result from matrix analysis shows
that (λ(1), λ(2), . . . , λ(n)) is a Gelfand–Tsetlin pattern of depth n, where now the particles
on each level take positions in R rather than Z. Such models often display a similar
determinantal structure to the discrete Gelfand–Tsetlin patterns of this paper. Perhaps
the best studied determinantal minor process is that of the Gaussian Unitary Ensemble
(GUE), where the entries of An are random independent Gaussians. See, for example,
Mehta, [18], and Johansson and Nordenstam, [15].

Perhaps the most similar minor process to ours is that studied by the author Metcalfe
in [19]. There, the eigenvalues of An are deterministic: λ(n) = x(n) for some fixed x(n) ∈ Rn

with x(n)1 > x(n)2 > · · · > x(n)n , and the eigenvalue minor process induces the uniform
probability distribution on the set of Gelfand–Tsetlin patterns of depth n with the particles
on the top row in the deterministic positions defined by x(n) ∈ Rn. This is very similar
to the measure defined in (1.2). Metcalfe showed that the process is determinantal, and
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found a correlation kernel. This kernel can, in fact, be shown to be a limit of the kernel
in (1.3), below, where we scale the discrete particle positions on each level such that they
become continuous. In [19], Metcalfe proved universal bulk asymptotic behaviour under
the assumption that the empirical distribution of x(n) converges weakly to a probability
measure with compact support, similar to Assumption 1.2, below. The edge asymptotic
behaviour has not yet been studied. It is clear to the authors, however, that the techniques of
this paper would be sufficient to study this. Also, it is worth noting that there are interesting
asymptotic situations there that have no natural analogues here. In particular, the limit
measure may have atoms in [19], which is not possible here. The related asymptotic
situations have also not yet been studied, and we believe that our techniques would help
in studying these. More generally, we hope that our techniques would help to study the
determinantal minor processes of other ensembles of random matrices.

1.2. The determinantal structure of discrete Gelfand–Tsetlin patterns

As in the previous section, define interlacing as in (1.1), fix x(n) ∈ Zn with x(n)1 > x(n)2 >

· · · > x(n)n , and define νn as in (1.2). Recall that νn induces a random point process
on interlaced configurations of particles in Z × {1, 2, . . . , n}. In Section 4.1 of [8], we
showed that this process is determinantal, and we found an expression for a correlation
kernel, denoted by Kn : (Z × {1, 2, . . . , n})2 → C. Note, ignoring the deterministic
particles on row n, interlacing implies that we need only consider those particle positions,
(u, r), (v, s) ∈ Z × {1, 2, . . . , n − 1}, which satisfy u ≥ x(n)n + n − r and v ≥ x(n)n + n − s.
For all such (u, r), (v, s),

Kn((u, r), (v, s)) = −φr,s(u, v)

+
(n−s)!
(n−r−1)!

n∑
k=1

1
(x
(n)
k
≥u)

v∑
l=v+s−n

∏u−1
j=u+r−n+1(x

(n)
k
− j)∏v

j=v+s−n, j,l(l − j)

n∏
i=1,i,k

(
l − x(n)i

x(n)
k
− x(n)i

)
, (1.3)

where

φr,s(u, v) :=


0 when v < u or s ≤ r,

1 when v ≥ u and s = r + 1,
1

(s−r−1)!
∏s−r−1

j=1 (v − u + s − r − j) when v ≥ u and s > r + 1.
(1.4)

Note, correlation kernels are not uniquely defined. Indeed,Kn : (Z× {1, 2, . . . , n})2 →
C is an equivalent kernel if det

[
Kn((ui, ri), (u j, rj))

]m
i, j=1 = det[Kn((ui, ri), (u j, rj))]mi, j=1

for all m ≥ 1, and for all particle positions {(u1, r1), . . . , (um, rm)} ⊂ Z× {1, 2, . . . , n}. An
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equivalent kernel which will prove useful in our asymptotic analysis is the following:

Kn((u, r), (v, s)) := Kn((v, s), (u, r))Bn(s, r)−1 At,n((v, s), (u, r))−1, (1.5)

for all (u, r), (v, s) ∈ Z × {1, 2, . . . , n}, where t ∈ R is that fixed value in (1.18), At,n :
(Z2)2 → R \ {0} is defined in Lemma 2.13, and Bn : Z2

+ → (0,+∞) is defined by,

Bn(r, s) :=
(n − s)!
(n − r)!

ns−r . (1.6)

1.3. The asymptotic “shape” of discrete Gelfand–Tsetlin patterns

In [8] and [9] we consider the asymptotic “shape” of the systems of Gelfand–Tsetlin
patterns of the previous sections, under some natural asymptotic assumptions. In this
section, we recall the relevant asymptotic assumptions, definitions, and results of those
papers. We state these without motivation or proof, and refer the interested reader to those
papers.

Assumption 1.2. Let µ be a probability measure on R with µ ≤ λ, where λ is Lebesgue
measure. Assume that there is a compact interval [a, b] ⊂ R with b − a > 1, Supp(µ) ⊂
[a, b] and {a, b} ⊂ Supp(µ). Moreover, assume that,

1
n

n∑
i=1

δ
x
(n)
i /n
→ µ,

as n→∞, in the sense of weak convergence of measures.

Then, rescaling the sides of the Gelfand–Tsetlin patterns by 1
n , the bulk of the

rescaled particles asymptotically lie in the polygon on the right of Figure 1.1 as n →
∞, i.e., {(χ, η) ∈ [a, b] × [0, 1] : b ≥ χ ≥ χ + η − 1 ≥ a}. The local asymptotic
behaviour of particles near a fixed point, (χ, η), in this polygon is studied by considering
Kn((un, rn), (vn, sn)) as n→∞, where {(un, rn)}n≥1 ⊂ Z

2 and {(vn, sn)}n≥1 ⊂ Z
2 satisfy

1
n (un, rn) → (χ, η) and

1
n (vn, sn) → (χ, η) as n → ∞. First note, (1.3) and the Residue

theorem give

Kn((un, rn), (vn, sn)) = −φrn,sn (un, vn)

+
(n−sn)!
(n−rn−1)!

nsn−rn−1

(2πi)2

∫
cn

dw
∫
Cn

dz

∏un−1
j=un+rn−n+1(z−

j
n )∏vn

j=vn+sn−n
(w−

j
n )

1
w−z

n∏
i=1

(
w− xi

n

z− xi
n

)
, (1.7)

for all n ≥ 1. Here, we omit the superscript from x(n) = (x(n)1 , x(n)2 , . . . , x(n)n ) for simplicity,
Cn is any counter-clockwise simple closed contour which contains all of { 1

n xj : xj ≥ un}
but none of { 1

n xj : xj ≤ un + rn − n}, and cn is any counter-clockwise simple closed
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contour which contains 1
n {vn + sn − n, vn + sn − n + 1, . . . , vn} and Cn. Next note, the

above integrand equals 1
w−z exp(n fn(w) − n f̃n(z)), where

fn(w) :=
1
n

n∑
i=1

log
(
w −

xi
n

)
−

1
n

vn∑
j=vn+sn−n

log
(
w −

j
n

)
, (1.8)

f̃n(z) :=
1
n

n∑
i=1

log
(
z −

xi
n

)
−

1
n

un−1∑
j=un+rn−n+1

log
(
z −

j
n

)
, (1.9)

for all w, z ∈ C \ R, and log denotes the principal logarithm. Finally note, since
1
n

∑
i δxi/n → µ weakly as n → ∞, and 1

n (un, rn),
1
n (vn, sn) → (χ, η) as n → ∞, it

is natural to define the following asymptotic function:

f(χ,η)(w) :=
∫ b

a

log(w − x)µ[dx] −
∫ χ

χ+η−1
log(w − x) dx, (1.10)

for all w ∈ C \ R.
Steepest descent analysis, and the above structure, intuitively suggests that the behaviour

of Kn((un, rn), (vn, sn)) as n → ∞ depends on the roots of f ′
(χ,η)

. Recall that b ≥ χ ≥

χ + η − 1 ≥ a, and (see Assumption 1.2) that µ and λ − µ are positive measures. Thus,
for all w ∈ C \ R, it is natural to write,

f(χ,η)(w) (1.11)

=

∫
S1

log(w − x)µ[dx] −
∫
S2

log(w − x)(λ − µ)[dx] +
∫
S3

log(w − x)µ[dx],

where Si := Si(χ, η) for all i ∈ {1, 2, 3} are defined by:

S1 := Supp(µ|[χ,b]), (1.12)
S2 := Supp((λ − µ)|[χ+η−1,χ]),

S3 := Supp(µ|[a,χ+η−1]).

Then, for all w ∈ C \ R,

f ′
(χ,η)(w) =

∫
S1

µ[dx]
w − x

−

∫
S2

(λ − µ)[dx]
w − x

+

∫
S3

µ[dx]
w − x

. (1.13)

Thus f ′
(χ,η)

has a unique analytic extension to C \ S, where S := S1 ∪ S2 ∪ S3.
In [8, 9], we used the possible behaviours of the roots of f ′

(χ,η)
in the above domain to

examine the asymptotic shapes. First we defined:

Definition 1.3. The liquid region, L, is the set of all (χ, η) ∈ [a, b] × [0, 1] with
b ≥ χ ≥ χ + η − 1 ≥ a, for which f ′

(χ,η)
has a root in H := {w ∈ C : Im(w) > 0}.
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We showed that f ′
(χ,η)

has a unique root in H whenever (χ, η) ∈ L, and this root
is of multiplicity 1. Moreover, we showed that the resulting map from L to H is a
homeomorphism, and so L is a non-empty, open, connected subset of the interior of the
polygon on the right of Figure 1.1. We used the homeomorphism to study ∂L. In [8], we
obtained a complete parameterisation of ∂L for µ in a broad class. In [9], we examined
the highly non-trivial behaviours of ∂L that can occur when µ is not restricted to this
class. L and ∂L for some example measures, µ, studied in [8, 9], are given in Figure 1.2.

For the purposes of this paper, we only need the results of [8], which we now recall in
more detail. We showed that the inverse of the above homeomorphism, from H to L, has
a unique continuous extension to a natural, non-empty, open subset of R which depends
on µ. We denoted this set by R ⊂ R, and showed that the extension is an injective smooth
curve, parameterised over R. We defined the edge, denoted E ⊂ ∂L, to be the image of
this curve, and referred to this curve as the edge curve, denoted

(χE( · ), ηE( · )) : R→ E ⊂ ∂L.

In [8], we found an alternative definition of E which is analogous to that of L:

Definition 1.4. The edge, E, is the union E := E+µ ∪ Eλ−µ ∪ E−µ ∪ E0 ∪ E1 ∪ E2, where

• E+µ is the set of all (χ, η) ∈ [a, b] × [0, 1] with b ≥ χ ≥ χ + η − 1 ≥ a, for which
f ′
(χ,η)

has a repeated root in (χ,+∞) \ Supp(µ).

• Eλ−µ is the set of all (χ, η) for which f ′
(χ,η)

has a repeated root in (χ + η − 1, χ) \
Supp(λ − µ).

• E−µ is the set of all (χ, η) for which f ′
(χ,η)

has a repeated root in (−∞, χ + η − 1) \
Supp(µ).

• E0 ∪ E1 ∪ E2 is the set of (χ, η) for which f ′
(χ,η)

has a root in {χ, χ + η − 1}.

For clarity, in [8], we state that we denoted Eµ = E+µ ∪E−µ . This decomposition is more
convenient here. Moreover, we defined E0 and E1 and E2 exactly in [8], but do not do so
here for brevity. We showed that the above two definitions of E are equivalent: We started
with Definition 1.4, showed that the sets in this definition are mutually disjoint, f ′

(χ,η)
has

a unique real-valued repeated root in R \ {χ, χ + η − 1} when (χ, η) ∈ E+µ ∪ Eλ−µ ∪ E−µ ,
and f ′

(χ,η)
has a unique root in {χ, χ + η − 1} when (χ, η) ∈ E0 ∪ E1 ∪ E2. We showed

that the resulting map from E to R is injective, has image space R, and has inverse equal
to the edge curve discussed above. Therefore the definitions are trivially equivalent. We
also showed that the multiplicity of the unique root determines the geometric behaviour
of the edge curve. Indeed, denoting the multiplicity by m = m(χ, η) ≥ 1, we showed that:
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• The edge curve behaves like a parabola in a neighbourhood of (χ, η) when
(χ, η) ∈ E+µ ∪ Eλ−µ ∪ E

−
µ and m = 2, and when (χ, η) ∈ E0 ∪ E1 ∪ E2 and m = 1.

• The edge curve behaves like an algebraic cusp of first order in a neighbourhood
of (χ, η) when (χ, η) ∈ E+µ ∪ Eλ−µ ∪ E−µ and m = 3, and when (χ, η) ∈ E1 ∪ E2
and m = 2.

For clarity we state that m takes no other values. Examples edge curves, with the above
sets clearly labelled, are depicted in Figure 1.2. Finally, we showed that E \ {(χ, η) ∈
E+µ ∪ Eλ−µ ∪ E

−
µ : m = 2} is either empty or discrete. We therefore now define:

Definition 1.5. The set of typical edge points is {(χ, η) ∈ E+µ ∪ Eλ−µ ∪ E−µ : m = 2}.

We now consider the subset E+µ∪Eλ−µ∪E−µ ⊂ E, in more detail. LetC : C\Supp(µ) →
C denote the Cauchy transform of µ,

C(w) :=
∫ b

a

µ[dx]
w − x

, (1.14)

for all w ∈ C \ Supp(µ). In [8], we showed that:

Lemma 1.6. Recall that the edge curve, (χE( · ), ηE( · )) : R→ E, is bijective. Define:

• R+µ := {t ∈ R \ Supp(µ) : C(t) > 0}.

• Rλ−µ := R \ Supp(λ − µ).

• R−µ := {t ∈ R \ Supp(µ) : C(t) < 0}.

Then, these are disjoint open subsets of R, and the image spaces of these under the
bijection are (respectively) E+µ , Eλ−µ, E−µ . Moreover, for all t ∈ R+µ ∪ Rλ−µ ∪ R−µ ,

χE(t) = t +
eC(t) − 1
eC(t)C ′(t)

and ηE(t) = 1 +
(eC(t) − 1)2

eC(t)C ′(t)
. (1.15)

Finally, (χE(t), ηE(t)) ∈ (a, b) × (0, 1) and b > χE(t) > χE(t) + ηE(t) − 1 > a for all
t ∈ R+µ ∪ Rλ−µ ∪ R−µ , i.e., (χE(t), ηE(t)) is in the interior of the polygon shown on the right
of Figure 1.1.

Note, (1.15) is well-defined whenever t ∈ R+µ ∪ R−µ , since R+µ ∪ R−µ ⊂ R \ Supp(µ).
Indeed, (1.14) gives

C(t) =
∫ b

a

µ[dx]
t − x

and C ′(t) = −
∫ b

a

µ[dx]
(t − x)2

, (1.16)
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Figure 1.2. L and ∂L for some example measures, µ, with density
ϕ : R→ [0, 1]. Top left: ϕ(x) = 1

2∀x ∈ [−1, 1], all points of E are in
Eµ with m = 2. Top right: ϕ(x) = 1

2∀x ∈ [0, 1] ∪ [2, 3], the cusps are in
Eµ with m = 3, all other points of E are in Eµ with m = 2. Lower left:
ϕ(x) = 1∀x ∈ [0, 1

3 ] ∪ [1,
4
3 ] ∪ [c, c +

1
3 ], where c := 1

12 (23 +
√

217),
the cusp is in E1 with m = 2, all other points in E1 ∪ E2 have m = 1.
Lower right: ϕ(x) = 15

16 (x − 1)2(x + 1)2∀x ∈ [−1, 1], the grey parts of
∂L are not in E but follow from the analysis in [9]. For general µ, there
is always an analogous lower convex part of E which is contained in
{(χ, η) ∈ Eµ : m = 2}, and the lower tangent point always equals
( 12 +

∫
xµ[dx], 0).

for all t ∈ R+µ ∪ R−µ . Moreover, it is well-defined whenever t ∈ Rλ−µ. Indeed, since µ = λ
in Rλ−µ = R \ Supp(λ − µ), Lemma 2.2 of [8] implies that eC( · ) : C \ R → C and
C ′( · ) : C \ R→ C have the following unique analytic extensions to Rλ−µ:

eC(t) = eCI (t)

(
t − t2
t − t1

)
and C ′(t) = C ′I (t) −

1
t − t1

+
1

t − t2
, (1.17)

for all t ∈ Rλ−µ, where I = (t2, t1) is any interval with t ∈ I ⊂ Rλ−µ, and CI (t) :=∫
[a,b]\I

µ[dx]
t−x . These expressions are independent of the choice of I.
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Finally, as discussed above, the set of typical edge points is {(χ, η) ∈ E+µ ∪Eλ−µ ∪E−µ :
m = 2}, and the edge curve behaves like a parabola in a neighbourhood of each (χ, η) in
this set. Fix the corresponding points t ∈ R+µ∪Rλ−µ∪R−µ and (χ, η) ∈ E+µ∪Eλ−µ∪E−µ with
(χ, η) = (χE(t), ηE(t)). Define the (un-normalised) orthogonal vectors x(t) := (1, eC(t)−1)
and y(t) := (eC(t) − 1,−1). In [8], we show that x(t) and y(t) are (respectively) tangent
and normal to the edge curve at (χ, η).

1.4. Motivation and statement of main results

In this paper, we consider the universal asymptotic behaviour, as n→∞, of the systems in-
troduced in the last section, in the neighbourhood of typical edge points (see Definition 1.5).
More specifically, we study the asymptotic behaviour of Kn((un, rn), (vn, sn)) as n→∞,
where Kn is the correlation kernel of the system (see (1.3)), and {(un, rn)}n≥1 ⊂ Z

2 and
{(vn, sn)}n≥1 ⊂ Z

2 are sequence of particle positions which satisfy:

Fix the corresponding points t ∈ R+µ ∪ Rλ−µ ∪ R−µ and (χ, η) ∈ E+µ ∪ Eλ−µ ∪ E−µ
with (χ, η) = (χE(t), ηE(t)), where t is a root of f ′

(χ,η)
of multiplicity 2, and take,

(un, rn) = n(χ, η) + o(n) and (vn, sn) = n(χ, η) + o(n) as n→∞. (1.18)

A steepest descent analysis of (1.7) for Kn((un, rn), (vn, sn)) is used to consider the
asymptotic behaviour. Since t is a root of f ′

(χ,η)
of multiplicity 2, (1.7) and steepest

descent analysis intuitively imply that universal edge asymptotic behaviour should be
observed. The main results of this paper, Theorems 1.10 and 1.11, puts this intuition on a
rigorous footing. We show, under natural conditions, that the asymptotic behaviour of
n

1
3 Kn((un, rn), (vn, sn)) is governed by the extended Airy kernel, KAi : (R2)2 :→ R: First

define K̃Ai : (R2)2 :→ R by,

K̃Ai((u, r), (v, s)) :=
1
(2πi)2

∫
l

dw
∫
L

dz
1

w − z

exp(wr + w2u + 1
3w

3)

exp(zs + z2v + 1
3 z3)

, (1.19)

for all (u, r), (v, s) ∈ R2, where l and L are the contours in Figure 1.3. Note that the above
integrals are finite since w3 = −|w |3 and z3 = |z |3 for all w on l and z on L respectively.
Next define Φ : (R2)2 → R by,

Φ((u, r), (v, s)) := 1(u>v)
1

2
√
π(u − v)

exp
(
−

1
4
(s − r)2

u − v

)
, (1.20)

for all (u, r), (v, s) ∈ R2. Finally define KAi : (R2)2 :→ R by,

KAi := K̃Ai − Φ. (1.21)
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Figure 1.3. The contours l and L of (1.19). l is the (straight) lines
from∞e−i

π
3 to 0, and from 0 to∞ei

π
3 . l is the lines from∞e−i

2π
3 to 0,

and from 0 to∞ei
2π
3 .

We begin the analysis with a technical assumption that arises from steepest descent
considerations. First, for all n ≥ 1, define

Pn := 1
n {x1, x2, . . . , xn} and Hn := 1

n (Z \ {x1, x2, . . . , xn}). (1.22)

Above, we again omit the superscript from x(n) = (x(n)1 , x(n)2 , . . . , x(n)n ) for simplicity. Pn

is referred to as the set of particles, and Hn as the set of holes. Note, an element of these
sets may act as a pole for the contour integral expression of (1.7), and so a problem may
arise in the steepest descent analysis if these are not eventually isolated from the root, t,
in (1.18). We therefore assume:

Assumption 1.7. Assume that d(Pn, Supp(µ)) → 0 and d(Hn, Supp(λ − µ)) → 0 as
n→∞, where d represents the Hausdorff distance.

To see that this assumption has the desired effect, recall that t ∈ R+µ ∪ Rλ−µ ∪ R−µ , a
union of mutually disjoint open sets. Thus there exists a fixed ε > 0 for which:

t ∈


R+µ (ε) := {s ∈ R+µ : (s − ε, s + ε) ⊂ R+µ } when t ∈ R+µ .

Rλ−µ(ε) := {s ∈ Rλ−µ : (s − ε, s + ε) ⊂ Rλ−µ} when t ∈ Rλ−µ .

R−µ (ε) := {s ∈ R−µ : (s − ε, s + ε) ⊂ R−µ } when t ∈ R−µ .

(1.23)

Also, since R+µ ∪ R−µ ⊂ R \Supp(µ) and Rλ−µ = R \Supp(λ− µ), Assumption 1.7 implies
that Pn ⊂ R \ (R+µ (ε) ∪ R−µ (ε)) and Hn ⊂ R \ Rλ−µ(ε) for all n sufficiently large, as desired.
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Finally note that we can equivalently write,

Pn ∩ R+µ (ε) = ∅ and
Z

n
∩ Rλ−µ(ε) ⊂ Pn and Pn ∩ R−µ (ε) = ∅, (1.24)

for all n sufficiently large. Indeed, the second part follows since Hn =
Z
n \ Pn (see (1.22)),

and it implies that particles are eventually densely packed in Rλ−µ(ε).
Note,Assumption 1.7 imposesmild regulatory restrictions on x(n). Our final assumption,

Assumption 2.4, similarly imposes mild regulatory restrictions on x(n). Assumption 2.4 is
more subtle, however, and applies only in specific cases, and so we leave the statement of
this to Section 2.1. The regularity effect of Assumption 2.4 can be seen, for example, in
part (ii) in the proof of Lemma 3.9. For the relevant cases of Assumption 2.4, part (ii) is
not necessarily true if Assumption 2.4 does not hold. Note also, Assumptions 1.7 and 2.4
are sufficient for Theorems 1.10 and 1.11 to be satisfied for all typical edge points, i.e.,
for all corresponding points t and (χ, η) chosen as in (1.18). Though we do not discuss
this further, weaker forms of these assumptions can be used if we are only interested in
specific edge points.

Next, we motivate the choice of the o(n) terms in (1.18). Note, since the convergence in
Assumption 1.2 is weak, there is no control of the rate of convergence. It is therefore not
natural to simply consider fluctuations of the particles around the asymptotic edge curve.
Instead, we consider fluctuations around analogous non-asymptotic edge curves. Intuitively,
we could define these by replacing all Cauchy transforms (see (1.14)) in (1.15) with the
following non-asymptotic analogue inspired by Assumption 1.2:w 7→ 1

n

∑n
i=1(w−

xi
n )
−1 =

1
n

∑
x∈Pn
(w − x)−1 for all n ≥ 1 and w ∈ C \ R. However, since it is desirable that the

non-asymptotic edge curves and the asymptotic edge curve have approximately the same
domain of definition, we use a modified non-asymptotic Cauchy transform. First, fixing
ε > 0 as in (1.23), define a new non-asymptotic measure by,

µn :=
1
n

∑
x∈Pn ;x<Rλ−µ (ε )

δx + λ |Rλ−µ (ε ), (1.25)

for all n ≥ 1. Assumption 1.2 and (1.22) then imply that µn → µ weakly as n→∞. Next,
let Cn : C \ Supp(µn) → C denote the Cauchy Transform of µn:

Cn(w) :=
1
n

∑
x∈Pn ;x<Rλ−µ (ε )

1
w − x

+

∫
Rλ−µ (ε )

dx
w − x

, (1.26)

for all n ≥ 1 and w ∈ C \ Supp(µn). Note that Rµ(ε)+ ∪ Rµ(ε)− ⊂ C \ Supp(µn)
for all n sufficiently large, since Pn ∩ (Rµ(ε)+ ∪ Rµ(ε)−) = ∅ (see (1.24)), and since
Rµ(ε)+ ∪ Rµ(ε)− and Rλ−µ(ε) are disjoint (see (1.23)). Therefore Cn is well-defined and
analytic in Rµ(ε)+ ∪ Rµ(ε)−. Also, since µn = λ in Rλ−µ(ε) for all n sufficiently large,
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Lemma 2.2 of [8] shows that eCn and C ′n have unique analytic extensions to Rλ−µ(ε).
Finally, inspired by (1.15), define:

Definition 1.8. Fix ε > 0 as in (1.23), and defineCn as in (1.26). Then, for all n sufficiently
large, the non-asymptotic edge curves, (χn( · ), ηn( · )) : R+µ (ε) ∪ Rλ−µ(ε) ∪ R−µ (ε) → R

2,
are defined by,

χn(s) := s +
eCn(s) − 1

eCn(s)C ′n(s)
and ηn(s) := 1 +

(eCn(s) − 1)2

eCn(s)C ′n(s)
,

for all s ∈ R+µ (ε) ∪ Rλ−µ(ε) ∪ R−µ (ε). Moreover, we define (χn, ηn) := (χn(t), ηn(t)).

Note, since µn → µ weakly as n→∞,

eCn(s) → eC(s),

C ′n(s) → C ′(s),

(χn(s), ηn(s)) → (χE(s), ηE(s)),

(1.27)

for all s ∈ R+µ (ε) ∪ Rλ−µ(ε) ∪ R−µ (ε). As observed above, however, we have no control of
the rate of convergence.

Remark 1.9. Note, the above definition depends on an arbitrary ε > 0. Suppose ε ′ > 0
is any other value which also satisfies (1.23), and let (χ′n, η′n) denote the analogous
non-asymptotic edge obtained using ε ′. Then, (1.23), (1.24), (1.26), Definition 1.8, and
Riemann sum approximations imply that (χ′n, η′n) = (χn, ηn)+O(n−1) for all n sufficiently
large. This error is absorbed into the errors of order O(1) in (1.28) and (1.29), below, and
possibly effects the asymptotic behaviour in Theorems 1.10 and 1.11 when (u, r) = (v, s).
The asymptotic behaviour when (u, r) , (v, s) is unaffected.

Next recall (see end of last section), that the asymptotic edge curve behaves like
a parabola in a neighbourhood of (χ, η) with tangent vector x(t) := (1, eC(t) − 1) and
normal vector y(t) := (eC(t) − 1,−1). This was proven in Lemma 2.9 of [8]. Proceeding
similarly for the non-asymptotic edge curves for all n sufficiently large, we can show that
these also behave like a parabola in a neighbourhood of (χn, ηn), with tangent vector
xn(t) := (1, eCn(t) − 1) and normal vector yn(t) := (eCn(t) − 1,−1). Finally, we choose the
o(n) terms in (1.18) as follows: Fix (u, r) ∈ R2 and (v, s) ∈ R2, and let {(un, rn)}n≥1 and
{(vn, sn)}n≥1 be sequences in Z2 which satisfy,

(un, rn) = n(χn, ηn) + n
2
3 mnxnu + n

1
3 pnynr +O(1), (1.28)

(vn, sn) = n(χn, ηn) + n
2
3 mnxnv + n

1
3 pnyns +O(1), (1.29)

for all n sufficiently large, where {mn}n≥1 = {mn(t)}n≥1 and {pn}n≥1 = {pn(t)}n≥1 are
those convergent sequences of real numbers with non-zero limits given in Definition 2.8.
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In words, (χn, ηn) → (χ, η) as n→∞ at an indeterminate rate, and { 1
n (un, rn)}n≥1 and

{ 1
n (vn, sn)}n≥1 fluctuate around (χn, ηn). The fluctuations are of order O(n−

1
3 ) and O(n−

2
3 )

respectively in the tangent and normal directions of the non-asymptotic edge curve, u and
v measure the size of the O(n−

1
3 ) fluctuations, and r and s measure the size of the O(n−

2
3 )

fluctuations.
We finally state the main results of this paper:

Theorem 1.10. Assume Assumptions 1.2 and 1.7. Fix any corresponding points t ∈
R+µ ∪ Rλ−µ ∪ R−µ and (χ, η) ∈ E+µ ∪ Eλ−µ ∪ E−µ with (χ, η) = (χE(t), ηE(t)), where t is
a root of f ′

(χ,η)
of multiplicity 2. Assume Assumption 2.4 if one of the relevant cases is

satisfied, and choose {(un, rn)}n≥1 and {(vn, sn)}n≥1 as in (1.28) and (1.29). Additionally
assume that either (u, r) , (v, s), or (u, r) = (v, s) and rn = sn for all n sufficiently large.

Let Kn be the equivalent correlation kernel defined in (1.5), and KAi be the extended
Airy kernel defined in (1.21). Define C ′(t) as in (1.16), (1.17), note that C ′(t) , 0 (see
Lemma 2.3, below), and define β(t) > 0 by β(t) := 2 1

3 | f ′′′
(χ,η)
(t)|−

1
3 |C ′(t)|. Then, when

t ∈ R+µ ∪ R−µ ,

n
1
3 β(t)−1Kn((un, rn), (vn, sn)) → KAi((u, r), (v, s)),

as n→∞. Moreover, when t ∈ Rλ−µ,

n
1
3 β(t)−1(1(un=vn) − Kn((un, rn), (vn, sn))) → KAi((u, r), (v, s)),

as n→∞.

In other words, we let (χ, η) be any typical edge point (see Definition 1.5), we
let (χn, ηn) denote the analogous point on the non-asymptotic edge for each n (see
Definition 1.8), and we choose 1

n (un, rn) and
1
n (vn, sn) (the rescaled particle positions)

to fluctuate around (χn, ηn) as described by (1.28) and (1.29). Then, when t ∈ R+µ ∪ R−µ ,
Theorem 1.10 shows that n

1
3Kn((un, rn), (vn, sn)) (the rescaled correlation kernel of the

particles) converges to the extended Airy kernel as n→∞. When t ∈ Rλ−µ, Theorem 1.10
shows that n

1
3 (1(un=vn) − Kn((un, rn), (vn, sn))) (the rescaled correlation kernel of the

“holes”) converges to the extended Airy kernel as n→∞.
Note that Theorem 1.10 does not give the asymptotic behaviour when (u, r) = (v, s) and

rn , sn. The following theorem completes the result by giving the asymptotic behaviour
for all cases. We prove the existence of a term, αn, which has a well-defined asymptotic
behaviour for the cases of Theorem 1.10, but (possibly) has no well-defined asymptotic
behaviour when (u, r) = (v, s) and rn , sn. Theorem 1.10 is, in fact, a trivial corollary of
Theorem 1.11. We will prove Theorem 1.11, and leave the deduction of Theorem 1.10 to
the interested reader:
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Theorem 1.11. Assume Assumptions 1.2 and 1.7. Fix any corresponding points t ∈
R+µ ∪ Rλ−µ ∪ R−µ and (χ, η) ∈ E+µ ∪ Eλ−µ ∪ E−µ with (χ, η) = (χE(t), ηE(t)), where t is
a root of f ′

(χ,η)
of multiplicity 2. Assume Assumption 2.4 if one of the relevant cases is

satisfied, and choose {(un, rn)}n≥1 and {(vn, sn)}n≥1 as in (1.28) and (1.29).
Define K̃Ai : (R2)2 :→ R as in (1.19), At,n : (Z2)2 → R \ {0} as in Lemma 2.13,

Bn : Z2
+ → (0,+∞) as in (1.6), β(t) > 0 as in Theorem 1.10, cn > 0 by cn :=

|At,n((vn, sn), (un, rn))|Bn(sn, rn), and αn ≥ 0 by,

αn :=
1
cn
·



1(un≥vn,rn>sn)(un + rn − vn − sn − 1)!
(rn − sn − 1)!(un − vn)!

when t ∈ R+µ,

1(un≥vn,un+rn≤vn+sn,rn≤sn)(sn − rn)!
(un − vn)!(vn + sn − un − rn)!

when t ∈ Rλ−µ,

1(un+rn≤vn+sn,rn>sn)(vn − un − 1)!
(rn − sn − 1)!(vn + sn − un − rn)!

when t ∈ R−µ .

Then, when t ∈ R+µ ∪ R−µ ,

Kn((un, rn), (vn, sn)) = −αn + n−
1
3 β(t)K̃Ai((u, r), (v, s)) + o(n−

1
3 ),

as n→∞. Moreover, when t ∈ Rλ−µ,

Kn((un, rn), (vn, sn)) = +αn − n−
1
3 β(t)K̃Ai((u, r), (v, s)) + o(n−

1
3 ),

as n→∞. Also, for all n sufficiently large, αn = 0 when (u, r) = (v, s) and rn = sn and
t ∈ R+µ ∪ R−µ , αn = 1(un=vn) when (u, r) = (v, s) and rn = sn and t ∈ Rλ−µ, and αn = O(1)
when (u, r) = (v, s) and rn , sn. Finally,

αn = n−
1
3 1(u>v)β(t)Φ((u, r), (v, s)) + o(n−

1
3 ),

as n→∞ when (u, r) , (v, s), where Φ : (R2)2 :→ R is defined in (1.20).

Note that Theorems 1.10 and 1.11 prove pointwise convergence. However, our methods
also give the following extension:

Theorem 1.12. Assume Assumptions 1.2 and 1.7. Fix any corresponding points t ∈
R+µ ∪ Rλ−µ ∪ R−µ and (χ, η) ∈ E+µ ∪ Eλ−µ ∪ E−µ with (χ, η) = (χE(t), ηE(t)), where t is
a root of f ′

(χ,η)
of multiplicity 2. Assume Assumption 2.4 if one of the relevant cases is

satisfied. Finally, fix compact sets U, R,V, S ⊂ R. Then the convergence in Theorems 1.10
and 1.11 holds uniformly for (u, r) ∈ U × R and (v, s) ∈ V × S.

For clarity, we state that Theorem 1.12 follows simply by taking the appropriate
uniform bounds at every step of our proof. We do not attempt to prove Theorem 1.12
directly for the sake of readability.
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We end this section by stating that Theorem 1.12 does not truly prove edge universality:
It does not yet prove that the (rescaled) Gelfand–Tsetlin particle process at the edge
converges to the extended Airy kernel particle process. Convergence of the respective
Fredholm determinants of the processes remains to be shown. To do this, one could
attempt to find an additional uniform bound of |Kn((un, rn), (vn, sn))|, similar to that seen
in Lemma 3.1 of [13]. This step is often overlooked in the literature, and we do not attempt
to prove this here due to the length and complexity of the paper. Nevertheless, the results
of this paper are an important step towards proving edge universality for this broad class
of models.

1.5. Other asymptotic situations and conjectures

Recall the discussions given in Sections 1.1 and 1.3. Assume Assumption 1.2, fix
(χ, η) in the polygon on the right of Figure 1.1, and fix sequences of particle positions,
{(un, rn)}n≥1 and {(vn, sn)}n≥1, which satisfy 1

n (un, rn) → (χ, η) and
1
n (vn, sn) → (χ, η)

as n → ∞. In (1.18), we fixed the corresponding points (χ, η) ∈ E+µ ∪ Eλ−µ ∪ E−µ , and
t ∈ R+µ ∪ Rλ−µ ∪ R−µ , where t is a root of f ′

(χ,η)
of multiplicity 2 (m = 2). In this section,

instead of (1.18), we briefly discuss other natural asymptotic situations.
First, suppose that (χ, η) ∈ L, and let w0 ∈ H, denote the corresponding root of

f ′
(χ,η)

of multiplicity 1. In [8], for general µ, we mapped L to H by mapping to the
unique root, showed that this is a homeomorphism (indeed, a diffeomorphism), and
found an expression for the inverse of this map. In other words, we wrote (χ, η) as an
explicit function of w0. Steepest descent analysis, combined with the above root behaviour
and (1.7), intuitively suggests that Kn((un, rn), (vn, sn)) should converge to the Sine kernel
as n→∞ (see, for example, [11, 21]). When rn = sn, convergence to the standard Sine
kernel was shown in Metcalfe, [19], for the analogous interlaced particle system where
the particles on each row of the Gelfand–Tsetlin patterns take positions in R. To our
knowledge, this situation has not yet been studied in this new setting.

Next suppose that (χ, η) ∈ E+µ ∪ Eλ−µ ∪ E−µ , and the corresponding root, t ∈ R+µ ∪
Rλ−µ ∪ R−µ , of f ′

(χ,η)
is of multiplicity 3 (m = 3). Recall that the set of all such points is

discrete, and they define algebraic cusps of first order in the edge curve. Examples are
shown in the top right of Figure 1.2. Steepest descent analysis, combined with the above
root behaviour and (1.7), intuitively suggests that Kn((un, rn), (vn, sn)) should converge
to the Pearcey kernel as n → ∞ (see, for example, Tracy and Widom, [25]). To our
knowledge, this situation has not yet been studied in this new setting.

Next suppose that (χ, η) ∈ E0∪E1∪E2. Recall that the set of all such points is discrete,
m = 1 when (χ, η) ∈ E0, m = 1 or m = 2 when (χ, η) ∈ E1 ∪ E2, the edge curve behaves
like a parabola when m = 1, and the edge curve behaves like an algebraic cusp of first
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order when m = 2. Examples are shown in the lower left of Figure 1.2. In [7], we examined
the local asymptotic behaviour when (χ, η) ∈ E1 ∪ E2 and m = 2. Scaling {(un, rn)}n≥1
and {(vn, sn)}n≥1 appropriately, we showed that Kn((un, rn), (vn, sn)) converges to a novel
kernel which we called the Cusp-Airy kernel. To our knowledge, the situation when
(χ, η) ∈ E0 ∪ E1 ∪ E2 and m = 1 has not yet been studied. However, steepest descent
analysis, combined with the above root behaviour and (1.7), intuitively suggests a universal
asymptotic behaviour.

Finally suppose that (χ, η) lies on that grey part of ∂L for the example depicted on
the bottom right of Figure 1.2. In [9], we showed that the behaviour of the roots of
f ′
(χ,η)

is identical for every point on these sections. Therefore these sections cannot be
parameterised by defining unique roots for each point, as we did for E. In [9], we instead
made heavy use of the theory of singular integrals to parameterise these sections. We
also examined similar, surprisingly subtle, situations. We now conjecture that the local
asymptotic behaviour of particles in neighbourhoods of (χ, η), when (χ, η) lies on such
sections of ∂L, are non-universal.

1.6. Notation and terminology

We end the introduction by discussing the notation and terminology that will be in use for
the rest of the paper. The arguments are quite technical, and we use these for simplicity,
and to avoid needless repetition. First recall (see (1.18)) than we fix the corresponding
points t ∈ R+µ ∪ Rλ−µ ∪ R−µ and (χ, η) ∈ E+µ ∪ Eλ−µ ∪ E−µ with (χ, η) = (χE(t), ηE(t)).
From now on, we simply label f(χ,η) with t instead of (χ, η), i.e., we define,

ft := f(χE (t),ηE (t)) = f(χ,η). (1.30)

Next, fix a ∈ C, and a measure ν on R. Also, for all n ≥ 1, fix an ∈ C and bn ∈ C, and a
measure νn on R. Then:

• “an → a” means “an → a as n→∞”.

• “νn → ν weakly” means “νn → ν as n→∞ in the sense of weak convergence
of measures”.

• “an = bn” means “an = bn for all n sufficiently large”. In other words, if we do not
explicitly state those n ≥ 1 for which an = bn, then we implicitly understand that
the equality holds for all n sufficiently large. Similarly for any other expression
or statement involving n.

Next, for all n ≥ 1, fix cn ∈ R with cn > 0. Then:

94



Universal edge fluctuations

• “o(cn)” denotes a complex-number which is well-defined for all n sufficiently
large. Moreover, |o(cn)|/cn → 0 as n→∞.

• “O(cn)” denotes a complex-number which is well-defined for all n sufficiently
large. Moreover, there exists a C > 0 for which |O(cn)|/cn ≤ C for all such n.

Next, fix A ⊂ C, f : C→ C, and m ≥ 1. Also, for all n ≥ 1, fix An ⊂ C, fn : C→ C and
gn : C→ C. Then:

• “ f has m roots in A” means “ f has exactly m roots in A counting multiplicities”.
Similarly for “at least/most m roots”.

• “ fn has m roots in An” means “ fn has exactly m roots in An for all n sufficiently
large and counting multiplicities’. Similarly for “at least/most m roots”.

• “ fn → f uniformly in A” means “supw∈A | fn(w) − f (w)| → 0” as n→∞.

• “| fn(w)| > cn uniformly for w ∈ A” means “infw∈A | fn(w)| > cn for all n
sufficiently large”.

• “ fn(w) = gn(w) + o(cn) uniformly for w ∈ A” means “supw∈A | fn(w) −
gn(w)|/cn → 0” as n→∞.

• “ fn(w) = gn(w) +O(cn) uniformly for w ∈ A” means “there exists a C > 0 for
which supw∈A | fn(w) − gn(w)|/cn ≤ C for all n sufficiently large”.

Finally, given B ⊂ C, and S ⊂ R bounded:

• cl(B) is the closure of B.

• S := sup S and S := inf S.

2. The roots of the steepest descent functions

In this section, we assume Assumptions 1.2 and 1.7, and that (1.18) is satisfied for some
fixed t ∈ R+µ ∪ Rλ−µ ∪ R−µ , a root of f ′t of multiplicity 2. We consider the behaviour of the
roots of f ′t , f ′n and f̃ ′n (see (1.8), (1.9), (1.10), (1.30)). This results of this section enable
us to perform the steepest descent analysis of Section 3.
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2.1. The roots of f ′t

In this section, we consider the behaviour of the roots of f ′t . Recall the following basic
facts which we make use of throughout this section: Assumption 1.2 implies that µ
is a probability measure on [a, b] with {a, b} ∈ Supp(µ) and µ ≤ λ. (1.18) implies
that t ∈ R+µ ∪ Rλ−µ ∪ R−µ and (χ, η) ∈ E+µ ∪ Eλ−µ ∪ E−µ are the corresponding points
with (χ, η) = (χE(t), ηE(t)), and t is a root of f ′

(χ,η)
of multiplicity 2. Also, since

(χ, η) = (χE(t), ηE(t)), Definition 1.4 and Lemma 1.6 imply that t ∈ R \ {χ, χ + η − 1},
(χ, η) ∈ (a, b) × (0, 1), and b > χ > χ + η − 1 > a. Finally, (1.13) and (1.30) give

f ′t (w) =
∫
S1

µ[dx]
w − x

−

∫
S2

(λ − µ)[dx]
w − x

+

∫
S3

µ[dx]
w − x

, (2.1)

for all w ∈ C \ S, where S = S1 ∪ S2 ∪ S3, and S1, S2, S3 are defined in (1.12).
First, note the following:

S1 , ∅, µ[S1] > 0, S2 , ∅, (λ − µ)[S2] > 0, S3 , ∅, µ[S3] > 0.
µ[S1] − (λ − µ)[S2] + µ[S3] = µ[a, b] − λ[χ + η − 1, χ] = η ∈ (0, 1).

b = S1 > S1 ≥ χ ≥ S2 > S2 ≥ χ + η − 1 ≥ S3 > S3 = a.

[Si − ε, Si] ∪ [Si, Si + ε] ⊂ Si for all i ∈ {1, 2, 3} and some ε > 0.

(2.2)

Above, S1 := inf S1, S1 := sup S1, etc. (see Section 1.6). The first part, above, follows
from part (a) of Corollary 3.2 of [8]. The second part follows since µ is a probability
measure on [a, b] and η ∈ (0, 1). The third part follows from the first part and (1.12) since
µ ≤ λ, {a, b} ∈ Supp(µ), and b > χ > χ + η − 1 > a. Finally, the fourth part follows
since µ ≤ λ and {a, b} ∈ Supp(µ).

Next note, (2.2) implies that C \ S, the domain of f ′t , can be partitioned as follows:

C \ S = (C \ R) ∪ J ∪ K, (2.3)

where J :=
⋃4

i=1 Ji , K :=
⋃3

i=1 K (i), and

• J1 := (sup S1,+∞).

• J2 := (−∞, inf S3).

• J3 := (sup S2, inf S1).

• J4 := (sup S3, inf S2).

• K (i) := [inf Si, sup Si] \ Si for all i ∈ {1, 2, 3}.
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R

H

a = S3 < S3 ≤ χ + η − 1 ≤ S2 < S2 ≤ χ ≤ S1 < S1 = b

J2 J4 J3 J1

Figure 2.1. The sets of (2.3), with K (i) = [inf Si, sup Si] \ Si for all i ∈ {1, 2, 3}.

This partition is depicted in Figure 2.1. Note that J1 and J2 are non-empty, but that J3 = ∅

when sup S2 = inf S1, J4 = ∅when sup S3 = inf S2, and K (i) = ∅when Si = [inf Si, sup Si]
for each K (i). Note also that χ is contained in the domain of f ′t if and only if J3 is non-
empty, in which case χ ∈ J3. Similarly χ + η − 1 is contained in the domain of f ′t if and
only if J4 is non-empty, in which case χ + η − 1 ∈ J4. Finally note that each K (i) is open,
and so can be partitioned as a set of pairwise disjoint open intervals, which is unique up
to order, and which is either empty or finite or countable. We denote this partition of
open intervals as {K (i)1 ,K

(i)
2 , . . .}, and we note that any I ∈ {K (i)1 ,K

(i)
2 , . . .} must satisfy

{inf I, sup I} ⊂ Si .
Next note, since t is real-valued root of f ′t , (2.3) implies that t ∈ R \ S = J ∪ K . We

let Lt ⊂ R \ S = J ∪ K denote that open interval for which,

t ∈ Lt and Lt ∈ {J1, J2, J3, J4} ∪

3⋃
i=1
{K (i)1 ,K

(i)
2 , . . .}. (2.4)

In other words, Lt is the largest open sub-interval of R \ S = J ∪ K which contains t.
These observations, and Theorem 3.1 of [8], then immediately give the following, stated
without proof:

Lemma 2.1. Counting multiplicities:

(1) f ′t has a root of multiplicity 2 at t ∈ Lt , has 0 roots in Lt \ {t} when Lt ∈

{J1, J2, J3, J4}, and has at most 1 root in Lt \ {t} when Lt ∈
⋃3

i=1{K
(i)
1 ,K

(i)
2 , . . .}.

(2) f ′t has 0 roots in C \ R, and in each of {J1, J2, J3, J4} \ {Lt }.

(3) f ′t has at most 1 root in each of
⋃3

i=1{K
(i)
1 ,K

(i)
2 , . . .} \ {Lt }.

Next, we give the following useful result which describes the various situations of
Theorem 1.11 in explicit detail. A separate steepest descent analysis must be performed
for each case:
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Lemma 2.2. The following 12 cases exhaust all possibilities:

(1) t ∈ R+µ , t > χ, Lt = J1, f ′′′t (t) > 0.

(2) t ∈ R+µ , t > χ, Lt ∈ {K
(1)
1 ,K (1)2 , . . .}, f ′′′t (t) > 0.

(3) t ∈ R+µ , t > χ, Lt ∈ {K
(1)
1 ,K (1)2 , . . .}, f ′′′t (t) < 0.

(4) t ∈ R+µ , t > χ, χ ∈ Lt , Lt = J3, f ′′′t (t) < 0.

(5) t ∈ Rλ−µ, t ∈ (χ + η − 1, χ), χ ∈ Lt , Lt = J3, f ′′′t (t) < 0.

(6) t ∈ Rλ−µ, t ∈ (χ + η − 1, χ), Lt ∈ {K
(2)
1 ,K (2)2 , . . .}, f ′′′t (t) < 0.

(7) t ∈ Rλ−µ, t ∈ (χ + η − 1, χ), Lt ∈ {K
(2)
1 ,K (2)2 , . . .}, f ′′′t (t) > 0.

(8) t ∈ Rλ−µ, t ∈ (χ + η − 1, χ), χ + η − 1 ∈ Lt , Lt = J4, f ′′′t (t) > 0.

(9) t ∈ R−µ , t < χ + η − 1, χ + η − 1 ∈ Lt , Lt = J4, f ′′′t (t) > 0.

(10) t ∈ R−µ , t < χ + η − 1, Lt ∈ {K
(3)
1 ,K (3)2 , . . .}, f ′′′t (t) > 0.

(11) t ∈ R−µ , t < χ + η − 1, Lt ∈ {K
(3)
1 ,K (3)2 , . . .}, f ′′′t (t) < 0.

(12) t ∈ R−µ , t < χ + η − 1, Lt = J2, f ′′′t (t) < 0.

Proof. First recall that t ∈ R \ {χ, χ + η − 1}. Then, (2.2), (2.3), (2.4) imply that the
following exhaust all possibilities (see, also, Figure 2.1):

• t > χ, and Lt = J1 or Lt ∈ {K
(1)
1 ,K (1)2 , . . .} or Lt = J3.

• t ∈ (χ + η − 1, χ), and Lt = J3 or Lt ∈ {K
(2)
1 ,K (2)2 , . . .} or Lt = J4.

• t < χ + η − 1, and Lt = J4 or Lt ∈ {K
(3)
1 ,K (3)2 , . . .} or Lt = J2.

We will show:

(i) Case (1) is satisfied when t > χ and Lt = J1.

(ii) Case (2) or (3) is satisfied when t > χ and Lt ∈ {K
(1)
1 ,K (1)2 , . . .}.

(iii) Case (4) is satisfied when t > χ and Lt = J3.
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Similarly it can be shown that:

(iv) (5) is satisfied when t ∈ (χ + η − 1, χ) and Lt = J3.

(v) (6) or (7) is satisfied when t ∈ (χ + η − 1, χ) and Lt ∈ {K
(2)
1 ,K (2)2 , . . .}.

(vi) (8) is satisfied when t ∈ (χ + η − 1, χ) and Lt = J4.

(vii) (9) is satisfied when t < χ + η − 1 and Lt = J4.

(viii) (10) or (11) is satisfied when t < χ + η − 1 and Lt ∈ {K
(3)
1 ,K (3)2 , . . .}.

(ix) (12) is satisfied when t < χ + η − 1 and Lt = J2.

The required result follows from (i)–(ix).
Consider (i). Recall that t > χ and Lt = J1. Also, since t > χ and (χ, η) =

(χE(t), ηE(t)), Definition 1.4 and Lemma 1.6 imply that (χ, η) ∈ E+µ and t ∈ R+µ . It
thus remains to show that f ′′′t (t) > 0. To see this, first note, (2.1) implies that ( f ′t )|J1 is
continuous and real-valued. Moreover, since Lt = J1, part (1) of Lemma 2.1 implies that
f ′t (t) = f ′′t (t) = 0, f ′′′t (t) , 0, and f ′t (s) , 0 for all s ∈ J1 \ {t} = (sup S1, t) ∪ (t,+∞).
Therefore, it is sufficient to show that there exists an st ∈ (t,+∞) with f ′t (st ) > 0. To see
this, note (2.1) gives

f ′t (w) =
( ∫

S1

µ[dx]
w
−

∫
S2

(λ − µ)[dx]
w

+

∫
S3

µ[dx]
w

)
+O

(
1
|w |2

)
,

for all w ∈ C with |w | sufficiently large. Therefore f ′t (w) = (µ[S1] − (λ − µ)[S2] +

µ[S3])w
−1 + O(|w |−2) = ηw−1 + O(|w |−2) for all such w, where the last part follows

from (2.2). Therefore, since η > 0, there exists an st ∈ (t,+∞) with f ′t (st ) > 0. This
proves (i).

Consider (ii). Recall that t > χ and Lt ∈ {K
(1)
1 ,K (1)2 , . . .}. Also, since t > χ and

(χ, η) = (χE(t), ηE(t)), Definition 1.4 and Lemma 1.6 imply that (χ, η) ∈ E+µ and t ∈ R+µ .
Finally recall that t is a root of f ′t of multiplicity 2, and so f ′′′t (t) , 0. This proves (ii).

Consider (iii). Recall that t > χ and Lt = J3. Also, since t > χ and (χ, η) =
(χE(t), ηE(t)), Definition 1.4 and Lemma 1.6 imply that (χ, η) ∈ E+µ and t ∈ R+µ .
Moreover, (2.2) and (2.3) imply that χ ∈ J3(= Lt ) (see, also, Figure 2.1). It thus remains
to show that f ′′′t (t) < 0. To see this, first note, (2.1) implies that ( f ′t )|J3 is continuous and
real-valued.Moreover, since Lt = J3, part (1) of Lemma 2.1 implies that f ′t (t) = f ′′t (t) = 0,
f ′′′t (t) , 0, and f ′t (s) , 0 for all s ∈ J3 \ {t} = (sup S2, t) ∪ (t, inf S1). Therefore, it is
sufficient to show that there exists an st ∈ (t, inf St ) with f ′t (st ) < 0.
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To see the above, we use the notation and definitions and results of next section. This
is not a circular argument since the current lemma is not used in the next section. First, fix
ξ > 0 as in Lemma 2.6, and fix st ∈ [t + ξ, inf S1). We have shown above that f ′t (st ) , 0,
and so either f ′t (st ) < 0 or f ′t (st ) > 0. Next note, (2.7) implies that ( f ′n)|J3,n is continuous
and real-valued. Moreover, since Ln = J3,n (see (2.12)), part (1) of Lemma 2.6 implies
that f ′n(s) , 0 for all s ∈ J3,n \ (t − ξ, t + ξ) = (max S2,n, t − ξ] ∪ [t + ξ,min S1,n). Also,
(2.7) gives

lim
s∈R,s↑min S1,n

f ′n(s) = −∞.

The above observations imply that f ′n(s) < 0 for all s ∈ [t + ξ,min S1,n). In particular,
since min S1,n = inf S1+o(1) (see (2.12) and note that Lt = J3, Ln = J3,n, inf S1 = sup J3,
min S1,n = sup J3,n), and since st ∈ [t + ξ, inf S1), this gives f ′n(st ) < 0. Finally note,
(2.1), (2.7) and (2.8) give f ′n(st ) → f ′t (st ). Therefore f ′t (st ) < 0, as required. This
proves (iii). �

Next recall that eC( · ) : C \ R→ C and C ′( · ) : C \ R→ C have those unique analytic
extensions to R+µ ∪ Rλ−µ ∪ R−µ given in (1.16) and (1.17). We now consider some useful
properties of these extensions for cases (1)–(12) of Lemma 2.2:

Lemma 2.3. The following hold:

• eC(t) > 1 and C ′(t) < 0 when t ∈ R+µ , i.e., for cases (1)–(4).

• eC(t) < 0 and C ′(t) > 0 when t ∈ Rλ−µ, i.e., for cases (5)–(8).

• eC(t) ∈ (0, 1) and C ′(t) < 0 when t ∈ R−µ , i.e., for cases (9)–(12).

Proof. First recall that C( · ) : C \ R → C and C ′( · ) : C \ R → C have those unique
analytic extensions to R \ Supp(µ) given in (1.16). Moreover, Lemma 1.6 gives R+µ =
{s ∈ R \ Supp(µ) : C(s) > 0} and R−µ = {s ∈ R \ Supp(µ) : C(s) < 0}. These easily give
eC(t) > 1 when t ∈ R+µ , eC(t) ∈ (0, 1) when t ∈ R−µ , and C ′(t) < 0 when t ∈ R+µ ∪ R−µ .
Next recall that eC( · ) : C \ R → C and C ′( · ) : C \ R → C have those unique analytic
extensions to Rλ−µ given in (1.17). These easily give eC(t) < 0 when t ∈ Rλ−µ. Finally,
we showed in Lemma 2.2 of [8] that C ′(t) > 0 when t ∈ Rλ−µ. �

We end this section with the final technical assumption of Theorem 1.11. First note the
following (see Lemma 2.2):

• For case (4), χ < inf S1 and t ∈ (χ, inf S1) ⊂ R \ Supp(µ).

• For case (5), sup S2 < χ and t ∈ (sup S2, χ) ⊂ R \ Supp(λ − µ).
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• For case (8), χ + η − 1 < inf S2 and t ∈ (χ + η − 1, inf S2) ⊂ R \ Supp(λ − µ).

• For case (9), χ + η − 1 > sup S3 and t ∈ (sup S3, χ + η − 1) ⊂ R \ Supp(µ).

We assume:

Assumption 2.4. If one of the cases (4), (5), (8) and (9) of Lemma 2.2 is satisfied, assume
the following:

• χ < Supp(µ) for case (4), i.e., [χ, inf S1) ⊂ R \ Supp(µ).

• χ < Supp(λ − µ) for case (5), i.e., (sup S2, χ] ⊂ R \ Supp(λ − µ).

• χ + η − 1 < Supp(λ − µ) for case (8), i.e., [χ + η − 1, inf S2) ⊂ R \ Supp(λ − µ).

• χ + η − 1 < Supp(µ) for case (9), i.e., (sup S3, χ + η − 1] ⊂ R \ Supp(µ).

Note, with the above assumption, (1.12) implies that χ = sup S2 for case (4), χ = inf S1
for case (5), χ + η − 1 = sup S3 for case (8), and χ + η − 1 = inf S2 for case (9). Another
effect of Assumption 2.4 can be seen, for example, in part (ii) in the proof of Lemma 3.9.
Part (ii) is not necessarily true if Assumption 2.4 does not hold.

2.2. The roots of f ′n and f̃ ′n

In this section, we assume Assumptions 1.2 and 1.7, that (1.18) is satisfied for some fixed
t ∈ R+µ ∪ Rλ−µ ∪ R−µ (a root of f ′t of multiplicity 2), and Assumption 2.4. We consider the
behaviour of the roots of f ′n and f̃ ′n as n→∞. We concentrate mainly on f ′n , since f̃ ′n has
a similar behaviour.

First note, (1.8) and (1.9) give

fn(w) =
1
n

∑
x∈S1,n

log(w − x) −
1
n

∑
x∈S2,n

log(w − x) +
1
n

∑
x∈S3,n

log(w − x), (2.5)

f̃n(w) =
1
n

∑
x∈S̃1,n

log(w − x) −
1
n

∑
x∈S̃2,n

log(w − x) +
1
n

∑
x∈S̃3,n

log(w − x), (2.6)

where the branch cuts are either (−∞, 0] or [0,+∞), and where:

• S1,n := 1
n {xi : xi > vn}.

• S2,n := 1
n {vn, vn − 1, . . . , vn + sn − n} \ {x1, x2, . . . , xn}.

• S3,n := 1
n {xi : xi < vn + sn − n}.
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• S̃1,n := 1
n {xi : xi ≥ un}.

• S̃2,n := 1
n {un − 1, un − 2, . . . , un + rn − n + 1} \ {x1, x2, . . . , xn}.

• S̃3,n := 1
n {xi : xi ≤ un + rn − n}.

Consider fn. First note, irrespective of the choices of the branches of the logarithm
in (2.5), that

f ′n(w) =
1
n

∑
x∈S1,n

1
w − x

−
1
n

∑
x∈S2,n

1
w − x

+
1
n

∑
x∈S3,n

1
w − x

. (2.7)

Also note, Assumption 1.2, (1.12) and (1.18) imply the following:
1
n

∑
x∈S1,n

δx → µ|S1 weakly,

1
n

∑
x∈S2,n

δx → (λ − µ)|S2 weakly,

1
n

∑
x∈S3,n

δx → µ|S3 weakly.

(2.8)

Moreover, Assumption 1.7, (2.2) and (2.8) imply the following:

S1,n , ∅,
1
n |S1,n | = µ[S1] + o(1) = µ[χ, b] + o(1) > 0.

S2,n , ∅,
1
n |S2,n | = (λ − µ)[S2] + o(1) = (λ − µ)[χ + η − 1, χ] + o(1) > 0.

S3,n , ∅,
1
n |S3,n | = µ[S3] + o(1) = µ[a, χ + η − 1] + o(1) > 0.

1
n x(n)1 = S1,n > S1,n > S2,n > S2,n > S3,n > S3,n =

1
n x(n)n .

S1,n = S1 + o(1) and S3,n = S3 + o(1).

(2.9)

Next note that f ′n extends analytically to C \ Sn, where Sn := S1,n ∪ S2,n ∪ S3,n. Then,
in analogy with (2.3), partition the domain of f ′n as follows:

C \ Sn = (C \ R) ∪ Jn ∪ Kn, (2.10)

where Jn :=
⋃4

i=1 Ji,n, Kn :=
⋃3

i=1 K (i)n , and

• J1,n := (max S1,n,+∞).

• J2,n := (−∞,min S3,n).

• J3,n := (max S2,n,min S1,n).
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• J4,n := (max S3,n,min S2,n).

• K (i)n := [min Si,n,max Si,n] \ Si,n for all i ∈ {1, 2, 3}.

Note that each K (i)n is open, and so can be partitioned as a set of pairwise disjoint open
intervals, which is unique up to order. We denote this partition of open intervals as
{K (i)1,n,K

(i)
2,n, . . .}, and we note that In ∈ {K

(i)
1,n,K

(i)
2,n, . . .} if and only if inf In and sup In are

two consecutive elements of Si,n.
Next, recall (see (1.18), (2.1)) that t ∈ R \ S is a root of f ′t , and (see (2.4)) that Lt ⊂

R\S = J∪K is that interval forwhich t ∈ Lt and Lt ∈ {J1, J2, J3, J4}∪
⋃3

i=1{K
(i)
1 ,K

(i)
2 , . . .}.

Therefore, for all ξ > 0 sufficiently small,

(t − 4ξ, t + 4ξ) ⊂ Lt, B(t, 4ξ) ⊂ C \ S, and t is the unique root of f ′t in B(t, 4ξ). (2.11)

Fix such an ξ > 0. Then:

Lemma 2.5. There exists an open interval, Ln ∈ {J1,n, J2,n, J3,n, J4,n} ∪
⋃3

i=1{K
(i)
1,n,

K (i)2,n, . . .}, which satisfies,

sup Ln = sup Lt + o(1) and inf Ln = inf Lt + o(1),
(t − 2ξ, t + 2ξ) ⊂ Ln and B(t, 2ξ) ⊂ C \ Sn,

Ln = Ji,n ⇔ Lt = Ji for all i ∈ {1, 2, 3, 4},

Ln ∈ {K
(i)
1,n,K

(i)
2,n, . . .} ⇔ Lt ∈ {K

(i)
1 ,K

(i)
2 , . . .} for all i ∈ {1, 2, 3}.

(2.12)

Proof. Throughout this proof, it is helpful to refer to Figure 2.1 to visualise the sets in
question. Recall the exhaustive cases (1)–(12) of Lemma 2.2. We will prove the result
for cases (1), (2), (4) and (7). The proof for case (12) is similar to case (1), the proof for
cases (3), (10) and (11) are similar to case (2), the proof for case (6) is similar to case (7),
and the proof for cases (5), (8) and (9) are similar to case (4).

For case (1), recall that Lt = J1 = (sup S1,+∞), J1,n = (max S1,n,+∞), andmax S1,n →

sup S1 (see Lemma 2.2, and (2.9) and (2.10)). The result for case (1) then follows
from (2.11).

For case (2), recall that Lt ∈ {K
(1)
1 ,K (1)2 , . . .}, Lt ∈ R \ Supp(µ), sup S1 > sup Lt

and inf Lt > χ, {inf Lt, sup Lt } ⊂ S1 = Supp(µ|[χ,b]), and S1 is entirely contained in
[sup Lt, sup S1]∪[χ, inf Lt ] (see Lemma 2.2, and (1.12), (2.2) and (2.3)). Moreover, recall
that S1,n =

1
n {xi : xi > vn}, max S1,n → sup S1 and vn

n → χ, and In ∈ {K
(1)
1,n,K

(1)
2,n, . . .}

if and only if inf In and sup In are two consecutive elements of S1,n (see (1.18), (2.7) and
(2.10)). The result for case (2) then follows from Assumption 1.7 and (2.11).

For case (7), recall that Lt ∈ {K
(2)
1 ,K (2)2 , . . .}, Lt ∈ R \ Supp(λ − µ), χ > sup Lt and

inf Lt > χ + η − 1, {inf Lt, sup Lt } ⊂ S2 = Supp((λ − µ)|[χ+η−1,χ]), and S2 is entirely
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contained in [sup Lt, χ] ∪ [χ + η − 1, inf Lt ] (see Lemma 2.2, and (1.12), (2.2) and (2.3)).
Moreover, recall that S2,n =

1
n {vn, vn − 1, . . . , vn + sn − n} \ {x1, x2, . . . , xn}, vn

n → χ

and vn+sn−n
n → χ + η − 1, and In ∈ {K

(2)
1,n,K

(2)
2,n, . . .} if and only if inf In and sup In are

two consecutive elements of S2,n (see (1.18), (2.7) and (2.10)). The result for case (2)
then follows from Assumption 1.7 and (2.11).

For case (4), recall that Lt = J3 = (sup S2, inf S1), sup Lt ⊂ S1 = Supp(µ|[χ,b]), and
inf Lt ⊂ S2 = Supp((λ − µ)|[χ+η−1,χ]) (see Lemma 2.2, and (1.12), (2.2) and (2.3)).
Moreover, Assumption 2.4 implies that sup S2 = χ, i.e., that inf Lt = χ, and [χ, inf S1) ⊂

R \ Supp(µ). Therefore (χ − δ, inf S1 − δ) ⊂ R \ Supp(µ) for all δ > 0 sufficiently small.
Then, for all such δ > 0, Assumption 1.7 implies that there exists an n(δ) ≥ 1 for
which (χ − δ, inf S1 − δ) ∩ (

1
n {x1, x2, . . . , xn}) = ∅ for all n > n(δ). Finally recall that

J3,n = (max S2,n,min S1,n), S1,n =
1
n {xi : xi > vn} and S2,n =

1
n {vn, vn − 1, . . . , vn + sn −

n} \ {x1, x2, . . . , xn}, and vn
n → χ (see (1.18), (2.7) and (2.10)). The above observations

imply that sup J3,n = min S1,n ≥ inf S1 − δ and inf J3,n = max S2,n =
vn
n for all n > n(δ).

Then, letting δ ↓ 0, the result for case (4) follows from (2.11). �

Moreover:

Lemma 2.6. The following hold:

(1) f ′n has 2 roots in B(t, ξ), has 0 roots in Ln \ (t − ξ, t + ξ) when Ln ∈ {J1,n, J2,n,

J3,n, J4,n}, and has 1 root in Ln \ (t − ξ, t + ξ) when Ln ∈
⋃3

i=1{K
(i)
1,n,K

(i)
2,n, . . .}.

(2) f ′n has 0 roots in C \ (R ∪ B(t, ξ)), and in each of {J1,n, J2,n, J3,n, J4,n} \ {Ln}.

(3) f ′n has 1 root in each of
⋃3

i=1{K
(i)
1,n,K

(i)
2,n, . . .} \ {Ln}.

Next, denote the roots of f ′n in B(t, ξ) by {t1,n, t2,n}, with the understanding that t1,n = t2,n
means that t1,n is a root of multiplicity 2. Then we can always choose the labelling such
that one of the following possibilities is satisfied:

(a) t1,n ∈ (t − ξ, t + ξ) and t1,n = t2,n.

(b) {t1,n, t2,n} ⊂ (t − ξ, t + ξ) and t1,n > t2,n.

(c) t1,n ∈ B(t, ξ) ∩ H and t2,n is the complex conjugate of t1,n.
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Proof. Consider (1)–(3). We will show that:

(i) f ′n has
∑3

i=1 |{K
(i)
1,n,K

(i)
2,n, . . .}| + 2 roots in C \ Sn = (C \ R) ∪ Jn ∪ Kn.

(ii) f ′n an odd number of roots in each of
⋃3

i=1{K
(i)
1,n,K

(i)
2,n, . . .}.

(iii) f ′n has 2 roots in B(t, ξ). Moreover, either both are in (t − ξ, t + ξ), or both are in
B(t, ξ) \ (t − ξ, t + ξ).

Next recall (see (2.12)) that either Ln ∈ {J1,n, J2,n, J3,n, J4,n} for all n sufficiently large, or
Ln ∈

⋃3
i=1{K

(i)
1,n,K

(i)
2,n, . . .} for all n sufficiently large. We consider both cases separately.

First suppose that Ln ∈ {J1,n, J2,n, J3,n, J4,n}. Recall (see (2.12)) that B(t, ξ) ⊂ (C\R)∪Ln.
Then parts (i), (ii) and (iii) and a simple counting argument imply that the following is
satisfied: f ′n has 2 roots in (C \ R) ∪ Ln, 0 roots in {J1,n, J2,n, J3,n, J4,n} \ {Ln}, and 1
root in each of

⋃3
i=1{K

(i)
1,n,K

(i)
2,n, . . .}. Moreover, since B(t, ξ) ⊂ (C \ R) ∪ Ln, part (iii)

implies that the 2 roots in (C \ R) ∪ Ln must be in B(t, ξ). This proves (1)–(3) when
Ln ∈ {J1,n, J2,n, J3,n, J4,n}. Next suppose that Ln ∈

⋃3
i=1{K

(i)
1,n,K

(i)
2,n, . . .}. Recall that

B(t, ξ) ⊂ (C \R) ∪ Ln. Then parts (i), (ii) and (iii) and a simple counting argument imply
that the following is satisfied: f ′n has 3 roots in (C\R)∪Ln, 0 roots in {J1,n, J2,n, J3,n, J4,n},
and 1 root in each of

⋃3
i=1{K

(i)
1,n,K

(i)
2,n, . . .} \ {Ln}. Moreover, since B(t, ξ) ⊂ (C \R) ∪ Ln,

parts (ii) and (iii) imply that 2 of the roots in (C \ R) ∪ Ln must be in B(t, ξ), and 1 of the
roots must be in Ln \ (t − ξ, t + ξ). This proves (1)–(3) when Ln ∈

⋃3
i=1{K

(i)
1,n,K

(i)
2,n, . . .}.

Consider (i). First recall, (see (2.9)) that Sn = S1,n ∪ S2,n ∪ S3,n, where {S1,n, S2,n, S3,n}

are mutually disjoint, each set is non-empty and composed of singletons, and min S1,n >

max S2,n and min S2,n > max S3,n. Note, for all w ∈ C \ Sn, (2.7) gives f ′n(w) =
1
n (

∏
x∈Sn

1
w−x )Qn(w), where Qn is the polynomial,

Qn(w) =
∑

x∈S1,n∪S3,n

( ∏
y∈Sn\{x }

(w − y)

)
−

∑
x∈S2,n

( ∏
y∈Sn\{x }

(w − y)

)
.

Note that Qn is a polynomial of degree |Sn | − 1. Also note that Qn has no roots in Sn, and
so the roots of Qn and f ′n coincide. Therefore f ′n has |Sn | − 1 roots in C \ Sn. Finally recall
(see (2.10) and the subsequent remarks) that

⋃3
i=1{K

(i)
1,n,K

(i)
2,n, . . .} is a set of pairwise

disjoint open intervals, and that In ∈ {K
(i)
1,n,K

(i)
2,n, . . .} if and only if inf In and sup In are

two consecutive elements of Si,n. Therefore |Sn | =
∑3

i=1 |{K
(i)
1,n,K

(i)
2,n, . . .}| + 3, which

proves (i).
Consider (ii). Fix i ∈ {1, 2, 3}, and any interval In ∈ {K

(i)
1,n,K

(i)
2,n, . . .}, and recall that

inf In and sup In are consecutive elements of Si,n. Note, when i = 1, (2.7) gives

lim
w∈R,w↑sup In

f ′n(w) = −∞ and lim
w∈R,w↓inf In

f ′n(w) = +∞.
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Thus f ′n has an odd number of roots in In. Similarly whenever i ∈ {2, 3}. This proves (ii).
Consider (iii). First note, part (1) of Lemma 2.1 and (2.11) imply that f ′t has 2

roots in B(t, ξ). Next note, (2.7) implies that non-real roots of f ′n occur in complex
conjugate pairs. Part (iii) thus follows from Rouché’s theorem if, we can show that
| f ′t (w)| > | f

′
t (w) − f ′n(w)| for all w ∈ ∂B(t, ξ). We shall show:

inf
w∈∂B(t,ξ)

| f ′t (w)| > 0 and lim
n→∞

sup
w∈cl(B(t,ξ))

| f ′t (w) − f ′n(w)| = 0.

The first part follows from the extreme value theorem, since f ′t is analytic in B(t, 2ξ)
(see (2.11)). We prove the second part via contradiction: Assume that the second part
does not hold. Then there exists a δ > 0 for which, for all n ≥ 1, there exists some pn ≥ n
and zn ∈ cl(B(t, ξ)) with δ < | f ′t (zn) − f ′pn

(zn)|. Choosing {zn}n≥1 to be convergent, and
denoting the limit by z, the triangle inequality gives

δ < | f ′t (zn) − f ′t (z)| + | f
′
t (z) − f ′pn

(z)| + | f ′pn
(z) − f ′pn

(zn)|. (2.13)

Note, | f ′t (zn) − f ′t (z)| → 0 since zn → z, {z, z1, z2 . . .} ⊂ cl(B(t, ξ)), and f ′t is analytic in
B(t, 2ξ). Also, since z ∈ cl(B(t, ξ)), and B(t, 2ξ) ⊂ C \ S and B(t, 2ξ) ⊂ C \ Sn (see (2.11),
(2.12)), (2.1), (2.7) and (2.8)) imply that | f ′t (z) − f ′pn

(z)| → 0. Finally, (2.7) implies that,

| f ′pn
(z) − f ′pn

(zn)| ≤
3∑
i=1

(
1
pn
|Si,pn |

)
sup

x∈Si,pn

���� 1
z − x

−
1

zn − x

���� .
This implies that | f ′pn

(z) − f ′pn
(zn)| → 0, since zn → z, {z, z1, z2 . . .} ⊂ cl(B(t, ξ)),

B(t, 2ξ) ⊂ C \ Spn , and 1
pn
|Si,pn | = O(1) for all i ∈ {1, 2, 3} (see (2.9)). The above

observations contradict (2.13), and so our assumption is false. This proves (iii).
Finally, we show that one of the possibilities, (a), (b) or (c), must be satisfied. First

recall, part (1) implies that f ′n has 2 roots in B(t, ξ). Next note, (2.7) implies that non-real
roots of f ′n occur in complex conjugate pairs. Possibilities (a), (b) and (c) easily follow. �

2.3. The rates of convergence

In the previous sections, we assumed Assumptions 1.2 and 1.7, and that (1.18) is satisfied
for some fixed t ∈ R+µ ∪ Rλ−µ ∪ R−µ , a root of f ′t of multiplicity 2, and we considered the
behaviour of the roots of f ′t and f ′n and f̃ ′n . We saw that 2 roots of f ′n (and f̃ ′n) converge to
t as n→∞. We did not, however, discuss the rate of convergence.

In this section we assume the above, and additionally assume that the sequences of
particle positions, {(un, rn)}n≥1 ⊂ Z

2 and {(vn, sn)}n≥1 ⊂ Z
2, are chosen as in (1.28)

and (1.29). Recall that these are defined in terms of sequences, {mn}n≥1 ⊂ R and
{pn}n≥1 ⊂ R, which we have yet to define. In this section, we define these in a natural way
such that the rate of convergence of the roots is sufficiently fast to allow a steepest descent
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analysis of the correlation kernel. The sequences are defined in Definition 2.8, and the
rate of convergence of the roots is given in part (4) of Lemma 2.9. In that lemma, we also
examine the asymptotic behaviour of f ′n(t) and f̃ ′n(t), and their higher order derivatives.
We concentrate mainly on f ′n , since f̃ ′n has a similar behaviour.

We begin by writing convenient expressions for f ′t in neighbourhoods of t. First recall
that µ ≤ λ (see Assumption 1.2), and (χ, η) = (χE(t), ηE(t)) where t ∈ R+µ ∪ Rλ−µ ∪ R−µ
(see (1.18)). Next recall (see Definition 1.4 and Lemma 1.6) that t ∈ (χ,+∞) \ Supp(µ)
when t ∈ R+µ , t ∈ (χ + η − 1, χ) \ Supp(λ − µ) when t ∈ Rλ−µ, and t ∈ (−∞, χ + η − 1) \
Supp(µ) when t ∈ R−µ . Thus the following are satisfied for all ξ > 0 sufficiently small:

µ|(t−4ξ,t+4ξ) = 0, (t − 4ξ, t + 4ξ) ⊂ (χ,+∞) when t ∈ R+µ .

µ|(t−4ξ,t+4ξ) = λ |(t−4ξ,t+4ξ), (t − 4ξ, t + 4ξ) ⊂ (χ + η − 1, χ) when t ∈ Rλ−µ .

µ|(t−4ξ,t+4ξ) = 0, (t − 4ξ, t + 4ξ) ⊂ (−∞, χ + η − 1) when t ∈ R−µ .

(2.14)

Then, fixing such an ξ > 0, (1.10) and (1.30) imply the following, which are well-defined
and analytic for all w ∈ B(t, 4ξ): When t ∈ R+µ ∪ R−µ ,

f ′t (w) =
∫ b

a

µ[dx]
w − x

−

∫ χ

χ+η−1

dx
w − x

. (2.15)

When t ∈ Rλ−µ,

f ′t (w) =
[ ∫ t−4ξ

a

+

∫ b

t+4ξ

]
µ[dx]
w − x

−

[ ∫ t−4ξ

χ+η−1
+

∫ χ

t+4ξ

]
dx

w − x
. (2.16)

Now, we use the above to inspire the definition of natural non-asymptotic functions
which have a similar root behaviour in B(t, 4ξ). First, fix ε > 0 sufficiently small such
that (1.23) is satisfied, and recall that R+µ (ε) = {s ∈ R+µ : (s − ε, s + ε) ⊂ R+µ }, etc.. Next,
fix the above ξ > 0 sufficiently small such that the following are also satisfied:

(t − 4ξ, t + 4ξ) ⊂


R+µ (ε) when t ∈ R+µ .

Rλ−µ(ε) when t ∈ Rλ−µ .

R−µ (ε) when t ∈ R−µ .

(2.17)

Next, define µn as in (1.25), and recall that µn → µ weakly. Note that Supp(µn) ⊂
Pn ∪ cl(Rλ−µ(ε)), where Pn =

1
n {x1, . . . , xn}. Therefore Supp(µn) ⊂ (a − ε, b + ε), since

Supp(µ) ⊂ [a, b] (see Assumption 1.2), since d(Pn, Supp(µ)) → 0 (see Assumption 1.7),
and since Rλ−µ(ε) ⊂ (a, b) (indeed, Rλ−µ(ε) ⊂ Rλ−µ = R \ Supp(λ − µ) ⊂ Supp(µ)◦ ⊂
(a, b)). Next, define (χn, ηn) as in Definition 1.8, and recall that (χn, ηn) → (χ, η)
(see (1.27)). Finally, inspired by (2.15) and (2.16), define: When t ∈ R+µ ∪ R−µ ,

f ′t,n(w) :=
∫ b+ε

a−ε

µn[dx]
w − x

−

∫ χn

χn+ηn−1

dx
w − x

. (2.18)
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When t ∈ Rλ−µ,

f ′t,n(w) :=
[ ∫ t−4ξ

a−ε
+

∫ b+ε

t+4ξ

]
µn[dx]
w − x

−

[ ∫ t−4ξ

χn+ηn−1
+

∫ χn

t+4ξ

]
dx

w − x
. (2.19)

The function ft,n is unimportant and left unspecified. Note that these functions are
well-defined and analytic in B(t, 4ξ). Indeed, when t ∈ R+µ , the second term on the RHS
of (2.18) is well-defined and analytic since (χn, ηn) → (χ, η) and (t−4ξ, t+4ξ) ⊂ (χ,+∞)
(see (2.14)). Moreover, when t ∈ R+µ , note that (t − 4ξ, t + 4ξ) ⊂ R \ Supp(µn), since
Supp(µn) ⊂ Pn ∪ cl(Rλ−µ(ε)), since (t − 4ξ, t + 4ξ) ⊂ R+µ (ε) ⊂ R \ Pn (see (1.24) and
(2.17)), and since (t − 4ξ, t + 4ξ) ⊂ R+µ (ε) ⊂ R \ cl(Rλ−µ(ε)) (see (1.23) and (2.17)). Thus
the first term on the RHS of (2.18) is also well-defined and analytic in B(t, 4ξ). Similarly
the terms on the RHS of (2.18) are well-defined and analytic in B(t, 4ξ) when t ∈ R−µ , and
the terms on the RHS of (2.19) are well-defined and analytic in B(t, 4ξ) when t ∈ Rλ−µ.
Moreover:

Lemma 2.7. f ′t,n(t) = f ′′t,n(t) = 0. Moreover, f ′′′t,n (t) → f ′′′t (t), where f ′′′t (t) , 0
(see (1.18)). Finally, t is the unique root of f ′t,n in B(t, ξ).

Proof. First suppose that t ∈ R+µ . Recall, Definition 1.8 gives

χn = t +
eCn(t) − 1

eCn(t)C ′n(t)
and χn + ηn − 1 = t +

eCn(t) − 1
C ′n(t)

,

where Cn is the Cauchy transform of µn given in (1.26). Recall that (χn, ηn) → (χ, η).
(2.14) thus gives (t−4ξ, t+4ξ) ⊂ (χn,+∞). (1.26) and (2.18) then give f ′t,n(w) = Cn(w)+

log(w − χn) − log(w − χn − ηn + 1) for all w ∈ B(t, 4ξ), where the logarithms use (−∞, 0)
as the branch cut. Finally, taking w = t, the above expressions give f ′t,n(t) = f ′′t,n(t) = 0.
Moreover, recalling that µn → µ weakly and (χn, ηn) → (χ, η), (2.15) and (2.18) give
f ′′′t,n (t) → f ′′′t (t) , 0. Finally, using those equations, we can proceed as in part (iii) in the
proof of Lemma 2.6 to show that f ′t,n has 2 roots in B(t, ξ). Thus t is the unique root of
f ′t,n in B(t, ξ). This proves the result when t ∈ R+µ .

Next suppose that t ∈ Rλ−µ. Note that the above expressions for χn and χn + ηn − 1
also hold in this case, where now eCn(t) and C ′n(t) are defined by analytic extensions.
More exactly, since µn = λ in (t − 4ξ, t + 4ξ) (see (1.25) and (2.17)), Lemma 2.2 of [8]
gives

eCn(w) = eBn(w)

(
w − t + 4ξ
w − t − 4ξ

)
, C ′n(w) = B′n(w) −

1
w − t − 4ξ

+
1

w − t + 4ξ
,

for all w ∈ B(t, 4ξ), where Bn(w) :=
∫
[a,b]\(t−4ξ,t+4ξ)

µn[dx]
w−x . Recall that (χn, ηn) → (χ, η).

(2.14) thus gives (t − 4ξ, t + 4ξ) ⊂ (χn + ηn − 1, χn). (2.19) then gives f ′t,n(w) =
Bn(w) + log(w − χn) − log(w − t − 2ξ) + log(w − t + 2ξ) − log(w − χn − ηn + 1) for all
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w ∈ B(t, 2ξ), where the first and second logarithms use (0,+∞) as the branch cut, and
the third and fourth logarithms use (−∞, 0) as the branch cut. Finally, taking w = t, the
above expressions give f ′t,n(t) = f ′′t,n(t) = 0. Moreover, recalling that µn → µ weakly
and (χn, ηn) → (χ, η), (2.16) and (2.19) give f ′′′t,n (t) → f ′′′t (t) , 0. Finally, using those
equations, we can proceed as in part (iii) in the proof of Lemma 2.6 to show that f ′t,n has
2 roots in B(t, ξ). Thus t is the unique root of f ′t,n in B(t, ξ). This proves the result when
t ∈ Rλ−µ. Similarly when t ∈ R−µ . �

Next, we write similar convenient expressions for f ′n . Recall the definition for fn given
in (1.8). Note, (1.22), (1.24) and (2.17) give Pn =

1
n {x1, x2, . . . , xn}, (t−4ξ, t+4ξ)∩Pn = ∅

when t ∈ R+µ ∪ R−µ , and (t − 4ξ, t + 4ξ) ∩ Zn ⊂ Pn when t ∈ Rλ−µ. Next define Vn :=
1
n {vn + sn − n, vn + sn − n + 1, . . . , vn}. Then, since 1

n (vn, sn) → (χ, η) (see (1.18)),
(2.14) gives (t − 4ξ, t + 4ξ) ∩ Vn = ∅ when t ∈ R+µ ∪ R−µ , and (t − 4ξ, t + 4ξ) ∩ Zn ⊂ Vn

when t ∈ Rλ−µ. Finally, (1.8) and the above observations imply the following, which are
well-defined and analytic for all w ∈ B(t, 4ξ): When t ∈ R+µ ∪ R−µ ,

f ′n(w) =
1
n

∑
x∈Pn

1
w − x

−
1
n

∑
x∈Vn

1
w − x

. (2.20)

When t ∈ Rλ−µ,

f ′n(w) =
1
n

∑
x∈Pn ;x<(t−4ξ,t+4ξ)

1
w − x

−
1
n

∑
x∈Vn ;x<(t−4ξ,t+4ξ)

1
w − x

. (2.21)

Finally recall that the sequences {(un, rn)}n≥1 ⊂ Z
2 and {(vn, sn)}n≥1 ⊂ Z

2 of (1.28)
and (1.29), depend on sequences {mn}n≥1 ⊂ R

2 and {pn}n≥1 ⊂ R
2 which we have yet to

define. We now define these, along with some other useful sequences:

Definition 2.8. First, recall that f ′′′t,n (t) → f ′′′t (t) , 0 (see Lemma 2.7), and define
qn := qn(t) such that,

1
6 q3

n f ′′′t,n (t) =
1
3 .

Next, define q1,n := q1,n(t) and q2,n := q2,n(t) such that,

qnq1,n =
1
2 q2

nq2,n = 1.

Finally, recall that eCn(t) → eC(t) < {0, 1} (see (1.27) and Lemma 2.3), and χn → χ , t
(see (1.27)), and define mn := mn(t) and pn := pn(t) such that,

q1,n = −
pn((eCn(t) − 1)2 + 1)
(t − χn)eCn(t)

and q2,n =
mn(eCn(t) − 1)
(t − χn)2eCn(t)

.

Note that each {mn}n≥1, {pn}n≥1, {qn}n≥1, {q1,n}n≥1, {q2,n}n≥1, are convergent
sequences of real-numbers with non-zero limits. Moreover:
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Lemma 2.9. Assume that {(un, rn)}n≥1 ⊂ Z
2 and {(vn, sn)}n≥1 ⊂ Z

2 are chosen as
in (1.28) and (1.29). Then:

(1) f ′n(t) = n−
2
3 sq1,n +O(n−1) and f̃ ′n(t) = n−

2
3 rq1,n +O(n−1).

(2) f ′′n (t) = n−
1
3 vq2,n +O(n−

2
3 ) and f̃ ′′n (t) = n−

1
3 uq2,n +O(n−

2
3 ).

(3) f ′′′n (t) = f ′′′t,n (t) +O(n−
1
3 ) and f̃ ′′′n (t) = f ′′′t,n (t) +O(n−

1
3 ).

(4) t = t1,n +O(n−
1
3 ) = t2,n +O(n−

1
3 ) and t = t̃1,n +O(n−

1
3 ) = t̃2,n +O(n−

1
3 ).

Above, u, v, r, s are the parameters in (1.28) and (1.29), {t1,n, t2,n} denotes the set of roots
of f ′n in B(t, ξ) (see Lemma 2.6), and {t̃1,n, t̃2,n} denotes the analogous roots of f̃ ′n .

Proof. We prove the results for fn, and state that the results for f̃n follow similarly.
Consider (1), (2) and (3) when t ∈ R+µ . First note, (1.25), (2.18) and (2.20) give

f ′t,n(w) − f ′n(w) =
∫
Rλ−µ (ε )

dx
w − x

−
1
n

∑
x∈Pn ;x∈Rλ−µ (ε )

1
w − x

−

∫ χn

χn+ηn−1

dx
w − x

+
1
n

∑
x∈Vn

1
w − x

,

for allw ∈ B(t, 4ξ), whereVn =
1
n {vn+sn−n, vn+sn−n+1, . . . , vn}. Next recall (see (2.17))

that (t − 4ξ, t + 4ξ) ⊂ R+µ (ε) ⊂ R \ Rλ−µ(ε), and (see (1.24)) that Zn ∩ Rλ−µ(ε) ⊂ Pn.
Riemann approximations thus give

f ′t,n(w) − f ′n(w) =
∫ vn

n

vn
n +

sn
n −1

dx
w − x

−

∫ χn

χn+ηn−1

dx
w − x

+O(n−1),

f ′′t,n(w) − f ′′n (w) = −
∫ vn

n

vn
n +

sn
n −1

dx
(w − x)2

+

∫ χn

χn+ηn−1

dx
(w − x)2

+O(n−1),

f ′′′t,n (w) − f ′′′n (w) =

∫ vn
n

vn
n +

sn
n −1

2dx
(w − x)3

−

∫ χn

χn+ηn−1

2dx
(w − x)3

+O(n−1),

(2.22)
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uniformly for w ∈ B(t, ξ). Recall that 1
n (vn, sn) → (χ, η) and (χn, ηn) → (χ, η), and

t ∈ (χ,+∞). Therefore,

f ′t,n(t) − f ′n(t) = − log
(

t − vn
n

t − χn

)
+ log

(
t − vn

n −
sn
n + 1

t − χn − ηn + 1

)
+O(n−1),

f ′′t,n(t) − f ′′n (t) = −
vn
n − χn

(t − χn)(t −
vn
n )

+

vn
n +

sn
n − χn − ηn

(t − χn − ηn + 1)(t − vn
n −

sn
n + 1)

+O(n−1),

f ′′′t,n (t) − f ′′′n (t) =
(
vn
n − χn)((t − χn) + (t −

vn
n ))

(t − χn)2(t −
vn
n )

2

−
(
vn
n +

sn
n − χn−ηn)((t− χn−ηn+1) + (t− vn

n −
sn
n +1))

(t − χn − ηn + 1)2(t − vn
n −

sn
n + 1)2

+O(n−1),

where log now represents the natural logarithm. (1.29) thus gives

f ′t,n(t) − f ′n(t) = − log
(
1 −

n−
1
3 mnv + n−

2
3 pns(eCn(t) − 1) +O(n−1)

t − χn

)
+ log

(
1 −

n−
1
3 mnveCn(t) + n−

2
3 pns(eCn(t) − 2) +O(n−1)

t − χn − ηn + 1

)
+O(n−1),

f ′′t,n(t) − f ′′n (t) = −
n−

1
3 mnv +O(n−

2
3 )

(t − χn)((t − χn) +O(n−
1
3 ))

+
n−

1
3 mnveCn(t) +O(n−

2
3 )

(t − χn − ηn + 1)((t − χn − ηn + 1) +O(n−
1
3 ))
+O(n−1),

f ′′′t,n (t) − f ′′′n (t) = O(n−
1
3 ),

The third equation gives (3) when t ∈ R+µ . Also note, that t − χn − ηn + 1 = (t − χn)eCn(t)

(see Definition 1.8). The first and second equations thus give

f ′t,n(t) − f ′n(t) = − log
(
1 −

n−
1
3 mnv

t − χn
−

n−
2
3 pns(eCn(t) − 1)

t − χn
+O(n−1)

)
+ log

(
1 −

n−
1
3 mnv

t − χn
−

n−
2
3 pns(eCn(t) − 2)
(t − χn)eCn(t)

+O(n−1)

)
+O(n−1),

f ′′t,n(t) − f ′′n (t) = −
n−

1
3 mnv

(t − χn)2
+

n−
1
3 mnv

(t − χn)2eCn(t)
+O(n−

2
3 ).

Then, since f ′′t,n(t) = 0 (see Lemma 2.7) the second equation and Definition 2.8 give (2)
when t ∈ R+µ . Also, since f ′t,n(t) = 0 (see Lemma 2.7) the first equation, Definition 2.8
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and a Taylor expansion give (1) when t ∈ R+µ . We can similarly prove (1), (2) and (3)
when t ∈ R−µ .

Consider (1), (2) and (3) when t ∈ Rλ−µ. First recall (see (1.24) and (2.17)) that
(t − 4ξ, t + 4ξ) ⊂ Rλ−µ(ε) and Zn ∩ Rλ−µ(ε) ⊂ Pn. Also, recall (see (2.14)) that (t − 4ξ, t +
4ξ) ⊂ (χ+η−1, χ), and that 1

n (vn, sn) → (χ, η) and (χn, ηn) → (χ, η). Next note, (1.25),
(2.19) and (2.21) give

f ′t,n(w) − f ′n(w) =
∫
Rλ−µ (ε )\(t−4ξ,t+4ξ)

dx
w − x

−
1
n

∑
x∈Pn ;x∈Rλ−µ (ε )\(t−4ξ,t+4ξ)

1
w − x

−

∫
[χn+ηn−1,χn]\(t−4ξ,t+4ξ)

dx
w − x

+
1
n

∑
x∈Vn ;x<(t−4ξ,t+4ξ)

1
w − x

,

for all w ∈ B(t, 4ξ), where Vn =
1
n {vn + sn − n, vn + sn − n + 1, . . . , vn}. Riemann

approximations thus give

f ′t,n(w) − f ′n(w) = −
∫
[χn+ηn−1,χn]\(t−4ξ,t+4ξ)

dx
w − x

+

∫
[
vn
n +

sn
n −1, vnn ]\(t−4ξ,t+4ξ)

dx
w − x

+O(n−1), (2.23)

uniformly for w ∈ B(t, ξ). We can then proceed similarly to above to prove (1), (2) and (3)
when t ∈ Rλ−µ.

Consider (4). First recall, that f ′n and f ′t,n are well-defined and analytic in B(t, 4ξ).
Also, Lemma 2.7 implies that t is a root of f ′t,n of multiplicity 2, and t is the unique root
of f ′t,n in B(t, ξ). We will show that there exists constants c1, c2 > 0 for which, given any
{ξn}n≥1 with ξn ↓ 0,

inf
w∈∂B(t,ξn)

| f ′t,n(w)| > c1ξ
2
n,

sup
w∈cl(B(t,ξn))

| f ′t,n(w) − f ′n(w)| < c2(ξnn−
1
3 + n−

2
3 ).

(2.24)

For clarity we state that c1, c2 are independent of the choice of {ξn}n≥1. Thus there
exists a choice of {ξn}n≥1 with ξn ∼ O(n−

1
3 ) for which, for all n sufficiently large,

| f ′t,n(w)| > | f
′
t,n(w) − f ′n(w)| for all w ∈ ∂B(t, ξn). Part (4) then follows from Rouché’s

theorem.
Fix {ξn}n≥1 with ξn ↓ 0. Recall, Lemma 2.7 implies that f ′t,n(t) = f ′′t,n(t) = 0, and

f ′′′t,n (t) → f ′′′t (t) , 0. Also note, (2.18) and (2.19) give | f (4)t,n (w)| = O(1) uniformly for
w ∈ B(t, ξ). Taylor’s theorem thus gives f ′t,n(w) =

1
2 (w − t)2 f ′′′t,n (t) +O(ξ3

n) uniformly for
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w ∈ cl(B(w, ξn)). Therefore,

f ′t,n(w) = ξ
2
n

1
2

ei2 Arg(w−t) f ′′′t,n (t) +O(ξ3
n),

uniformly for w ∈ ∂B(t, ξn). This proves the first part of (2.24).
Consider the second part of (2.24) when t ∈ R+µ . Note, (2.22) and Taylor’s theorem

give

f ′t,n(w) − f ′n(w) = − log
(

t − vn
n

t − χn

)
+ log

(
t − vn

n −
sn
n + 1

t − χn − ηn + 1

)
+O

(
|w − t |

����χn − vn

n

���� + |w − t |
����ηn − sn

n

���� + n−1
)
,

uniformly for w ∈ B(t, ξ), where log now represents the natural logarithm. Proceeding
similarly to part (1) then gives

f ′t,n(w) − f ′n(w) = O
(
|w − t |n−

1
3 + n−

2
3

)
,

uniformly for w ∈ B(t, ξ). This proves the second part of (2.24) when t ∈ R+µ . Similarly
when t ∈ R−µ . Finally, the second part of (2.24) when t ∈ Rλ−µ can be shown using similar
arguments and (2.23). �

2.4. The asymptotic behaviour of fn − f̃n

In this section, we assume Assumptions 1.2 and 1.7, that (1.18) is satisfied for some fixed
t ∈ R+µ ∪ Rλ−µ ∪ R−µ (a root of f ′t of multiplicity 2), and that {(un, rn)}n≥1 ⊂ Z

2 and
{(vn, sn)}n≥1 ⊂ Z

2 are chosen as in (1.28) and (1.29). Define,

Fn := fn − f̃n. (2.25)

This function will be useful for the steepest descent analysis. In this section, we examine
the roots of F ′n, and the asymptotic behaviour of Fn as n→∞. Note, since much of the
analysis of this section is similar to that of the previous two sections, we do not go into as
much detail here.

First, it is useful to examine the following functions: Define Gt,Gt,n : C \ R→ C as,

Gt (w) := − log(w − χ) + eC(t) log(w − χ − η + 1),

Gt,n(w) := − log(w − χn) + eCn(t) log(w − χn − ηn + 1),
(2.26)

for all w ∈ C \ R, where C and Cn are defined in (1.14) and (1.26) respectively,
(χ, η) = (χE(t), ηE(t)) and (χn, ηn) = (χn(t), ηn(t)) (see (1.18) and Definition 1.8), and
the branch cuts are chosen as follows:

• For cases (1)–(4) of Lemma 2.2, all branch cuts are (−∞, 0].
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• For cases (5)–(8) of Lemma 2.2, the branch cut in the 1st terms on the RHS is
[0,+∞), and branch cut in the 2nd terms is (−∞, 0].

• For cases (9)–(12) of Lemma 2.2, all branch cuts are [0,+∞).

Recall that eCn(t) → eC(t) and (χn, ηn) → (χ, η) (see (1.27)). The above choices for the
branches, Lemma 2.2 and (2.14), imply that Gt and Gt,n both extend analytically to
(C \ R) ∪ (t − 2ξ, t + 2ξ).

Next note, irrespective of the choices of the branches of the logarithms,

G′t (w) = −
1

w − χ
+

eC(t)

w − χ − η + 1
, (2.27)

G′t,n(w) = −
1

w − χn
+

eCn(t)

w − χn − ηn + 1
, (2.28)

for all w ∈ (C \ R) ∪ (t − 2ξ, t + 2ξ). Therefore, G′t and G′t,n extend analytically to
C \ {χ, χ + η − 1} and C \ {χn, χn + ηn − 1}, respectively. Moreover:

Lemma 2.10. G′t has a root of multiplicity 1 at t, and no other roots in C \ {χ, χ+ η− 1}.
Moreover, G′t,n has a root of multiplicity 1 at t, and no other roots in C \ {χn, χn + ηn − 1}.
Finally, G′′t,n(t) → G′′t (t).

Proof. Consider G′t . Note, since (χ, η) = (χE(t), ηE(t)), (1.15) and (2.27) imply that t is
the only root of G′t in C \ {χ, χ + η − 1}. These also give

G′′t (t) =
eC(t)C ′(t)2

eC(t) − 1
.

Lemma 2.3 then implies that G′′t (t) , 0.
Consider G′t,n. Note, since (χn, ηn) = (χn(t), ηn(t)), Definition 1.8 and (2.28) imply

that t is the only root of G′t,n in C \ {χn, χn + ηn − 1}. These also give

G′′t,n(t) =
eCn(t)C ′n(t)

2

eCn(t) − 1
.

(1.27) then gives G′′t,n(t) → G′′t (t) , 0. �

Next consider Fn. Define, for convenience,
Un := 1

n {un + rn − n + 1, un + rn − n + 2, . . . , un − 1},

Vn := 1
n {vn + sn − n, vn + sn − n + 1, . . . , vn}.

(2.29)

Thus, since η ∈ (0, 1) and 1
n (un, rn) → (χ, η) and

1
n (vn, sn) → (χ, η) (see (1.18)),

min{un − 1, vn} > max{un + rn − n + 1, vn + sn − n}. Moreover,

Vn \Un = (VU(n)) ∪ (VU(n)) and Un \ Vn = (UV (n)) ∪ (UV(n)), (2.30)
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where we define:

• VU(n) := 1
n {un, un + 1, . . . , vn} when vn ≥ un.

• UV (n) := 1
n {vn + 1, vn + 2, . . . , un − 1} when vn + 1 ≤ un − 1.

• VU(n) := 1
n {vn + sn − n, vn + sn − n+ 1, . . . , un + rn − n} when vn + sn ≤ un + rn.

• UV(n) := 1
n {un+rn−n+1, un+rn−n+2, . . . , vn+ sn−n−1} when vn+ sn−1 ≥

un + rn + 1.

Note, implicit in the above definitions is that VU(n) := ∅ when vn < un, etc. Finally, fixing
ξ > 0 sufficiently small such that (2.11), (2.14) and (2.17) are satisfied, and such that
χ − 4ξ > χ + η − 1 + 4ξ, (1.18) gives:

VU(n) ⊂ (χ − 2ξ, χ + 2ξ) and VU(n) ⊂ (χ + η − 1 − 2ξ, χ + η − 1 + 2ξ). (2.31)

Similarly for UV (n) and UV(n). Finally note that (1.8), (1.9), (2.25), (2.29) and (2.30) give

nFn(w) =

(
1(vn+1≤un−1)

∑
x∈UV (n)

−1(vn≥un)

∑
x∈VU (n)

)
log(w − x)

+

(
1(vn+sn−1≥un+rn+1)

∑
x∈UV(n)

−1(vn+sn≤un+rn)

∑
x∈VU(n)

)
log(w − x), (2.32)

for all w ∈ C \ R, where the branch cuts are chosen as follows:

• For cases (1)–(4) of Lemma 2.2, all branch cuts are (−∞, 0].

• For cases (5)–(8) of Lemma 2.2, the branch cuts in the 1st and 2nd sums on the
RHS are all [0,+∞), and the branch cuts in the 3rd and 4th sums are all (−∞, 0].

• For cases (9)–(12) of Lemma 2.2, all branch cuts are [0,+∞).

Note, the above branch cut choices are consistent with those made in (1.8) and (1.9) (see
the discussion given before Lemma 3.1). Also note, Lemma 2.2, and (2.11), (2.14), (2.17)
and (2.31), imply that Fn extends analytically to (C \ R) ∪ (t − 2ξ, t + 2ξ).

Note, irrespective of the choices of the branches of the logarithms,

nF ′n(w) =
(
1(vn+1≤un−1)

∑
x∈UV (n)

−1(vn≥un)

∑
x∈VU (n)

)
1

w − x

+

(
1(vn+sn−1≥un+rn+1)

∑
x∈UV(n)

−1(vn+sn≤un+rn)

∑
x∈VU(n)

)
1

w − x
, (2.33)
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for all (C\R)∪(t−2ξ, t+2ξ). Therefore F ′n extends analytically toC\((Vn\Un)∪(Un\Vn)).
Next we investigate the relationships between G′t , G′t,n and F ′n in B(t, ξ):

Lemma 2.11. Fix ξ > 0 as above. Then:

(1) G′t,n(w) = G′t (w) + o(1) uniformly for w ∈ B(t, ξ). Similarly for G′′t,n, G′′t .

Next, fix {(un, rn)}n≥1, {(vn, sn)}n≥1, {mn}n≥1, u, v as in (1.28) and (1.29). Additionally
assume that u , v. Then:

(2) n
1
3 F ′n(w) = mn(v − u)G′t,n(w) +O(n−

1
3 ) uniformly for w ∈ B(t, ξ). Similarly for

G′′t,n, F ′′n .

Proof. Consider (1). We will prove (1) only for G′t,n,G
′
t . Part (1) for G′′t,n,G

′′
t follows

similarly. First note, (2.27) and (2.28) give

G′t,n(w) = G′t (w) −
χn − χ

(w − χ)(w − χn)

+
eCn(t) − eC(t)

w − χn − ηn + 1
+

eC(t)(χn + ηn − χ − η)
(w − χ − η + 1)(w − χn − ηn + 1)

,

for all w ∈ B(t, ξ). Recall (see (1.27)) that eCn(t) → eC(t) and (χn, ηn) → (χ, η). Also
recall (see (2.14)) that |w− χ | > 3ξ and |w− χ−η+1| > 3ξ for all w ∈ B(t, ξ). Combined,
the above prove (1) for G′t,n,G

′
t .

Consider (2). Note, since u , v, (1.28), (1.29) and (2.30) imply that either VU(n) , ∅
and UV (n) = ∅ for all n sufficiently large, or VU(n) = ∅ and UV (n) , ∅ for all n sufficiently
large. Similarly for VU(n) and UV(n). Moreover, these sets contain at least 2 distinct
elements, whenever they are non-empty.

First suppose that UV (n) , ∅ and VU(n) , ∅ and UV(n) = VU(n) = ∅. For this case,
(2.33) gives

nF ′n(w) =
∑

x∈UV (n)

1
w − x

−
∑

x∈VU(n)

1
w − x

,

for all w ∈ B(t, ξ). We write this as,

nF ′n(w) =
∑

x∈UV (n)

(
1

w − χn
−

χn − x
(w − χn)(w − x)

)
−

∑
x∈VU(n)

(
1

w − χn − ηn + 1
−

χn + ηn − 1 − x
(w − χn − ηn + 1)(w − x)

)
,

for allw ∈ B(t, ξ). Note, (1.27) and (2.14) imply that |w− χn | > ξ and |w− χn−ηn+1| > ξ

uniformly for w ∈ B(t, ξ). Also note, (2.14) and (2.31) imply that |w − x | > ξ uniformly
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for w ∈ B(t, ξ) and x ∈ UV (n), and |w − x | > ξ uniformly for w ∈ B(t, ξ) and x ∈ VU(n).
Moreover, since u , v, (1.28), (1.29) and (2.30), imply the following:

• χn − x = O(n−
1
3 ) uniformly for x ∈ UV (n).

• χn + ηn − 1 − x = O(n−
1
3 ) uniformly for x ∈ VU(n).

• |UV (n) | = O(n
2
3 ) and |VU(n) | = O(n

2
3 ).

Combined, the above give

nF ′n(w) =
∑

x∈UV (n)

1
w − χn

−
∑

x∈VU(n)

1
w − χn − ηn + 1

+O(n
1
3 ),

uniformly for w ∈ B(t, ξ). Finally note, (1.28), (1.29) and (2.30) give |UV (n) | =
n

2
3 mn(u − v) +O(n

1
3 ) and |VU(n) | = n

2
3 mneCn(t)(u − v) +O(n

1
3 ). Therefore,

nF ′n(w) =
n

2
3 mn(u − v)
w − χn

−
n

2
3 mneCn(t)(u − v)
w − χn − ηn + 1

+O(n
1
3 ),

uniformly for w ∈ B(t, ξ). (2.28) finally proves (2) for F ′n,G
′
t,n, when UV (n) , ∅ and

VU(n) , ∅ and UV(n) = VU(n) = ∅. Part (2) for the other cases follows similarly. �

Next we use the previous lemmas to investigate the roots of F ′n when u , v.

Lemma 2.12. Fix ξ > 0 as above, and assume that u , v. Then:

(1) F ′n has 1 root in (t − ξ, t + ξ).

(2) F ′n has 0 roots in C \ R.

(3) F ′n has 1 root in each interval of the form (x, y), when x and y are any two
consecutive elements of either VU(n) or UV (n) or VU(n) or UV(n).

(4) F ′n has no other roots in R excluding those listed in parts (1,3).

(5) wn = t +O(n−
1
3 ), where wn denotes the root in part (1), above.

Proof. Consider (1). First, recall that u , v, and let mt , 0 denote the non-zero limit of
the sequence {mn}n≥1 of real-numbers (see Definition 2.8). Next recall (see Lemma 2.10)
that t is the only root of G′t in B(t, ξ). The extremal value theorem thus gives

inf
w∈∂B(t,ξ)

|(v − u)mtG′t (w)| > 0.
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Next note, parts (1) and (2) of Lemma 2.11 give n
1
3 F ′n(w) = (v − u)mtG′t (w) + o(1)

uniformly for w ∈ B(t, ξ). Combined, the above imply that |(v − u)mtG′t (w)| > |(v −
u)mtG′t (w) − n

1
3 F ′n(w)| for all w ∈ ∂B(t, ξ). Rouché’s theorem thus implies that G′t and

F ′n have the same number of roots in B(t, ξ). Lemma 2.10 thus implies that F ′n has 1 root
in B(t, ξ). This root is necessarily real-valued since non-real roots of F ′n occur in complex
conjugate pairs (see (2.33)). This proves (1).

Consider (2)–(4). As in the proof of part (2) of Lemma 2.11, we will prove these only
when UV (n) , ∅ and VU(n) , ∅ and UV(n) = VU(n) = ∅. Part (2-4) for the other cases
follows similarly. Note, for the above case, (2.33) gives

nF ′n(w) =
∑

x∈UV (n)

1
w − x

−
∑

x∈VU(n)

1
w − x

, (2.34)

for all w ∈ C \ ((UV (n))∪ (VU(n))). Recall, since u , v, that UV (n) andVU(n) both contain
at least 2 elements. Also recall (see (2.14) and (2.31)) that (t − ξ, t + ξ) and UV (n) and
VU(n) are mutually disjoint. We will show:

(i) F ′n has |UV (n) | + |VU(n) | − 1 roots in C \ ((UV (n)) ∪ (VU(n))).

(ii) F ′n has at least 1 root in each interval of the form (x, y), where x and y are any
two consecutive elements of either UV (n) or VU(n).

Finally recall (see part (1)) that F ′n has 1 root in (t − ξ, t + ξ). Combined, the above imply
that F ′n has 1 root in (t − ξ, t + ξ), 1 in each of the intervals listed in part (ii), and no other
roots. This proves parts (2)–(4) in this case.

Consider (i). First note (2.34) gives

F ′n(w) =
1
n

( ∏
y∈(UV (n))∪(VU(n))

1
w − y

)
Pn(w),

for all w ∈ C \ ((UV (n)) ∪ (VU(n))), where Pn is the polynomial,

Pn(w) =
∑

x∈UV (n)

( ∏
y∈((UV (n))\{x })∪VU(n))

(w − y)

)
−

∑
x∈VU(n)

( ∏
y∈(UV (n))∪((VU(n))\{x })

(w − y)

)
.

Note that Pn has degree at most |UV (n) | + |VU(n) | − 1. Moreover, since UV (n) and VU(n)
are disjoint, Pn has no roots in (UV (n)) ∪ (VU(n)). Therefore the roots of Pn and F ′n
coincide. This proves (i).
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Consider (ii). Let x and y denote any two consecutive elements of UV (n). (2.34) then
implies that F ′n is a real-valued continuous function on (x, y), and

lim
w∈(x,y),w↑y

F ′n(w) = −∞ and lim
w∈(x,y),w↓x

F ′n(w) = +∞.

The intermediate value theorem thus implies that F ′n has a root in (x, y). Similarly F ′n
has a root in (x, y), when x and y denote any two consecutive elements of VU(n). This
proves (ii).

Consider (5). First recall (see Lemma 2.10) that G′t,n has a root of multiplicity 1 at t,
and no other roots in C \ {χn, χn + ηn − 1}, and G′′t,n(t) → G′′t (t) , 0. Next, recall that
v − u , 0 (by assumption) and that {mn}n≥1 is a convergent sequence of real-numbers
with a non-zero limit (see Definition 2.8). Then, using part (2) of Lemma 2.11, we
can proceed similarly to the proof of part (4) of Lemma 2.9 to show the following:
There exists a sequence {ξn}n≥1 of positive numbers for which ξn = O(n−

1
3 ) and

|(v − u)mnG′t,n(w)| > |(v − u)mnG′t,n(w) − n
1
3 F ′n(w)| for all w ∈ ∂B(t, ξn). Rouché’s

theorem thus implies that F ′n and G′t,n have the same number of roots in B(t, ξn) for this
choice of ξn, i.e., 1 root. Thus the root wn of F ′n, discovered in part (1), must satisfy
wn ∈ B(t, ξn). This proves (5). �

We end this section by examining the asymptotic behaviour, as n→∞, of Fn(t):

Lemma 2.13. We have,

exp(nFn(t)) =
At,n((un, rn), (vn, sn))
(t − χn)(t − χn − ηn + 1)

exp(O(n−
1
3 )),

where At,n : (Z2)2 → R \ {0} is defined by:

At,n((U, R), (V, S)) := (t − χn)−(V−U)(t − χn − ηn + 1)V+S−U−R

× exp
[
n
2
(Vn − χn)

2 − (Un − χn)
2

t − χn
+

n
6
(Vn − χn)

3 − (Un − χn)
3

(t − χn)2

−
n
2
(Vn +

S
n − χn − ηn)

2 − (Un +
R
n − χn − ηn)

2

t − χn − ηn + 1

−
n
6
(Vn +

S
n − χn − ηn)

3 − (Un +
R
n − χn − ηn)

3

(t − χn − ηn + 1)2

]
,

for all (U, R), (V, S) ∈ Z2.

Proof. We will prove this result when VU(n) , ∅ and VU(n) , ∅ and UV (n) = UV(n) = ∅,
and state that the result for the other cases follows from similar considerations.

119



E. Duse & A. Metcalfe

Assume the above case. Then, irrespective of the choices of the branches of the
logarithms, (2.30) and (2.32) give

exp(nFn(t)) =
[ vn∏
j=un

(t − j
n )

]−1 [ un+rn−n∏
k=vn+sn−n

(t − k
n )

]−1
. (2.35)

To examine this, first write,
vn∏

j=un

(t − j
n ) = (t − χn)

vn−un+1
vn∏

j=un

(
1 −

j
n − χn

t − χn

)
.

Note that j
n − χn = O(n−

1
3 ) uniformly for j ∈ {un, un + 1, . . . , vn} (see (1.28) and (1.29))

and that |t − χn | > 2ξ > 0 (see (2.14), and recall that χn → χ). Thus, we can write,
vn∏

j=un

(t − j
n ) = (t − χn)

vn−un+1 exp
[ vn∑
j=un

log
(
1 −

j
n − χn

t − χn

)]
,

where log denotes the natural logarithm. Moreover, Taylor’s theorem gives

log
(
1 −

j
n − χn

t − χn

)
= −

j
n − χn

t − χn
−

1
2
(
j
n − χn)

2

(t − χn)2
+O(n−1),

uniformly for j ∈ {un, un + 1, . . . , vn}. Therefore, since vn = nχn + O(n
2
3 ) and un =

nχn +O(n
2
3 ) (see (1.28) and (1.29)),

vn∏
j=un

(t − j
n ) = (t − χn)

vn−un+1 exp
[
−

n
2
(
vn
n − χn)

2 − (un

n − χn)
2

t − χn

−
n
6
(
vn
n − χn)

3 − (un

n − χn)
3

(t − χn)2
+O(n−

1
3 )

]
.

Similarly we can show that,

un+rn−n∏
k=vn+sn−n

(t − k
n ) = (t − χn − ηn + 1)un+rn−vn−sn+1

× exp
[
−

n
2
(
un

n +
rn
n − χn−ηn)

2 − ( vnn +
sn
n − χn−ηn)

2

t − χn − ηn + 1

−
n
6
(
un

n +
rn
n − χn−ηn)

3− ( vnn +
sn
n − χn−ηn)

3

(t − χn − ηn + 1)2
+O(n−

1
3 )

]
.

(2.35) then gives the required result. �
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3. Steepest descent analysis

In this section we prove Theorem 1.11 via steepest descent analysis. Assume the
conditions of that theorem: Assume Assumptions 1.2 and 1.7, that (1.18) is satisfied for
some fixed t ∈ R+µ ∪ Rλ−µ ∪ R−µ (a root of f ′t of multiplicity 2), Assumption 2.4, and that
{(un, rn)}n≥1 ⊂ Z

2 and {(vn, sn)}n≥1 ⊂ Z
2 are chosen as in (1.28) and (1.29).

3.1. Local asymptotic behaviour

In this section we examine the local behaviour of ft , fn and f̃n in neighbourhoods of t.
We begin by using Lemma 2.2, which describes the various situations of Theorem 1.11 in
explicit detail, to choose the branches of the logarithms in (1.11) and (2.5) so that both
ft and fn are well-defined and analytic in convenient open subsets of C which contain
t. We similarly choose the branches of the logarithms in (2.6), for f̃n. Recall (see (2.3))
that C \ S = (C \ R) ∪ J ∪ K , is the domain of f ′t , S = S1 ∪ S2 ∪ S3 ⊂ R (see (1.12)),
J =

⋃4
i=1 Ji , K =

⋃3
i=1 K (i), K (i) is partitioned as {K (i)1 ,K

(i)
2 , . . .} for all i ∈ {1, 2, 3}, and

{J1, J2, J3, J4} ∪
⋃3

i=1{K
(i)
1 ,K

(i)
2 , . . .} is a set of pairwise disjoint open intervals. These

sets are depicted in Figure 2.1, and properties of S1, S2, S3 are discussed in (2.2). Also
recall (see (2.4)) that Lt ∈ {J1, J2, J3, J4}∪

⋃3
i=1{K

(i)
1 ,K

(i)
2 , . . .} denotes that open interval

with t ∈ Lt . We write (see (1.11) and (1.30)),

ft (w) =
∫
S+1

log(w − x)µ[dx] −
∫
S+2

log(w − x)(λ − µ)[dx] +
∫
S+3

log(w − x)µ[dx]

+

∫
S−1

log(w − x)µ[dx] −
∫
S−2

log(w − x)(λ − µ)[dx] +
∫
S−3

log(w − x)µ[dx],

for all w ∈ C \ R, where S+i = Si ∩ [sup Lt,+∞) and S−i = Si ∩ (−∞, inf Lt ]. Thus ft is
analytic in (C \R) ∪ Lt if we choose the branch cuts of all the logarithms in the first three
terms on the RHS to be [0,+∞), and the branch cuts of all the logarithms in the last three
terms to be (−∞, 0]. Next, define Ln ⊂ R \ Sn as in (2.12). Then we can similarly choose
the branches of the logarithms in (2.5) such that fn is well-defined and analytic in C \ Ln.
Finally, fix ξ > 0 sufficiently small such that (2.11) is satisfied, and define

Cξ := {w ∈ C : inf Lt + 2ξ < Re(w) < sup Lt − 2ξ or |Im(w)| > ξ4}. (3.1)

The use of ξ4, above, is a choice of convenience which will simplify some calculations
later. Note, (2.11) and (3.1) imply that B(t, 2ξ) ⊂ Cξ . Also note that Cξ ⊂ (C \ R) ∪ Lt ,
and so ft is well-defined and analytic in Cξ . Also, (2.12) implies that Cξ ⊂ (C \ R) ∪ Ln,
and so fn is well-defined and analytic in Cξ . Similarly for f̃n. Moreover:
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Lemma 3.1. Fix ξ > 0 as above, fix r > 0, and fix an integer k ≥ 0. Then:

(1) Then there exists a positive constant, C = C(t, ξ, k, r), for which

sup
w∈Cξ∩B(0,r)

| f (k)t (w)| < C and sup
w∈Cξ∩B(0,r)

| f (k)n (w)| < C.

(2) f (k)n → f (k)t uniformly in Cξ ∩ B(0, r).

Similarly for f̃n.

Proof. Consider (1). First recall that Sn = S1,n ∪ S2,n ∪ S3,n, and 1
n |Si,n | = O(1) for all

i ∈ {1, 2, 3} (see (2.5) and (2.9)). (2.5) then implies that there exists a constant, c > 0, for
which

sup
w∈Cξ∩B(0,r)

| fn(w)| < c sup
(w,x)∈(Cξ∩B(0,r))×Sn

| log(w − x)|.

Next note, (2.9) gives

sup
(w,x)∈(Cξ∩B(0,r))×Sn

|w − x | < r + 2 max{| inf S3 |, | sup S1 |}.

Moreover,
inf

(w,x)∈(Cξ∩B(0,r))×Sn

|w − x | > min{ξ, ξ4}.

Indeed, the above follows since either | Im(w − x)| > ξ4 (see (3.1)) or |Re(w − x)| >
min{(inf Lt + 2ξ) − inf Ln, sup Ln − (sup Lt − 2ξ)} (see (2.12) and (3.1)) and note that
Ln ⊂ R \ Sn and {sup Ln, inf Ln} ⊂ Sn), and since sup Ln = sup Lt + o(1) and inf Ln =

inf Lt + o(1) (see (2.12)). Combined, the above three inequalities prove part (1) for fn.
Part (1) for f (k)n for all k ≥ 1 follows similarly. Also, part (1) for f (k)t and f̃ (k)n for all
k ≥ 0 follows similarly.

Consider (2). First note, for all k ≥ 0, (1.11), (1.30), (2.5) and (2.8) imply that f (k)n →

f (k)t pointwise in Cξ . Moreover, for all k ≥ 0, part (1) implies that { f (k)t , f (k)1 , f (k)2 , . . .}

are equicontinuous in Cξ ∩ B(0, r). Part (2) trivially follows. �

Next we examine the Taylor expansions of ft and fn and f̃n in neighbourhoods of t:

Lemma 3.2. Fix ξ > 0 as above, {qn}n≥1 ⊂ R as in Definition 2.8, and {ξn}n≥1 ⊂ R

such that |ξnqn | ≤ ξ for all n. Recall that f ′′′t,n (t) → f ′′′t (t) , 0 (see Lemma 2.7), and let
u, r, v, s be the parameters in (1.28) and (1.29). Then, uniformly for α ∈ (−π, π]:

(1) ft (t + ξnqneiα) = ft (t) + 1
3ξ

3
ne3iα +O(|ξn |3 | f ′′′t,n (t) − f ′′′t (t)| + |ξn |

4),

(2) fn(t + ξnqneiα) = fn(t) + n−
2
3 ξneiαs + n−

1
3 ξ2

ne2iαv + 1
3ξ

3
ne3iα

+O(n−1 |ξn | + n−
2
3 |ξn |

2 + n−
1
3 |ξn |

3 + |ξn |
4),
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(3) f̃n(t + ξnqneiα) = f̃n(t) + n−
2
3 ξneiαr + n−

1
3 ξ2

ne2iαu + 1
3ξ

3
ne3iα

+O(n−1 |ξn | + n−
2
3 |ξn |

2 + n−
1
3 |ξn |

3 + |ξn |
4).

Proof. Consider (1). First recall that f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) , 0. Taylor’s theorem
and part (1) of Lemma 3.1 then give

ft (t + ξnqneiα) = ft (t) + 1
6ξ

3
nq3

ne3iα f ′′′t (t) +O(|ξnqn |4),

uniformly for α ∈ (−π, π]. Therefore,

ft (t + ξnqneiα) = ft (t) + 1
6ξ

3
nq3

ne3iα f ′′′t,n (t) +O(|ξnqn |3 | f ′′′t (t) − f ′′′t,n (t)| + |ξnqn |4),

uniformly for α ∈ (−π, π]. Finally recall (see Definition 2.8), 1
6 q3

n f ′′′t,n (t) =
1
3 , and {qn}n≥1

is a convergent sequence with a non-zero limit. This proves (1).
Consider (2). Note, Taylor’s theorem and part (1) of Lemma 3.1 give

fn(t + ξnqneiα) = fn(t) + ξnqneiα f ′n(t) +
1
2ξ

2
nq2

ne2iα f ′′n (t)

+ 1
6ξ

3
nq3

ne3iα f ′′′n (t) +O(|ξnqn |4),

uniformly for α ∈ (−π, π]. Parts (1)–(3) of Lemma 2.9 then give

fn(t + ξnqneiα) = fn(t) + n−
2
3 ξnqneiαsq1,n +

1
2 n−

1
3 ξ2

nq2
ne2iαvq2,n +

1
6ξ

3
nq3

ne3iα f ′′′t,n (t)

+O(n−1 |ξnqn | + n−
2
3 |ξnqn |2 + n−

1
3 |ξnqn |3 + |ξnqn |4).

Part (2) then follows from Definition 2.8. (3) follows similarly. �

A useful corollary is the following:

Corollary 3.3. Fix {qn}n≥1 ⊂ R as in Definition 2.8. Also fix c > 0 and θ ∈ ( 14,
1
3 ). Then,

uniformly in the appropriate sets:

(1) fn(w) = fn(t) +O(n−1) for w ∈ B(t, cn−
1
3 ).

(2) f̃n(z) = f̃n(t) +O(n−1) for z ∈ B(t, cn−
1
3 ).

(3) n fn(t + n−
1
3 qnw) = n fn(t) + ws + w2v + 1

3w
3 +O(n1−4θ ) for w ∈ cl(B(0, n 1

3−θ )).

(4) n f̃n(t + n−
1
3 qnz) = n f̃n(t) + zr + z2u + 1

3 z3 +O(n1−4θ ) for z ∈ cl(B(0, n 1
3−θ )).

Proof. First recall (see Definition 2.8) that {qn}n≥1 ⊂ R is a convergent sequence with a
non-zero limit. Then, (1) and (2) follow from parts (2) and (3) of Lemma 3.2 by choosing
ξn := cn−

1
3 |qn |−1. Next, choose ξn := n−θ . Part (2) of Lemma 3.2 then gives

n fn(t + n−θqneiα) = n fn(t) + n
1
3−θeiαs + n

2
3−2θe2iαv + 1

3 n1−3θe3iα

+O(n−θ + n
1
3−2θ + n

2
3−3θ + n1−4θ ),
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uniformly for α ∈ (−π, π]. Finally recall that θ ∈ ( 14,
1
3 ). Therefore −θ < 1

3 − 2θ <
2
3 − 3θ < 1− 4θ < 0, and so O(n−θ + n

1
3−2θ + n

2
3−3θ + n1−4θ ) = O(n1−4θ ). This proves (3).

Similarly, (4) follows from part (3) of Lemma 3.2. �

3.2. Contours of descent/ascent

The main results of this section, Lemmas 3.5 and 3.6, prove the existence of appropriate
contours of descent/ascent. These proofs are the most difficult part of the paper, and will
be given in Section 4.

First we consider contours of steepest descent/ascent for ft , fn and f̃n. We do not
define these rigorously, and refer the interested reader to [20], for example, for more
information. We consider these for ft and for fn for some fixed n, and state that f̃n can be
treated similarly to fn. Note, irrespective of the choices of the branches of the logarithms
in (1.11) and (2.5), that the real-parts of ft and fn have unique continuous extensions to
C \ S and C \ Sn respectively, denoted by Rt and Rn, and given by,

Rt (w) :=
∫
S1

log |w− x |µ[dx] −
∫
S2

log |w− x |(λ− µ)[dx] +
∫
S3

log |w− x |µ[dx], (3.2)

Rn(w) :=
1
n

∑
x∈S1,n

log |w − x | −
1
n

∑
x∈S2,n

log |w − x | +
1
n

∑
x∈S3,n

log |w − x |, (3.3)

where log now represents natural logarithm. Then:

Lemma 3.4. Fix n ≥ 1 and z ∈ C\Sn, and let Dn, An ⊂ C\Sn denote contours of steepest
descent and ascent (respectively) for fn which pass through z. Also, let mn := mn(z)
denote the multiplicity of z as a root of f ′n (with the understanding that mn = 0 means
f ′n(z) , 0), and let αn := αn(z) ∈ (−π, π] denote the principal value of the argument of
f (mn(w)+1)
n (z). Then:

(1) Rn strictly decreases along Dn, and strictly increases along An.

(2) The imaginary-part of fn is constant along both Dn and An.

(3) There are mn+1 possible directions for both Dn and An at z, given by ((2i+1)π−
αn)/(mn + 1) and (2iπ − αn)/(mn + 1) respectively for each i ∈ {0, 1, . . . ,mn}.

(4) Dn is bounded, i.e., there exists a C > 0 for which Dn ⊂ B(0,C).

(5) For all x ∈ Sn, there exists a c(x) > 0 for which Dn does not intersect B(x, c(x))
when x ∈ S2,n, and An does not intersect B(x, c(x)) when x ∈ S1,n ∪ S3,n.
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The equivalent objects for ft , denoted Dt, At,mt, αt , also satisfy parts (1)–(4).

Proof. Parts (1)–(3) follow from general considerations about contours of steepest
descent/ascent. Consider (4) for Dn. First recall that |S1,n | − |S2,n | + |S3,n | > 0 (indeed,
(2.2) and (2.9) give 1

n |S1,n | +
1
n |S3,n | −

1
n |S2,n | → η > 0). (3.3) thus gives Rn(w) ∼

1
n (|S1,n | − |S2,n | + |S3,n |) log |w | for all w ∈ C \ Sn with |w | sufficiently large. Then, letting
tn ∈ C \ Sn be the initial point of Dn, there exists a C > 0 for which Rn(w) > Rn(tn) for
all w ∈ C \ Sn with |w | ≥ C. Also, part (1) gives Rn(w) ≤ Rn(tn) for all w on Dn. Part (4)
for Dn easily follows. Part (4) for Dt follows similarly.

Consider (5). Fix x ∈ Sn. (3.3) gives Rn(w) ∼ s(x) 1n log |w− x | for all w ∈ C \ Sn with
|w − x | sufficiently small, where s(x) = −1 whenever x ∈ S2,n and s(x) = 1 whenever
x ∈ S1,n ∪ S3,n. Thus, whenever x ∈ S2,n, letting tn ∈ C \ Sn be the initial point of Dn,
there exists a c(x) > 0 for which Rn(w) > Rn(tn) for all w ∈ C \ Sn with |w − x | < c(x).
Also, part (1) gives Rn(w) ≤ Rn(tn) for all w on Dn. Part (5) for Dn easily follows. Part (5)
for An follows similarly. �

We now discuss natural extensions of the real and imaginary parts of ft and fn, from
H = {w ∈ C : Im(w) > 0}, to R \ S and R \ Sn respectively. Our motivation is the
following: In Section 4 we will be examining contours of steepest descent/ascent which
are contained in H except (possibly) for the end-points. Part (2) of the previous lemma
thus show that these extensions are natural to examine. First note, irrespective of the
choices of the branches of the logarithms in (1.30) and (2.5), that

Im( ft (w)) =
∫
S1

Arg(w−x)µ[dx] −
∫
S2

Arg(w−x)(λ−µ)[dx] +
∫
S3

Arg(w−x)µ[dx],

Im( fn(w)) =
1
n

∑
x∈S1,n

Arg(w − x) −
1
n

∑
x∈S2,n

Arg(w − x) +
1
n

∑
x∈S3,n

Arg(w − x),
(3.4)

for all w ∈ H, where Arg represents the principal value of the argument. Note that these
has unique extensions from H to R, denoted by It and In respectively and given by,

It (s) := πµ[{x ∈ S1 : x > s}] − π(λ− µ)[{x ∈ S2 : x > s}] + πµ[{x ∈ S3 : x > s}], (3.5)

In(s) :=
π

n
|{x ∈ S1,n : x > s}| −

π

n
|{x ∈ S2,n : x > s}| +

π

n
|{x ∈ S3,n : x > s}|, (3.6)

for all s ∈ R. Note, since µ ≤ λ (see Assumption 1.2), that It : R → R is continuous.
Also, (2.2) and (2.3) imply that It : R→ R is constant in sub-intervals of R\S = J∪K , is
strictly decreasing in the interior of S1 and S3, and is strictly increasing in the interior of S2.
Similarly, (2.10) implies that In : R→ R, is constant in sub-intervals of R \ Sn = Jn ∪Kn.
Finally note that each discrete element of Sn acts as a point of discontinuity for In: In
decreases by π

n at each point of S1,n and S3,n, and increases by π
n at each point of S2,n.

These sets, and the above extensions, are depicted in Figure 3.1.
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inf S3

sup S3 inf S2

sup S2 inf S1

sup S1

J2 non-increasing J4 non-decreasing J3 non-increasing J1

πη = π(µ[S1] − (λ − µ)[S2] + µ[S3])

π(µ[S1] − (λ − µ)[S2])

πµ[S1]

0

min S3,n =
1
n x
(n)
n

1
n x
(n)
n−1

1
n x
(n)
n−2

max S3,n min S2,n

max S2,n min S1,n

1
n x
(n)
3

1
n x
(n)
2

1
n x
(n)
1 = max S1,n

J2,n J4,n J3,n J1,n

π
n ( |S1,n | − |S2,n | + |S3,n |)

π
n ( |S1,n | − |S2,n |)

π
n |S1,n |

0

Figure 3.1. The functions given in (3.5) and (3.6), with It on the top
and In on the bottom. The identity η = µ[S1] − (λ − µ)[S2] + µ[S3] is
given in (2.2). All jumps in In are of size π

n .

Next note, (3.2) and (3.3) give

Rt (s) =
∫
S1

log |s − x |µ[dx] −
∫
S2

log |s − x |(λ − µ)[dx] +
∫
S3

log |s − x |µ[dx],

Rn(s) =
1
n

∑
x∈S1,n

log |s − x | −
1
n

∑
x∈S2,n

log |s − x | +
1
n

∑
x∈S3,n

log |s − x |,

for all s ∈ R \ S and s ∈ R \ Sn respectively. Thus the restrictions are real-valued, and we
can regard them as functions from R \ S = J ∪ K and R \ Sn = Jn ∪ Kn (respectively) to
R. Moreover, note that,

(Rt |R\S)
′ = ( f ′t )|R\S and (Rn |R\Sn

)′ = ( f ′n)|R\Sn
, (3.7)
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and similarly for the higher order derivatives. Above, the functions on the LHSs are the
“real-derivative” of the real-valued restrictions, and the functions on the RHSs are those
given in (2.1) and (2.7) (respectively) restricted to R \ S and to R \ Sn.

We now state the main results of this section, which will be proven in Section 4. Recall
that Lt is the largest open sub-interval of R \ S which contains t (see (2.4)). Also recall
that Lemma 2.2 splits the conditions of Theorem 1.11 into 12 exhaustive cases. These
lemmas prove the existence of appropriate contours of descent/ascent for each case:

Lemma 3.5. Fix θ ∈ ( 14,
1
3 ), and ξ > 0 sufficiently small such that (2.11), (2.14), (2.17)

and (2.31) are satisfied. Then (t − 4ξ, t + 4ξ) ⊂ Lt , and B(t, n−θ |qn |) ⊂ B(t, ξ), where
{qn}n≥1 ⊂ R is given in Definition 2.8. Moreover, in each of the cases of Lemma 2.2,
there exists simply contours as shown in Figure 3.2 with the following properties:

(1) γ+1,n and Γ
+
1,n both start at t, end in the interior of the intervals shown in Figure 3.2,

are otherwise contained in H, do not intersect except at t, and are independent of
n outside cl(B(t, ξ)). γ+2,n and Γ

+
2,n either start in (t + ξ, sup Lt ) or in (inf Lt, t − ξ)

as shown in Figure 3.2, end in the interior of the intervals shown, are otherwise
contained in H, do not intersect γ+1,n or Γ

+
1,n or cl(B(t, ξ)), and are independent

of n everywhere.

(2) γ+1,n ∩ B(t, n−θ |qn |) and Γ+1,n ∩ B(t, n−θ |qn |) are straight lines from t to points
d1,n ∈ ∂B(t, n−θ |qn |) and ã1,n ∈ ∂B(t, n−θ |qn |) (respectively) for which, letting
Arg( · ) be the principal value of the argument, Arg(d1,n − t) = π

3 + O(n−
1
3+θ )

and Arg(ã1,n − t) = 2π
3 +O(n−

1
3+θ ) in cases (1,2,7,8,9,10), and Arg(d1,n − t) =

2π
3 +O(n−

1
3+θ ) and Arg(ã1,n − t) = π

3 +O(n−
1
3+θ ) in cases (3,4,5,6,11,12).

(3) Re( fn(w)) ≤ Re( fn(d1,n)) for all w ∈ γ+1,n \ B(t, n−θ |qn |) and w ∈ γ+2,n.

(4) Re( f̃n(z)) ≥ Re( f̃n(ã1,n)) for all z ∈ Γ+1,n \ B(t, n−θ |qn |) and z ∈ Γ+2,n.

(5) |w − z |−1 = O(nθ ) uniformly for w ∈ γ+1,n and w ∈ γ+2,n, and uniformly for
z ∈ Γ+1,n \ B(t, n−θ |qn |) and z ∈ Γ+2,n. |w − z |−1 = O(nθ ) uniformly for w ∈

γ+1,n \ B(t, n−θ |qn |) and w ∈ γ+2,n, and uniformly for z ∈ Γ+1,n and z ∈ Γ+2,n.

(6) |γ+1,n | = O(1) and |Γ+1,n | = O(1), where | · | represents length.
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H

(1)

R
S3 S3 S2 S2 S1 S1

t

γ+1,n

Γ+1,n

H

(2)

R
S3 S2 S2 S1 Lt

t
Lt S1

γ+1,n

Γ+1,n

Γ+2,n

H

(3)

R
S3 S2 S2 S1 Lt

t
Lt S1

γ+1,n
Γ+1,n

Γ+2,n

H

(4,5)

R
S3 S2 S2

t S1 S1

γ+1,n Γ+1,n

H

(6)

R
S3 S2 Lt

t
Lt S2 S1 S1

γ+1,n
Γ+1,n

γ+2,n

H

(7)

R
S3 S3 S2 Lt

t
Lt S2 S1

Γ+1,n
γ+1,n

γ+2,n

H

(8,9)

R
S3 S3

t S2 S2 S1

Γ+1,n γ+1,n
H

(10)

R
S3 Lt

t
Lt S3 S2 S2 S1

γ+1,n
Γ+1,n

Γ+2,n

H

(11)

R
S3 Lt

t
Lt S3 S2 S2 S1

γ+1,n

Γ+1,n

Γ+2,n
H

(12)

R
t S3 S3 S2 S2 S1 S1

γ+1,n

Γ+1,n

Figure 3.2. The contours described in Lemma 3.5, for the exhaustive
cases (1)–(12) of Lemma 2.2. Above, S1 := inf S1, S1 := sup S1, etc..
The smaller circles represent B(t, n−θ |qn |), the larger circles represent
B(t, ξ).

Lemma 3.6. Define Fn as in (2.25). Assume that v > u. Fix θ ∈ ( 14,
1
3 ), and ξ > 0

sufficiently small such that (2.11), (2.14), (2.17) and (2.31) are satisfied. Then, in each of
the cases of Lemma 2.2, there exists a simple contour as shown in Figure 3.3 with the
following properties:

• κ+n starts at t, ends in the interior of the intervals shown in Figure 3.3, is otherwise
contained in H, and is independent of n outside cl(B(t, ξ)).
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H

(1-4)

R
χ − 2ξ χ + 2ξ t

κ+n H

(5,6)

R

χ + η − 1 + 2ξ
t χ − 2ξ χ + 2ξ

κ+n

H

(7,8)

R
χ − 2ξtχ + η − 1 − 2ξ

χ + η − 1 + 2ξ

κ+n H

(9-12)

R
χ + η − 1 + 2ξ

χ + η − 1 − 2ξ
t

κ+n

Figure 3.3. The contours described in Lemma 3.6 for the exhaustive
cases (1)–(12) of Lemma 2.2, when v > u. The smaller circles represent
B(t, n−θ |qn |), the larger circles represent B(t, ξ).

• κ+n ∩ B(t, n−θ |qn |) is a straight line from t to D1,n ∈ ∂B(t, n−θ |qn |) for which
Arg(D1,n − t) = π

2 +O(n−
1
3+θ ).

• Re(Fn(w)) ≤ Re(Fn(D1,n)) for all w ∈ κ+n \ B(t, n−θ |qn |).

• |κ+n | = O(1), where | · | represents length.

3.3. Alternative contour integral expressions

The main results of the previous section, Lemmas 3.5 and 3.6, prove the existence of
appropriate contours of descent/ascent for the cases (1)–(12) of Lemma 2.2. In this
section, we will use these contours to find alternative contour integral expressions for the
correlation kernel than that given in (1.7). These new expressions will allow us to perform
a steepest descent analysis for each case. First, using Lemmas 3.5 and 3.6, we define:

Definition 3.7. For cases (1)–(12) of Lemma 2.2, define γ1,n to be the following simple
closed contour with counter-clockwise orientation: γ1,n := γ+1,n + γ

−
1,n, where γ

−
1,n is the

reflection of γ+1,n in R. Similarly define γ2,n, Γ1,n, Γ2,n. Similarly define κn when v > u.
Finally, define γn := γ1,n when γ2,n does not exist, and γn := γ1,n + γ2,n when γ2,n exists.
Similarly define Γn.

The main result of this section is then:
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Lemma 3.8. Assume the conditions of Theorem 1.11. Recall that one of the cases (1)–(12)
of Lemma 2.2 must be satisfied. Then,

(1) βnKn((un, rn), (vn, sn)) =


Jn − Φn for (1)–(4),
Jn + Φn for (5) and (6),
−Jn − Φn for (7) and (8),
−Jn + Φn for (9)–(12),

where we define:

βn :=
(n − rn − 1)!
(n − sn)!

nrn+1−sn,

and

Jn :=
1
(2πi)2

∫
γn

dw
∫
Γn

dz

∏un−1
j=un+rn−n+1(z −

j
n )∏vn

j=vn+sn−n
(w −

j
n )

1
w − z

n∏
i=1

(
w − xi

n

z − xi
n

)
,

and

Φn :=



1(vn≥un,sn>rn)
(vn+sn−un−rn−1)!
(sn−rn−1)!(vn−un)! βn for (1)–(4),

1(vn≥un,vn+sn≤un+rn,sn≤rn)
(−1)vn−un (rn−sn)!

(vn−un)!(un+rn−vn−sn)! βn for (5) and (6),

1(vn≥un,vn+sn≤un+rn,sn≤rn)
(−1)vn−un−1(rn−sn)!

(vn−un)!(un+rn−vn−sn)! βn for (7) and (8),

1(vn+sn≤un+rn,sn>rn)
(−1)sn−rn−1(un−vn−1)!
(sn−rn−1)!(un+rn−vn−sn)! βn for (9)–(12).

Moreover, when (u, r) , (v, s),

(2) Φn = 1(v>u)
1

2πi

∫
κn

dw

∏un−1
j=un+rn−n+1(w −

j
n )∏vn

j=vn+sn−n
(w −

j
n )

.

We will prove the above using a number of sub-results. First, we examine Jn using the
Residue theorem. Note that Jn can be written as follows:

Jn =
1
(2πi)2

∫
γn

dw
∫
Γn

dz

∏
y∈Un
(z − y)∏

x∈Vn
(w − x)

1
w − z

∏
x∈Pn
(w − x)∏

y∈Pn
(z − y)

, (3.8)

where:

• Pn := 1
n {x

(n)
1 , x(2)2 , . . . , x(n)n } (as in (1.22)).

• Un := 1
n {un + rn − n + 1, un + rn − n + 2, . . . , un − 1} (as in (2.29)).

• Vn := 1
n {vn + sn − n, vn + sn − n + 1, . . . , vn} (as in (2.29)).

130



Universal edge fluctuations

Also note, the above definitions, and (2.5) and (2.6), give

S̃1,n = {y ∈ Pn : y ≥ un

n } and S̃3,n = {y ∈ Pn : y ≤ un+rn−n
n }, (3.9)

Pn \Un = S̃1,n ∪ S̃3,n and Vn \ Pn = S2,n. (3.10)

Finally recall the decomposition, Vn \Un = (VU(n)) ∪ (VU(n)), given in (2.30). Then:

Lemma 3.9. Assume the conditions of Theorem 1.11. Define Un, Vn, Pn, VU(n), VU(n)
as above. Let A ∈ {1, 2, . . . , 12} denote that case of Lemma 2.2 which is satisfied. Then,
for cases (1)–(6),

Jn =
∑

y′∈S̃1,n

∑
x′∈S2,n

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)

+ 1(vn≥un)1(A∈{1,2,3})
∑

y′∈(VU (n))∩Pn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

− 1(vn≥un)1(A=6)
∑

y′∈(VU (n))\Pn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Moreover, for cases (7)–(12),

Jn =
∑

y′∈S̃3,n

∑
x′∈S2,n

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)

+ 1(vn+sn≤un+rn)1(A∈{10,11,12})
∑

y′∈(VU(n))∩Pn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

− 1(vn+sn≤un+rn)1(A=7)
∑

y′∈(VU(n))\Pn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Proof. In this lemma, we let γ◦n and Γ◦n respectively denote the interiors of γn and Γn.
Note, in (3.8), we perform the Γn integral first, and so we consider the w ∈ γn in the
integrand to be fixed. Also note that w < Pn since γn can always be chosen so that it does
not intersect Pn (see Remark 4.5), and that each element of Pn is distinct. The integrand
of (3.8) thus has a simple pole at each distinct element of Pn \Un = S̃1,n∪ S̃3,n (see (3.10)),
a simple pole or removable singularity at w, and no other singularities. Therefore, the
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Residue theorem gives

Jn =
1

2πi

∫
γn

dw
∑

y′∈S̃1,n∪S̃3,n

1(y′∈Γ◦n)

∏
y∈Un
(y′−y)∏

x∈Vn
(w−x)

1
w−y′

∏
x∈Pn
(w−x)∏

y∈Pn\y′(y
′−y)

−
1

2πi

∫
γn

dw1(w∈Γ◦n)

∏
y∈Un
(w − y)∏

x∈Vn
(w − x)

∏
x∈Pn
(w − x)∏

y∈Pn
(w − y)

=
∑

y′∈S̃1,n∪S̃3,n

1(y′∈Γ◦n)
1

2πi

∫
γn

dw
∏

y∈Un
(y′ − y)∏

x∈Vn
(w − x)

∏
x∈Pn\y′(w − x)∏
y∈Pn\y′(y

′ − y)

−
1

2πi

∫
γn

dw1(w∈Γ◦n)

∏
y∈Un
(w − y)∏

x∈Vn
(w − x)

.

(3.11)

Consider the first term on the RHS, above. Recall that y′ ∈ Pn is fixed, and (see (3.10))
Vn \ Pn = S2,n. Therefore Vn = S2,n ∪ (Vn ∩ {y

′}) ∪ (Vn ∩ (Pn \ {y
′}), a disjoint union.

The integrand thus has a simple pole at each distinct element of S2,n ∪ (Vn ∩ {y
′}), and

no other singularities. The Residue theorem thus implies that the first term equals,

∑
y′∈S̃1,n∪S̃3,n

1(y′∈Γ◦n)
[ ∑
x′∈S2,n

1(x′∈γ◦n)

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)

+ 1(y′∈Vn,y′∈γ
◦
n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

∏
x∈Pn\y′(y

′ − x)∏
y∈Pn\y′(y

′ − y)

]
=

∑
y′∈S̃1,n∪S̃3,n

1(y′∈Γ◦n)
∑

x′∈S2,n

1(x′∈γ◦n)

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)

+
∑

y′∈(S̃1,n∪S̃3,n)∩Vn

1(y′∈γ◦n∩Γ◦n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Next consider the second term on the RHS of (3.11). Note, Definition 3.7 and Figure 3.2
imply that Γn contains γ2,n and none of γ1,n for cases (6) and (7), and Γn contains no
parts of γn for all other cases. Therefore, the second term equals,

− 1(A∈{6,7})
∫
γ2,n

dw
∏

y∈Un
(w − y)∏

x∈Vn
(w − x)

= −1(A∈{6,7})
∑

y′∈Vn\Un

1(y′∈γ◦2,n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.
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where A ∈ {1, 2, . . . , 12} denotes that particular case of Lemma 2.2 which is satisfied.
Combined the above give

Jn =
∑

y′∈S̃1,n∪S̃3,n

1(y′∈Γ◦n)
∑

x′∈S2,n

1(x′∈γ◦n)

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)

+
∑

y′∈(S̃1,n∪S̃3,n)∩Vn

1(y′∈γ◦n∩Γ◦n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

− 1(A∈{6,7})
∑

y′∈Vn\Un

1(y′∈γ◦2,n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Finally recall that Vn \Un = (VU(n)) ∪ (VU(n)) (see (2.30)), and S̃1,n ∩Vn = (VU(n)) ∩ Pn

and S̃3,n ∩ Vn = (VU(n)) ∩ Pn (see (2.29), (2.30) and (3.9)). The required result thus
follows if we can show that:

(i) {x ′ ∈ S2,n : x ′ ∈ γ◦n} equals S2,n for all cases (1)–(12) of Lemma 2.2.

(ii) {y′ ∈ S̃1,n ∪ S̃3,n : y′ ∈ Γ◦n} equals S̃1,n for (1)–(6), and equals S̃3,n for (7)–(12).

(iii) {y′ ∈ (S̃1,n ∪ S̃3,n) ∩ Vn : y′ ∈ γ◦n ∩ Γ◦n} equals (VU(n)) ∩ Pn for (1)–(3) and (6)
when vn ≥ un, equals (VU(n)) ∩ Pn for (7) and (10)–(12) when vn + sn ≤ un + rn,
and is empty otherwise.

(iv) {y′ ∈ Vn \ Un : y′ ∈ γ◦2,n} equals VU(n) for (6) when vn ≥ un, equals VU(n)
for (7) when vn + sn ≤ un + rn, is empty for (6) when un > vn, and is empty
for (7) when vn + sn > un + rn.

We will prove (i) only for cases (1)–(6). The proof of (i) for case (12) is similar to case (1),
the proof of (i) for case (11) is similar to case (2), etc. We will prove (ii) only for case (4).
The proof of (ii) for all other cases follows from similar considerations. We will not
prove (iii) and (iv), but we state that their proofs also follow from similar considerations.

Consider (i) for cases (1)–(4). Recall (see (2.5)) that S2,n ⊂
1
n {vn + sn −n, vn + sn −n+

1, . . . , vn}. Thus, fixing δ > 0, (1.18) implies that S2,n ⊂ (χ+η−1− δ, χ+ δ). Next recall
(see Lemma 2.2 and (2.2)) that t > χ > χ + η − 1 ≥ S3. Definition 3.7 and Figure 3.2
thus imply that we can choose the above δ > 0 such that γn contains (χ+ η− 1− δ, χ+ δ).
This proves (i) for cases (1)–(4).

Consider (i) for case (6). First recall (see Lemma 2.2) that t ∈ Lt ⊂ R \ Supp(λ − µ).
Thus, fixing δ > 0 such that Lt − δ > t > Lt + δ, (1.24) gives Zn ∩ (Lt + δ, Lt − δ) ⊂ Pn.
Next recall that S2,n =

1
n {vn + sn − n, vn + sn − n + 1, . . . , vn} \ Pn (see (2.5)), that
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1
n {vn + sn − n, vn + sn − n + 1, . . . , vn} ⊂ (χ + η − 1 − δ, χ + δ) (see (1.18)). Therefore
S2,n ⊂ (χ + η − 1 − δ, Lt + δ] ∪ [Lt − δ, χ + δ). Next recall (see Lemma 2.2 and (2.2))
that S1 ≥ χ > Lt > t > Lt > χ + η − 1 ≥ S3. Definition 3.7 and Figure 3.2 thus imply
that we can choose the above δ > 0 such that γ1,n contains (χ + η − 1 − δ, Lt + δ] and
γ2,n contains [Lt − δ, χ + δ). This proves (i) for case (6).

Consider (i) for case (5). First recall (see Lemma 2.2) that t ∈ (S2, χ) ⊂ R\Supp(λ− µ).
Also recall (see Assumption 2.4) that χ ∈ R \ Supp(λ − µ). Thus we can fix a δ > 0 such
that t > S2 + δ and (S2 + δ, χ + δ) ⊂ R \ Supp(λ − µ). Then we can proceed similarly to
case (6), above, to show that S2,n ⊂ (χ + η − 1 − δ, S2 + δ]. Moreover, Definition 3.7 and
Figure 3.2 imply that we can choose the δ > 0 such that γn contains (χ+ η− 1− δ, S2 + δ].
This proves (i) for case (5).

Consider (ii) for case (4). We must show that Γn contains all of S̃1,n and none of
S̃3,n. First recall (see Lemma 2.2) that t ∈ (χ, S1) ⊂ R \ Supp(µ). Also recall (see
Assumption 2.4) that χ ∈ R \ Supp(µ). Thus we can fix a δ > 0 such that t < S1 − δ

and (χ − δ, S1 − δ) ⊂ R \ Supp(µ). (1.24) thus gives Pn ∩ (χ − δ, S1 − δ) = ∅. (1.18)
and (3.9) then give S̃1,n = {y ∈ Pn : y ≥ S1 − δ}. (2.9) then gives S̃1,n ⊂ [S1 − δ, S1 + δ).
Next recall (see (3.9)) that S̃3,n = {y ∈ Pn : y ≤ un+rn−n

n }. (1.18) and (2.9) then
give S̃3,n ⊂ (S3 − δ, χ + η − 1 + δ). Finally recall (see Lemma 2.2 and (2.2)) that
S1 > t > χ > χ + η − 1. Definition 3.7 and Figure 3.2 thus imply that we can choose the
above δ > 0 such that Γn contains all of [S1 − δ, S1 + δ) and none of (S3 − δ, χ+ η− 1+ δ).
This proves (ii) for case (4). �

Next we prove the following technical result:

Lemma 3.10. Fix k, i ≥ 1. Then, for all x ∈ Z,

(1)
k∑
l=0

∏i
j=1(x + l − j)∏k
j=0, j,l(l − j)

=


i!

k!(i−k)!
∏i−k

j=1(x − j) when k < i,

1 when k = i,

0 when k > i.

Next, fix and a, b ∈ Z. Then, for all x ∈ Z with x + b, x + a ≥ 0,

(2)
k∑
l=0

(x + b + l)!
(x + a + l)!

1∏k
j=0, j,l(l − j)

= (b − a)(b − a − 1) . . . (b − a − k + 1)
1
k!
(x + b)!
(x + a + k)!

.
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Proof. First note, letting g : Z → R be any function, and letting ∆ denote the finite
difference operator (i.e., (∆g)(x) := g(x + 1) − g(x), (∆2g)(x) := (∆(∆g))(x) = g(x + 2) −
2g(x + 1) + g(x), etc.), then

(∆kg)(x) =
k∑
l=0
(−1)k−l

(
k
l

)
g(x + l) = k!

k∑
l=0

g(x + l)∏k
j=0, j,l(l − j)

, (3.12)

for all x ∈ Z. Above, the first step follows by induction, and the second step follows since
(−1)k−ll!(k − l)! =

∏k
j=0, j,l(l − j) for all l ∈ {0, . . . , k}. We will use the above identity

to prove (1) and (2).
Consider (1). In this case, take

g(x) :=
i∏

j=1
(x − j),

for all x ∈ Z. Then, induction gives

(∆kg)(x) =


i!
(i−k)!

∏i−k
j=1(x − j) when k < i,

k! when k = i,

0 when k > i,

Moreover, (3.12) gives

(∆kg)(x) = k!
k∑
l=0

∏i
j=1(x + l − j)∏k
j=0, j,l(l − j)

,

for all x ∈ Z. Combined, the above prove (1).
Consider (2). In this case take,

g(x) :=
(x + b)!
(x + a)!

,

for all x ∈ Z with x + b, x + a ≥ 0. Then, induction gives

(∆kg)(x) = (b − a)(b − a − 1) . . . (b − a − k + 1)
(x + b)!
(x + a + k)!

,

for all x ∈ Z with x + b, x + a ≥ 0. Moreover, (3.12) gives

(∆kg)(x) = k!
k∑
l=0

(x + b + l)!
(x + a + l)!

1∏k
j=0, j,l(l − j)

,

for all x ∈ Z with x + b, x + a ≥ 0. Combined, the above prove (2). �

Next we examine Kn((un, rn), (vn, sn)):
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Lemma 3.11. Assume the conditions of Theorem 1.11. Define the sets Un, Vn, Pn, VU(n),
VU(n) as above. Also define βn as in Lemma 3.8. Then,

(1) βnKn((un, rn), (vn, sn))

=
∑

y′∈S̃1,n

∑
x′∈S2,n

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)

+ 1(vn≥un,sn≤rn)

∑
y′∈(VU (n))∩Pn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

− 1(vn≥un,sn>rn)

∑
y′∈(VU (n))\Pn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Moreover,

(2) βnKn((un, rn), (vn, sn))

= −
∑

y′∈S̃3,n

∑
x′∈S2,n

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)

− 1(vn+sn≤un+rn,sn≤rn)

∑
y′∈(VU(n))∩Pn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

+ 1(vn+sn≤un+rn,sn>rn)

∑
y′∈(VU(n))\Pn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Proof. First note, (1.3) and the expression for βn (see statement of Lemma 3.8) give

βnKn((un, rn), (vn, sn)) = −βnφrn,sn (un, vn)

+

n∑
k=1

1
(x
(n)
k
≥un)

vn∑
l=vn+sn−n

∏un−1
j=un+rn−n+1(

x
(n)
k

n −
j
n )∏vn

j=vn+sn−n, j,l
( ln −

j
n )

n∏
i=1,i,k

©­«
l
n −

x
(n)
i

n

x
(n)
k

n −
x
(n)
i

n

ª®®¬ .
(3.8) and (3.9) then give

βnKn((un, rn), (vn, sn)) = −βnφrn,sn (un, vn)

+
∑

y′∈S̃1,n

∑
x′∈Vn

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)
. (3.13)
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First, we will show:

(i)
∑
y′∈Vn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

=


βn

∏sn−rn−1
j=1 (vn−un+sn−rn−j)

(sn−rn−1)! when sn > rn + 1,
1 when sn = rn + 1,
0 when sn ≤ rn.

Then, we will use this to show:

(ii) βnφrn,sn (un, vn) = 1(vn≥un,sn>rn)

∑
y′∈VU (n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Next, recalling that S2,n ⊂ Vn (see (3.10)), we will show:

(iii)
∑

y′∈S̃1,n

∑
x′∈Vn\S2,n

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)

= 1(vn≥un)

∑
y′∈(VU (n))∩Pn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Thus, since S2,n ⊂ Vn, (3.13), and parts (ii) and (iii) prove (1). Next we will show:

(iv)
∑

y′∈S̃1,n∪S̃3,n

∑
x′∈Vn

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)

= 1(vn≥un,sn>rn)

∑
y′∈VU (n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

+ 1(vn+sn≤un+rn,sn>rn)

∑
y′∈VU(n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Finally we will show:

(v)
∑

y′∈S̃3,n

∑
x′∈Vn\S2,n

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)

= 1(vn+sn≤un+rn)

∑
y′∈(VU(n))∩Pn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Thus, since S2,n ⊂ Vn, (3.13) and parts (ii), (iv) and (v) prove (2).
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Consider (i). Note, taking k := n − sn and i := n − rn − 1 and x := vn − un + sn − rn,
part (1) of Lemma 3.10 gives

n−sn∑
l=0

∏n−rn−1
j=1 (vn − un + sn − rn + l − j)∏n−sn

j=0, j,l(l − j)

=


(n−rn−1)!

(n−sn)!(sn−rn−1)!
∏sn−rn−1

j=1 (vn − un + sn − rn − j) when sn > rn + 1,
1 when sn = rn + 1,
0 when sn < rn + 1.

Shifting the dummy variables implies that the above LHS equals,
vn∑

l=vn+sn−n

∏un−1
j=un+rn−n+1(l − j)∏vn
j=vn+sn−n, j,l

(l − j)
.

(3.8) and the expression for βn (see statement of Lemma 3.8) then prove (i).
Consider (ii). First note, (i), (1.4), and the expression for βn (see statement of

Lemma 3.8) prove the following:

βnφrn,sn (un, vn) = 1(vn≥un,sn>rn)

∑
y′∈Vn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Therefore,

βnφrn,sn (un, vn) = 1(vn≥un,sn>rn)

∑
y′∈Vn\Un

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Next note, (2.30) implies that Vn \ Un = (VU(n)) ∪ (VU(n)). Finally note, (2.30) also
implies that VU(n) , ∅ and VU(n) = ∅ when vn ≥ un and sn > rn. This proves (ii).

Consider (iii). Recall (see (3.9) and (3.10)) that S̃1,n ⊂ Pn and S2,n = Vn \Pn. Thus, for
all y′ ∈ S̃1,n, Vn equals the disjoint union S2,n ∪ (Vn ∩ {y

′}) ∪ (Vn ∩ (Pn \ y
′)). Therefore,∑

y′∈S̃1,n

∑
x′∈Vn\S2,n

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)

=
∑

y′∈S̃1,n∩Vn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

∏
x∈Pn\y′(y

′ − x)∏
y∈Pn\y′(y

′ − y)

=
∑

y′∈S̃1,n∩(Vn\Un)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Note that (2.30) and (3.8) give S̃1,n ∩ (Vn \ Un) = (VU(n)) ∩ Pn when vn ≥ un, and
S̃1,n ∩ (Vn \Un) = ∅ when vn < un. This proves (iii). (v) follows similarly.
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Consider (iv). First recall (see (3.10)) that Pn \ Un = S̃1,n ∪ S̃3,n, a disjoint union.
Therefore,∑

y′∈S̃1,n∪S̃3,n

∑
x′∈Vn

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)

=
∑
y′∈Pn

∑
x′∈Vn

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)
.

Thus, since Pn and Un are sets of distinct points, and since |Un | < |Pn | (see (3.8)),
Lagrange interpolation gives∑

y′∈S̃1,n∪S̃3,n

∑
x′∈Vn

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)
=

∑
x′∈Vn

∏
y∈Un
(x ′ − y)∏

x∈Vn\x′(x
′ − x)

.

(i) then implies (iv) when sn ≤ rn. To see part (iv) when sn > rn, first note the above
equation gives∑

y′∈S̃1,n∪S̃3,n

∑
x′∈Vn

∏
y∈Un
(y′ − y)∏

x∈Vn\x′(x
′ − x)

∏
x∈Pn\y′(x

′ − x)∏
y∈Pn\y′(y

′ − y)
=

∑
x′∈Vn\Un

∏
y∈Un
(x ′ − y)∏

x∈Vn\x′(x
′ − x)

.

Next note, (2.30) implies that Vn \ Un = (VU(n)) ∪ (VU(n)). Finally note, (2.30) also
implies the following:

• VU(n) , ∅ and VU(n) = ∅ when sn > rn and vn ≥ un.

• VU(n) = ∅ and VU(n) = ∅ when sn > rn and vn < un and vn + sn > un + rn.

• VU(n) = ∅ and VU(n) , ∅ when sn > rn and vn + sn ≤ un + rn.

The above exhaust all possibilities when sn > rn. This proves (iv). �

Next we examine Φn:

Lemma 3.12. Assume the conditions of Theorem 1.11. Define the sets Un, Vn, Pn,
VU(n), VU(n) as above. Also define Φn and βn as in Lemma 3.8. Recall that one of the
cases (1)–(12) of Lemma 2.2 must be satisfied. Then:

Φn =



1(vn≥un,sn>rn)
∑

y′∈VU (n)

∏
y∈Un (y

′−y)∏
x∈Vn\y′ (y

′−x) for cases (1)–(4),

1(vn≥un,sn≤rn)
∑

y′∈VU (n)

∏
y∈Un (y

′−y)∏
x∈Vn\y′ (y

′−x) for cases (5)–(6),

1(vn+sn≤un+rn,sn≤rn)
∑

y′∈VU(n)

∏
y∈Un (y

′−y)∏
x∈Vn\y′ (y

′−x) for cases (7)–(8),

1(vn+sn≤un+rn,sn>rn)
∑

y′∈VU(n)

∏
y∈Un (y

′−y)∏
x∈Vn\y′ (y

′−x) for cases (9)–(12).
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Proof. We will prove the result for cases (5) and (6) of Lemma 2.2. The other cases
follow from similar considerations.

Assume that (5) or (6) is satisfied. First note, the definition ofΦn given in the statement
of Lemma 3.8 gives Φn = 0 when vn < un or sn > rn. This proves the result for these
cases. Next note, the definition also gives Φn = 0 when vn ≥ un and sn ≤ rn and
vn + sn > un + rn. Thus, in this case, it is necessary to show that,∑

y′∈VU (n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

= 0.

To see this, first note that (2.29) and (2.30) give∑
y′∈VU (n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

= nrn+1−sn
vn∑

l=un

∏un−1
j=un+rn−n+1(l − j)∏vn
j=vn+sn−n, j,l

(l − j)
.

Therefore, since vn + sn > un + rn,∑
y′∈VU (n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

= nrn+1−sn
vn∑

l=vn+sn−n

∏un−1
j=un+rn−n+1(l − j)∏vn
j=vn+sn−n, j,l

(l − j)
.

Finally, since sn ≤ rn, we can proceed as in (i) in the proof of Lemma 3.11 to show
that the above RHS equals 0. This proves the result when vn ≥ un and sn ≤ rn and
vn + sn > un + rn. It thus remains to prove the result when vn ≥ un and sn ≤ rn and
vn + sn ≤ un + rn.

Suppose first that vn = un and sn ≤ rn and vn + sn ≤ un + rn. Then, (2.29) and (2.30)
give ∑

y′∈VU (n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

= nrn+1−sn
un∑
l=un

∏un−1
j=un+rn−n+1(l − j)∏un

j=un+sn−n, j,l
(l − j)

= nrn+1−sn

∏un−1
j=un+rn−n+1(un − j)∏un−1
j=un+sn−n

(un − j)
.

Thus, since sn ≤ rn,∑
y′∈VU (n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

= nrn+1−sn 1∏un+rn−n
j=un+sn−n

(un − j)

= nrn+1−sn (n − rn − 1)!
(n − sn)!

.

The definitions of Φn and βn in the statement of Lemma 3.8 then prove the result when
vn = un and sn ≤ rn and vn + sn ≤ un + rn.
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Finally suppose that vn > un and sn ≤ rn and vn+ sn ≤ un+rn. Then, (2.29) and (2.30)
give ∏

y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

= nrn+1−sn
vn∑

l=un

∏un−1
j=un+rn−n+1(l − j)∏vn
j=vn+sn−n, j,l

(l − j)

= nrn+1−sn
vn∑

l=un

1∏un+rn−n
j=vn+sn−n

(l − j)
1∏vn

j=un, j,l
(l − j)

.

Note that l − j > 0 for all l ∈ {un, un + 1, . . . , vn} and j ∈ {vn + sn − n, vn + sn − n +
1, . . . , un + rn − n} (indeed, (1.18) gives l − j = n(1 − η) + o(n) uniformly for l, j). We
can thus write,∏

y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

= nrn+1−sn
vn∑

l=un

(l − (un + rn − n + 1))!
(l − (vn + sn − n))!

1∏vn
j=un, j,l

(l − j)

= nrn+1−sn
vn−un∑
l=0

(l − (rn − n + 1))!
(l − (vn − un + sn − n))!

1∏vn−un

j=0, j,l(l − j)
.

The last part, above, is obtained by simply shifting the dummy variables. The above, part (2)
of Lemma 3.10 (take k := vn − un and x := n and b := −rn − 1 and a := un − vn − sn),
and the definition of βn in the statement of Lemma 3.8 give∏

y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

=
(sn − rn)(sn − rn + 1) . . . (vn + sn − un − rn − 1)

(vn − un)!
βn.

The definition of Φn in the statement of Lemma 3.8 then proves the result when vn > un
and sn ≤ rn and vn + sn ≤ un + rn. �

Next we prove the following technical result:

Lemma 3.13. Fix (u, r) ∈ R2 and (v, s) ∈ R2, and define {(un, rn)}n≥1 and {(vn, sn)}n≥1
as in (1.28) and (1.29). Recall that one of the cases (1)–(12) of Lemma 2.2 must be
satisfied. Fix ξ > 0 sufficiently small such that (2.11), (2.14), (2.17) and (2.31) are
satisfied. Assume that (u, r) , (v, s), i.e., that either v > u, or v < u, or v = u and s , r .

When v > u, the following are satisfied:

• For cases (1)–(4), vn > un (and so VU(n) , ∅) and vn + sn > un + rn (and
so VU(n) = ∅) and sn > rn + 1. Moreover, t − 2ξ > χ + 2ξ > max(VU(n)) >
min(VU(n)) > χ − 2ξ > χ + η − 1 + 2ξ.

• For cases (5)–(8), vn > un (and so VU(n) , ∅) and vn + sn < un + rn (and so
VU(n) , ∅) and sn < rn+1. Moreover, min(VU(n)) > χ−2ξ > t+2ξ > t−2ξ >
χ + η − 1 + 2ξ > max(VU(n)) > min(VU(n)) > χ + η − 1 − 2ξ.
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• For cases (9)–(12), vn < un (and so VU(n) = ∅) and vn + sn < un + rn (and so
VU(n) , ∅) and sn > rn + 1. Moreover, χ− 2ξ > χ+η− 1+ 2ξ > max(VU(n)) >
min(VU(n)) > χ + η − 1 − 2ξ > t + 2ξ.

Moreover, when v < u:

• For cases (1)–(4), vn < un and vn + sn < un + rn and sn < rn + 1.

• For cases (5)–(8), vn < un and vn + sn > un + rn and sn > rn + 1.

• For cases (9)–(12), vn > un and vn + sn > un + rn and sn < rn + 1.

Finally, when v = u and s , r:

• For cases (1)–(4), vn − un and sn − (rn + 1) have opposite signs.

• For cases (5)–(12), vn − un and sn − (rn + 1) and (vn + sn) − (un + rn) have the
same sign.

Proof. First note, (1.28) and (1.29) give

vn − un = n
2
3 mn(v − u) + n

1
3 pn(eCn(t) − 1)(s − r) +O(1),

sn − rn − 1 = n
2
3 mn(eCn(t) − 1)(v − u) + n

1
3 pn(−1)(s − r) +O(1),

vn + sn − un − rn = n
2
3 mneCn(t)(v − u) + n

1
3 pn(eCn(t) − 2)(s − r) +O(1),

where {mn}n≥1 and {pn}n≥1 are those convergent sequences of real numbers with non-zero
limits given in Definition 2.8. Note that this definition also gives mn(eCn(t)−1)/eCn(t) > 0,
and so mn and (eCn(t) − 1)/eCn(t) have the same sign. Next recall (see Lemma 2.2 and 2.3)
that eC(t) > 1 for cases (1)–(4), eC(t) < 0 for cases (5)–(8), and eC(t) ∈ (0, 1) for
cases (9)–(12). Also recall that eCn(t) → eC(t) (see (1.27)).

Consider cases (1)–(4) with v > u. The above observations then imply that {mn}n≥1
is a convergent sequence of real numbers with a positive limit, and that vn > un and
vn + sn > un + rn and sn > rn + 1. (2.30) then implies that VU(n) , ∅ and VU(n) = ∅.
Next note, since t > χ (see cases (1)–(4) of Lemma 2.2), (2.14) and (2.31) give
t − 2ξ > χ + 2ξ > max(VU(n)) > min(VU(n)) > χ − 2ξ > χ + η − 1 + 2ξ. We have
thus shown the required result for cases (1)–(4) when v > u. The other cases follow
similarly. �

Finally, we prove Lemma 3.8:
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Proof of Lemma 3.8. We will prove part (1) for cases (1)–(4) of Lemma 2.2, and part (2)
for cases (1)–(4) and (7)–(8). Parts (1) and (2) for the remaining cases follow from similar
considerations.

Part (1) for cases (1)–(3) of Lemma 2.2 easily follows from Lemmas 3.9 and 3.11
and 3.12. Consider part (1) for case (4) of Lemma 2.2. Note, Lemmas 3.9 and 3.11 give

βnKn((un, rn), (vn, sn)) = Jn + 1(vn≥un,sn≤rn)

∑
y′∈(VU (n))∩Pn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

− 1(vn≥un,sn>rn)

∑
y′∈(VU (n))\Pn

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Lemma 3.12 thus implies that the result for case (4) follows if (VU(n)) ∩ Pn = ∅. To see
this, fix δ > 0 such that (χ−δ, χ+δ) ⊂ R\Supp(µ) (see Assumption 2.4). Assumption 1.7
and (1.24) then give (χ − δ, χ + δ) ∩ Pn = ∅. Finally recall (see (1.18) and (2.30)) that
VU(n) ⊂ (χ − δ, χ + δ). Therefore (VU(n)) ∩ Pn = ∅, as required.

Consider part (2) for cases (1)–(4) of Lemma 2.2. First recall (see Lemma 3.12) that,

Φn = 1(vn≥un,sn>rn)

∑
y′∈VU (n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Next recall (see statement of Lemma 3.8) that (u, r) , (v, s), i.e., that either v > u, or
v < u, or v = u and s , r . Moreover, Lemma 3.13 implies that 1(vn≥un,sn>rn) = 1 when
v > u, 1(vn≥un,sn>rn) = 0 when v < u, and 1(vn≥un,sn>rn) = 0 when v = u and s , r.
Therefore,

Φn = 1(v>u)
∑

y′∈VU (n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

It thus remains to show that,∑
y′∈VU (n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

=
1

2πi

∫
κn

dw
∏

y∈Un
(w − y)∏

x∈Vn
(w − x)

,

when v > u. To see the above, first note that the integrand on the RHS has a simple
pole at each distinct element of Vn \Un. Next note, since v > u and one of cases (1)–(4)
is satisfied, (2.30) and Lemma 3.13 imply that Vn \ Un = VU(n) ⊂ (χ − 2ξ, χ + 2ξ).
Finally, Lemma 3.6 and Definition 3.7 and Figure 3.3 clearly imply that κn contains
(χ − 2ξ, χ + 2ξ). The above equation thus follows from the Residue theorem. This proves
part (2) for cases (1)–(4) of Lemma 2.2.
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Consider part (2) for cases (7) and (8) of Lemma 2.2. First recall (see Lemma 3.12)
that,

Φn = 1(vn+sn≤un+rn,sn≤rn)

∑
y′∈VU(n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

Next recall (see statement of Lemma 3.8) that (u, r) , (v, s), i.e., that either v > u, or
v < u, or v = u and s , r . Moreover, Lemma 3.13 implies that 1(vn+sn≤un+rn,sn≤rn) = 1
when v > u, and 1(vn+sn≤un+rn,sn≤rn) = 0 when v < u. Finally, when v = u and s , r,
Lemma 3.13 implies that either of the following is satisfied:

• vn + sn > un + rn and sn > rn + 1 and vn > un for all n sufficiently large. In this
case 1(vn+sn≤un+rn,sn≤rn) = 0.

• vn + sn < un + rn and sn < rn + 1 and vn < un for all n sufficiently large. In this
case (2.30) gives Vn \Un = VU(n), and part (i) in the proof of Lemma 3.11 gives∑

y′∈VU(n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

= 0.

Combined, the above observations give

Φn = 1(v>u)
∑

y′∈VU(n)

∏
y∈Un
(y′ − y)∏

x∈Vn\y′(y
′ − x)

.

We can then proceed similar to above to prove part (2) for cases (7) and (8) of Lem-
ma 2.2. �

3.4. Proof of Theorem 1.11

In this section we finally prove Theorem 1.11 using the results of the previous sections.
We will prove the result only when t ∈ R+µ , i.e, when one of cases (1)–(4) of Lemma 2.2
is satisfied. The results when t ∈ Rλ−µ (cases (5)–(8)), and when t ∈ R−µ (cases (9)–(12)),
follow from similar considerations.

Assume the conditions of Theorem 1.11. Additionally assume that one of cases (1)–(4)
of Lemma 2.2 is satisfied. Lemma 3.8 thus gives

βnKn((un, rn), (vn, sn)) = Jn − Φn. (3.14)

We begin by using a steepest descent argument to examine the asymptotic behaviour of
Jn. First, fix θ ∈ ( 14,

1
3 ), and {qn}n≥1 ⊂ R as in Definition 2.8. Next, using Lemma 3.5

and Definition 3.7, we partition γn as follows:

γn = γ
(l)
n + γ

(r)
n and Γn = Γ

(l)
n + Γ

(r)
n , (3.15)
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where γ(l)n and Γ(l)n are (respectively) those local sections of γn and Γn inside B(t, n−θ |qn |),
and γ

(r)
n and Γ(r)n are (respectively) the remaining sections of γn and Γn outside

B(t, n−θ |qn |). Then, the definition of Jn in the statement of Lemma 3.8 gives

Jn = J(l,l)n + J(l,r)n + J(r,l)n + J(r,r)n , (3.16)

where

J(l,l)n :=
1
(2πi)2

∫
γ
(l)
n

dw
∫
Γ
(l)
n

dz

∏un−1
j=un+rn−n+1(z −

j
n )∏vn

j=vn+sn−n
(w −

j
n )

1
w − z

n∏
i=1

(
w − xi

n

z − xi
n

)
.

The other three terms on the RHS of (3.16) are defined analogously. As we shall see in
the following lemmas, the asymptotic behaviour of J(l,l)n dominates the other three terms:

Lemma 3.14. Assume the conditions of Theorem 1.11. Additionally assume that one of
cases (1)–(4) of Lemma2.2 is satisfied. Fix θ ∈ ( 14,

1
3 ), and {qn}n≥1 ⊂ R as inDefinition 2.8.

Define J(l,l)n as in (3.16), K̃Ai : (R2)2 → R as in (1.19), and At,n : (Z2)2 → R \ {0} as in
Lemma 2.13. Then,

n
1
3 |qn |−1(t − χn)(t − χn − ηn + 1)

At,n((un, rn), (vn, sn))
J(l,l)n → K̃Ai((v, s), (u, r)).

Proof. First note, (1.8), (1.9) and (3.16) give

J(l,l)n =
1
(2πi)2

∫
γ
(l)
n

dw
∫
Γ
(l)
n

dz
exp(n fn(w) − n f̃n(z))

w − z
.

Define d1,n and ã1,n as in Lemma 3.5. Also define,

αn :=

{
Arg(d1,n − t) for cases (1) and (2) of Lemma 2.2,
Arg(ã1,n − t) for cases (3) and (4) of Lemma 2.2,

ζn :=

{
Arg(ã1,n − t) for cases (1) and (2) of Lemma 2.2,
Arg(d1,n − t) for cases (3) and (4) of Lemma 2.2,

(3.17)

where Arg represents the principal value of the argument, and note that part (2) of
Lemma 3.5 gives αn = π

3 +O(n−
1
3+θ ) and ζn = 2π

3 +O(n−
1
3+θ ). Recall that γ(l)n and Γ(l)n

are (respectively) those sections of γn and Γn inside B(t, n−θ |qn |) (see (3.15)), and γn and
Γn are counter-clockwise (see Definition 3.7). Lemma 3.5 and Figure 3.2 then imply, for
cases (1) and (2) of Lemma 2.2, that:

• γ
(l)
n is the lines from t + n−θ |qn |e−iαn to t, and from t to t + n−θ |qn |eiαn .

• Γ
(l)
n is the lines from t + n−θ |qn |e−iζn to t, and from t to t + n−θ |qn |eiζn .
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Moreover, for cases (3) and (4):

• γ
(l)
n is the lines from t + n−θ |qn |e−iζn to t, and from t to t + n−θ |qn |eiζn .

• Γ
(l)
n is the lines from t + n−θ |qn |eiαn to t, and from t to t + n−θ |qn |e−iαn .

For cases (1) and (2), a change of variables thus gives

J(l,l)n =
n−

1
3 |qn |
(2πi)2

∫
hn

dw
∫
Hn

dz
exp(n fn(t + n−

1
3 |qn |w) − n f̃n(t + n−

1
3 |qn |z))

w − z
,

where:

• hn is the lines from n
1
3−θe−iαn to 0, and from 0 to n

1
3−θeiαn .

• Hn is the lines from n
1
3−θe−iζn to 0, and from 0 to n

1
3−θeiζn .

These contours are shown on the left of Figure 3.4. Similarly, for cases (3) and (4),

J(l,l)n =
n−

1
3 |qn |
(2πi)2

∫
hn

dw
∫
Hn

dz
exp(n fn(t − n−

1
3 |qn |w) − n f̃n(t − n−

1
3 |qn |z))

w − z
,

where hn and Hn are defined as above.
Next recall that qn > 0 for cases (1) and (2) of Lemma 2.2, and qn < 0 for cases (3)

and (4) (see Definition 2.8 and Lemma 2.2). Therefore, for cases (1)–(4),

J(l,l)n =
n−

1
3 |qn |
(2πi)2

∫
hn

dw
∫
Hn

dz
exp(n fn(t + n−

1
3 qnw) − n f̃n(t + n−

1
3 qnz))

w − z
.

Parts (3) and (4) of Corollary 3.3 then give

J(l,l)n = n−
1
3 |qn | exp(n fn(t) − n f̃n(t) +O(n1−4θ ))In,

for cases (1)–(4), where

In :=
1
(2πi)2

∫
hn

dw
∫
Hn

dz
1

w − z

exp(ws + w2v + 1
3w

3)

exp(zr + z2u + 1
3 z3)

.

(2.25) and Lemma 2.13 then give

J(l,l)n =
n−

1
3 |qn |At,n((un, rn), (vn, sn))
(t − χn)(t − χn − ηn + 1)

exp(O(n−
1
3 + n1−4θ ))In.

Next, recall that αn = π
3 + O(n−

1
3+θ ) and ζn = 2π

3 + O(n−
1
3+θ ) for cases (1)–(4), and

define:

• ln is the lines from n
1
3−θe−i

π
3 to 0, and from 0 to n

1
3−θei

π
3 . cn is the smallest arcs

of ∂B(0, n 1
3−θ ) from n

1
3−θe−iαn to n

1
3−θe−i

π
3 , and from n

1
3−θei

π
3 to n

1
3−θeiαn .
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H

R
0

B(0, n 1
3−θ )

n
1
3 −θ eiαnn

1
3 −θ eiζn

n
1
3 −θ e−iαnn

1
3 −θ e−iζn

hn

hn

Hn

Hn

0

B(0, n 1
3−θ )

n
1
3 −θ ei

π
3n

1
3 −θ ei

2π
3

n
1
3 −θ e−i

π
3n

1
3 −θ e−i

2π
3

hn

hn

Hn

Hn

ln

ln

Ln

Ln

cn

cn

Cn

Cn

Figure 3.4. Left: The contours hn and Hn. Recall θ ∈ ( 14,
1
3 ), αn =

π
3 +O(n−

1
3+θ ) and ζn = 2π

3 +O(n−
1
3+θ ) (see (3.17)). Right: The contours

hn, Hn, ln, Ln, cn,Cn.

• Ln is the lines from n
1
3−θe−i

2π
3 to 0, and from 0 to n

1
3−θei

2π
3 .Cn is the smallest arcs

of ∂B(0, n 1
3−θ ) from n

1
3−θe−iζn to n

1
3−θe−i

2π
3 , and from n

1
3−θei

2π
3 to n

1
3−θeiζn .

These contours are shown on the right of Figure 3.4. Then, noting that hn and cn + ln
have the same initial and final points, and similarly for Hn and Cn + Ln,

In = I1,n + I2,n + I3,n + I4,n,

where

I1,n :=
1
(2πi)2

∫
ln

dw
∫
Ln

dz
1

w − z

exp(ws + w2v + 1
3w

3)

exp(zr + z2u + 1
3 z3)

,

I2,n :=
1
(2πi)2

∫
ln

dw
∫
Cn

dz
1

w − z

exp(ws + w2v + 1
3w

3)

exp(zr + z2u + 1
3 z3)

,

I3,n :=
1
(2πi)2

∫
cn

dw
∫
Ln

dz
1

w − z

exp(ws + w2v + 1
3w

3)

exp(zr + z2u + 1
3 z3)

,

I4,n :=
1
(2πi)2

∫
cn

dw
∫
Cn

dz
1

w − z

exp(ws + w2v + 1
3w

3)

exp(zr + z2u + 1
3 z3)

.

(3.18)

Finally, we will show that,

(i) I1,n → K̃Ai((v, s), (u, r)).

(ii) I2,n → 0 and I3,n → 0 and I4,n → 0.
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Thus, since θ ∈ ( 14,
1
3 ), the required result follows from parts (i,ii) and the above expression

of J(l,l)n .
Consider (i). First define:

• rn is the lines from∞e−i
π
3 to n

1
3−θe−i

π
3 , and from n

1
3−θei

π
3 to∞ei

π
3 .

• Rn is the lines from∞e−i
2π
3 to n

1
3−θe−i

2π
3 , and from n

1
3−θei

2π
3 to∞ei

2π
3 .

It thus follows from Figures 1.3 and 3.4 that l = ln + rn and L = Ln + Rn. (1.19) and the
definition of I1,n, above, thus give

K̃Ai((v, s), (u, r)) = I1,n + I ′1,n + I ′′1,n + I ′′′1,n,

where

I ′1,n :=
1
(2πi)2

∫
ln

dw
∫
Rn

dz
1

w − z

exp(ws + w2v + 1
3w

3)

exp(zr + z2u + 1
3 z3)

,

I ′′1,n :=
1
(2πi)2

∫
rn

dw
∫
Ln

dz
1

w − z

exp(ws + w2v + 1
3w

3)

exp(zr + z2u + 1
3 z3)

,

I ′′′1,n :=
1
(2πi)2

∫
rn

dw
∫
Rn

dz
1

w − z

exp(ws + w2v + 1
3w

3)

exp(zr + z2u + 1
3 z3)

.

(3.19)

Part (i) thus follows if we can show that I ′1,n = o(1), I ′′1,n = o(1), and I ′′′1,n = o(1).
Consider I ′1,n, defined in (3.19). The contours in this expression are given in Figure 3.5.

Note that,
1

|w − z |
≤

1
n

1
3−θ cos( π3 )

=
2

n
1
3−θ

, (3.20)

uniformly for w on ln and z on Rn. Also,�����exp(ws + w2v + 1
3w

3)

exp(zr + z2u + 1
3 z3)

����� = exp(Re(ws + w2v + 1
3w

3))

exp(Re(zr + z2u + 1
3 z3))

,

for all w on ln and z on Rn. Moreover, |Arg(w)| = π
3 and |Arg(z)| = 2π

3 for all w on ln
and z on Rn, and so Re(w3) = −|w |3 and Re(z3) = |z |3. Therefore,�����exp(ws + w2v + 1

3w
3)

exp(zr + z2u + 1
3 z3)

����� ≤ exp(|w | |s | + |w |2 |v | − 1
3 |w |

3)

exp(−|z | |r | − |z |2 |u| + 1
3 |z |

3)
, (3.21)

for all w on ln and z on Rn.(3.19), (3.20) and (3.21) then give

|I ′1,n | ≤ 4
1
(2π)2

∫ ∞

0
dy1

∫ ∞

0
dy2

2
n

1
3−θ

exp(y1 |s | + y2
1 |v | −

1
3 y

3
1)

exp(−y2 |r | − y2
2 |u| +

1
3 y

3
2)
.
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H

R
0

B(0, n 1
3−θ )

ln

ln

Rn

Rn

π
3

π
3
π
3

π
3

Figure 3.5. The contours ln and Rn. ln is the lines from n
1
3−θe−i

π
3 to

0, and from 0 to n
1
3−θei

π
3 . Rn is the lines from ∞e−i

2π
3 to n

1
3−θe−i

2π
3 ,

and from n
1
3−θei

2π
3 to∞ei

2π
3 .

The above integral converges, and so I ′1,n = O(n−(
1
3−θ)). Similarly it can be shown

that I ′′1,n = O(n−(
1
3−θ)) and I ′′′1,n = O(n−(

1
3−θ)). Finally, since θ ∈ ( 14,

1
3 ), it follows that

I ′1,n = o(1) and I ′′1,n = o(1) and I ′′′1,n = o(1). This proves (i).
Consider (ii). Recall that I2,n is defined in (3.18). The contours in this expression are

given in Figure 3.6. Also recall that ζn = 2π
3 +O(n−

1
3+θ ). It thus follows that |Arg(w)| = π

3
for all w on ln, and |Arg(z)| = 2π

3 +O(n−
1
3+θ ) uniformly for z on Cn. Moreover,

1
|w − z |

≤
1

n
1
3−θ cos( π3 + o(1))

<
4

n
1
3−θ

, (3.22)

uniformly for w on ln and z on Cn. Also,�����exp(ws + w2v + 1
3w

3)

exp(zr + z2u + 1
3 z3)

����� = exp(Re(ws + w2v + 1
3w

3))

exp(Re(zr + z2u + 1
3 z3))

,

for all w on ln and z on Cn. Moreover, |Arg(w)| = π
3 and |Arg(z)| = 2π

3 + O(n−
1
3+θ )

uniformly for w on ln and z on Cn, and so Re(w3) = −|w |3 and Re(z3) > 1
2 |z |

3 for all
such w, z. Therefore,�����exp(ws + w2v + 1

3w
3)

exp(zr + z2u + 1
3 z3)

����� < exp(|w | |s | + |w |2 |v | − 1
3 |w |

3)

exp(−|z | |r | − |z |2 |u| + 1
6 |z |

3)
.
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H

R
0

B(0, n 1
3−θ )

ln

ln

Cn

Cn

n
1
3 −θ ei

π
3

n
1
3 −θ eiζn

n
1
3 −θ ei

2π
3

n
1
3 −θ e−i

π
3

n
1
3 −θ e−iζn

n
1
3 −θ e−i

2π
3

Figure 3.6. The contours ln and Cn. ln is the lines from n
1
3−θe−i

π
3 to

0, and from 0 to n
1
3−θei

π
3 . Cn is the smallest arcs of ∂B(0, n 1

3−θ ) from
n

1
3−θe−iζn to n

1
3−θe−i

2π
3 , and from n

1
3−θei

2π
3 to n

1
3−θeiζn .

Finally, note that |z | = n
1
3−θ for all z on Cn, and that n

1
3−θ → ∞ since θ ∈ ( 14,

1
3 ).

Therefore, �����exp(ws + w2v + 1
3w

3)

exp(zr + z2u + 1
3 z3)

����� < exp(|w | |s | + |w |2 |v | − 1
3 |w |

3)

exp( 1
12 n1−3θ )

, (3.23)

uniformly for w on ln and z on Cn. (3.18), (3.22) and (3.23) then give

|I2,n | < 4
1
(2π)2

∫ ∞

0
dy1

∫ 2π

0
n

1
3−θdy2

4
n

1
3−θ

exp(y1 |s | + y2
1 |v | −

1
3 y

3
1)

exp( 1
12 n1−3θ )

.

The above integral converges, and so I2,n = O(exp(− 1
12 n1−3θ )). Therefore I2,n = o(1) since

θ ∈ ( 14,
1
3 ). Similarly, we can show that I3,n = o(1) and I4,n = o(1). This proves (ii). �

Next we examine the asymptotic behaviour of the remaining terms of (3.16):

Lemma 3.15. Assume the conditions of Theorem 1.11. Additionally assume that one
of cases (1)–(4) of Lemma 2.2 is satisfied. Fix θ ∈ ( 14,

1
3 ), and {qn}n≥1 ⊂ R as in

Definition 2.8. Define J(l,r)n , J(r,l)n , J(r,r)n as in (3.16), and At,n : (Z2)2 → R \ {0} as in
Lemma 2.13. Then,

n
1
3 |qn |−1 |t − χn | |t − χn − ηn + 1|
|At,n((un, rn), (vn, sn))|

|J(l,r)n | = O
(
n

1
3 exp

(
−

1
12

n1−3θ
))
.

Similarly for J(r,l)n and J(r,r)n .
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Proof. We prove the result for J(l,r)n for cases (1) and (2) of Lemma 2.2, and state that the
remaining results follow similarly.

Assume that case (1) or (2) of Lemma 2.2 is satisfied. Lemma 2.2 and Definition 2.8
then imply that qn converges to a positive constant as n → ∞. Next note, (1.8), (1.9)
and (3.16) give

|J(l,r)n | ≤
1
(2π)2

|γ
(l)
n | |Γ

(r)
n | sup
(w,z)∈γ

(l)
n ×Γ

(r )
n

����exp(n fn(w) − n f̃n(z))
w − z

���� .
Recall (see (3.15)) that γ(l)n is that section of γn inside B(t, n−θqn). Therefore |γ(l)n | =
2n−θqn (see part (2) of Lemma 3.5 and Definition 3.7). Thus, since qn converges to a
positive constant as n→∞, |γ(l)n | = O(n−θ ). Next recall (see (3.15)) that Γ(r)n is that part
of Γn outside B(t, n−θqn). Definition 3.7 and parts (4)–(6) of Lemma 3.5 thus give

|J(l,r)n | ≤ C sup
w∈γ

(l)
n

| exp(n fn(w) − n f̃n(ã1,n))|,

where ã1,n ⊂ ∂B(t, n−θqn) is defined in part (2) of Lemma 3.5, and where C > 0 is some
fixed constant. Recall that qn converges to a positive constant as n→∞, γ(l)n ⊂ B(t, n−θqn)
and ã1,n ∈ ∂B(t, n−θqn). Also recall (see previous lemma), since one of cases (1) and (2)
of Lemma 2.2 is satisfied, |Arg(w − t)| = π

3 + O(n−
1
3+θ ) uniformly for w on γ(l)n , and

Arg(ã1,n − t) = 2π
3 +O(n−

1
3+θ ). Therefore,

|J(l,r)n | ≤ C sup
w∈hn

���exp(n fn(t + n−
1
3 qnw) − n f̃n(t + n−

1
3 qnzn))

��� ,
where hn ⊂ B(0, n 1

3−θ ) is defined as on the left of Figure 3.4, and zn ⊂ ∂B(0, n 1
3−θ ) is

defined by zn := n
1
3 q−1

n (ã1,n − t). Note, |Arg(w)| = π
3 +O(n−

1
3+θ ) uniformly for w on hn,

and Arg(zn) = 2π
3 +O(n−

1
3+θ ). Also note, parts (3) and (4) of Corollary 3.3 give

|J(l,r)n | ≤ C | exp(n fn(t) − n f̃n(t) +O(n1−4θ ))| sup
w∈hn

����� exp(ws + w2v + 1
3w

3)

exp(znr + (zn)2u + 1
3 (zn)

3)

����� .
Lemma 2.13 then gives

|J(l,r)n | ≤ C
|At,n((un, rn), (vn, sn))|
|t − χn | |t − χn − ηn + 1|

exp(O(n−
1
3 + n1−4θ ))

× sup
w∈hn

����� exp(ws + w2v + 1
3w

3)

exp(znr + (zn)2u + 1
3 (zn)

3)

����� .
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Finally recall that θ ∈ ( 14,
1
3 ). Therefore we can choose the constant C > 0 such that,

|J(l,r)n | ≤ C
|At,n((un, rn), (vn, sn))|
|t − χn | |t − χn − ηn + 1|

sup
w∈hn

����� exp(ws + w2v + 1
3w

3)

exp(znr + (zn)2u + 1
3 (zn)

3)

����� . (3.24)

Next note that,����� exp(ws + w2v + 1
3w

3)

exp(znr + (zn)2u + 1
3 (zn)

3)

����� = exp(Re(ws + w2v + 1
3w

3))

exp(Re(znr + (zn)2u + 1
3 (zn)

3))
,

for all w on hn. Recall that |Arg(w)| = π
3 +O(n−

1
3+θ ) uniformly for w on hn. Therefore

Re(w3) ≤ 0 for all w on hn. Moreover, recall that Arg(zn) = 2π
3 +O(n−

1
3+θ ). Therefore

Re((zn)3) > 1
2 |zn |

3. Combine the above to get,����� exp(ws + w2v + 1
3w

3)

exp(znr + (zn)2u + 1
3 (zn)

3)

����� ≤ exp(|w | |s | + |w |2 |v | + 0)
exp(−|zn | |r | − |zn |2 |u| + 1

6 |zn |
3)
,

for all w on hn. Finally recall that |w | ≤ n
1
3−θ for all w on hn (since hn ⊂ B(0, n 1

3−θ )),
|zn | = n

1
3−θ (since zn ∈ ∂B(0, n 1

3−θ )), and n
1
3−θ →∞ (since θ ∈ ( 14,

1
3 )). Therefore,

sup
w∈hn

����� exp(ws + w2v + 1
3w

3)

exp(znr + (zn)2u + 1
3 (zn)

3)

����� ≤ exp(O(n 2
3−2θ ))

exp(O(n 2
3−2θ ) + 1

6 n1−3θ )

≤
1

exp( 1
12 n1−3θ )

.

Substitute into (3.24) to get the required result. �

(3.16), and the above two lemmas, give the asymptotic behaviour of Jn. It remains to
consider the asymptotic behaviour of Φn (see (3.14)). Since many of the arguments of the
following lemma are similar to those used in the proofs of Lemmas 3.14 and 3.15, we do
not go into as much detail here:

Lemma 3.16. Assume the conditions of Theorem 1.11. Additionally assume that one of
cases (1)–(4) of Lemma2.2 is satisfied. Fix θ ∈ ( 14,

1
3 ), and {qn}n≥1 ⊂ R as inDefinition 2.8.

Define Φn as in Lemma 3.8, Φ : (R2)2 → R as in (1.20), and At,n : (Z2)2 → R \ {0} as
in Lemma 2.13. Then, when the parameters of (1.28) and (1.29) satisfy (u, r) , (v, s),

n
1
3 |qn |−1(t − χn)(t − χn − ηn + 1)

At,n((un, rn), (vn, sn))
Φn → 1(v>u)Φ((v, s), (u, r)).

Proof. First note, since (u, r) , (v, s), part (2) of Lemma 3.8 gives

Φn = 1(v>u)
1

2πi

∫
κn

dw

∏un−1
j=un+rn−n+1(w −

j
n )∏vn

j=vn+sn−n
(w −

j
n )

.
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This proves the result when v < u, and when v = u and s , r . It thus remains to show the
result when v > u. Assuming this, partition κn (see Definition 3.7 and Lemma 3.6) as
κn = κ

(l)
n + κ

(r)
n , where κ(l)n is that local section of κn inside B(t, n−θ |qn |), and κ(l)n is the

remaining section of κn outside B(t, n−θ |qn |). Therefore Φn = Φ
(l)
n + Φ

(r)
n , where

Φ
(l)
n :=

1
2πi

∫
κ
(l)
n

dw

∏un−1
j=un+rn−n+1(w −

j
n )∏vn

j=vn+sn−n
(w −

j
n )

,

and Φ(r)n is defined analogously. We will show that:

n
1
3 |qn |−1(t − χn)(t − χn − ηn + 1)

At,n((un, rn), (vn, sn))
Φ
(l)
n →

exp(− 1
4
(s−r)2

v−u )

2
√
π(v − u)

,(i)

n
1
3 |qn |−1(t − χn)(t − χn − ηn + 1)

At,n((un, rn), (vn, sn))
Φ
(r)
n → 0.(ii)

Parts (i) and (ii) and (1.20) then give the required result.
Consider part (i). First note, (1.8), (1.9) and (2.25) give

Φ
(l)
n =

1
2πi

∫
κ
(l)
n

dw exp(nFn(w)).

Define D1,n as in Lemma 3.6. Also define, ψn := Arg(D1,n − t), and note that Lemma 3.6
gives ψn =

π
2 + O(n−

1
3+θ ). Recall that κ(l)n is that section of κn inside B(t, n−θ |qn |), and

κn is counter-clockwise (see Definition 3.7). Lemma 3.6 and Figure 3.3 then imply that
κ
(l)
n is the lines from t + n−θ |qn |e−iψn to t, and from t to t + n−θ |qn |eiψn . A change of

variables thus gives

Φ
(l)
n =

n−
1
3 |qn |
2πi

∫
kn

dw exp(nFn(t + n−
1
3 |qn |w)),

where kn is the lines from n
1
3−θe−iψn to 0, and from 0 to n

1
3−θeiψn . Thus, since qn > 0

for cases (1) and (2) of Lemma 2.2, and qn < 0 for cases (3) and (4),

Φ
(l)
n =


n−

1
3 |qn |
2πi

∫
kn

dw exp(nFn(t + n−
1
3 qnw)) for cases (1) and (2),

n−
1
3 |qn |
2πi

∫
kn

dw exp(nFn(t − n−
1
3 qnw)) for cases (3) and (4).

(2.25) and parts (3) and (4) of Corollary 3.3 then give

Φ
(l)
n = n−

1
3 |qn | exp(nFn(t) +O(n1−4θ ))φn,
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where

φn :=


1

2πi

∫
kn

dw exp(w(s − r) + w2(v − u)) for cases (1) and (2),

1
2πi

∫
kn

dw exp((−w)(s − r) + (−w)2(v − u)) for cases (3) and (4).

Lemma 2.13 then gives

Φ
(l)
n =

n−
1
3 |qn |At,n((un, rn), (vn, sn))
(t − χn)(t − χn − ηn + 1)

exp(O(n−
1
3 + n1−4θ ))φn.

Note that exp(O(n− 1
3 + n1−4θ )) → 1 since θ ∈ ( 14,

1
3 ). Also, since v > u and θ ∈ ( 14,

1
3 ),

we can proceed similarly to Lemma 3.14 to show that,

φn →
1

2πi

∫ +∞

−∞

d(iy) exp(iy(s − r) + (iy)2(v − u)),

for cases (1) and (2). The RHS is integrable since v > u, and integrating gives

φn →
1

2
√
π(v − u)

exp
(
−

1
4
(s − r)2

v − u

)
.

for cases (1) and (2). This proves part (i) for cases (1) and (2). Similarly for cases (3)
and (4).

Consider part (ii). First note, (1.8), (1.9) and (2.25) give

Φ
(r)
n =

1
2πi

∫
κ
(r )
n

dw exp(nFn(w)),

where κ(r)n is that section of κn outside B(t, n−θ |qn |). Therefore,

|Φ
(r)
n | ≤

1
2π
|κ
(r)
n | sup

w∈κ
(r )
n

| exp(nFn(w))| ≤ C | exp(nFn(D1,n))|,

where C > 0 is some fixed constant, and the second part above follows from Lemma 3.6.
We can then proceed similarly to the proof of Lemma 3.15 to prove part (ii). �

We are finally ready to prove the main result of this section:

Proof of Theorem 1.11 when t ∈ R+µ . In this proof, for brevity, denote an := (t − χn)(t −
χn − ηn + 1). First recall that t ∈ R+µ if and only if one of cases (1)–(4) of Lemma 2.2 is
satisfied. Then, (1.6) and (3.14), and the expression for βn in the statement of Lemma 3.8
give

n
n − rn

Kn((un, rn), (vn, sn))
Bn(rn, sn)

= Jn − Φn.
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(1.5) then gives

Kn((vn, sn), (un, rn)) =
n − rn

n
Jn − Φn

At,n((un, rn), (vn, sn))
.

Then, (3.16), and Lemmas 3.14 and 3.15 give

Kn((vn, sn), (un, rn)) = n−
1
3 |qn |a−1

n
n−rn
n (K̃Ai((v, s), (u, r)) + o(1))

−
n − rn

n
Φn

At,n((un, rn), (vn, sn))
. (3.25)

Moreover, since one of cases (1)–(4) is satisfied, the expression for Φn in part (1) of
Lemma 3.8 gives

n − rn
n

Φn

At,n((un, rn), (vn, sn))

=
1(vn≥un,sn>rn)

At,n((un, rn), (vn, sn))
(vn + sn − un − rn − 1)!
(sn − rn − 1)!(vn − un)!

(n − rn)!
(n − sn)!

nrn−sn . (3.26)

Alternatively, when (u, r) , (v, s), Lemma 3.16 gives

n − rn
n

Φn

At,n((un, rn), (vn, sn))

= n−
1
3 |qn |a−1

n

n − rn
n
(1(v>u)Φ((v, s), (u, r)) + o(1)). (3.27)

Recall, for cases (1)–(4), that f ′′′t (t) , 0, eC(t) > 1, and C ′(t) < 0 (see Lemma 2.3).
Moreover, defining f ′t,n as in (2.18), recall (see Lemma 2.7) that f ′′′t,n (t) → f ′′′t (t) as
n→∞. Definition 2.8 then gives

|qn | = 2
1
3 | f ′′′t,n (t)|

− 1
3 → 2

1
3 | f ′′′t (t)|

− 1
3 ,

a non-zero constant. Also, recalling that an = (t − χn)(t − χn − ηn + 1), and (χn, ηn) =
(χn(t), ηn(t)), Definition 1.8 gives

an =
(eCn(t) − 1)2

eCn(t)C ′n(t)2
.

Moreover, (1.28) and Definition 1.8 give

n − rn
n
= 1 − ηn +O(n−

1
3 ) = −

(eCn(t) − 1)2

eCn(t)C ′n(t)
+O(n−

1
3 ).

Thus, since eCn(t) → eC(t) < {0, 1}, and C ′n(t) → C ′(t) , 0 (see (1.27)),

an →
(eC(t) − 1)2

eC(t)C ′(t)2
and

n − rn
n
→ −

(eC(t) − 1)2

eC(t)C ′(t)
,
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non-zero constants. Combined, the above give

|qn |a−1
n

n−rn
n → −2

1
3 | f ′′′t (t)|

− 1
3 C ′(t) = 2

1
3 | f ′′′t (t)|

− 1
3 |C ′(t)| = β(t), (3.28)

where the second part follows since C ′(t) < 0, the last part follows from the definition of
β(t) in the statement of Theorem 1.10.

Note, (3.25) and (3.28) give

Kn((vn, sn), (un, rn)) = n−
1
3 (β(t) + o(1))(K̃Ai((v, s), (u, r)) + o(1))

−
n − rn

n
Φn

At,n((un, rn), (vn, sn))
.

Recall that t > χn > χn + ηn − 1 for cases (1)–(4) of Lemma 2.2, and so
At,n((un, rn), (vn, sn)) > 0 (see Lemma 2.13). (1.6) and (3.26) then give

n − rn
n

Φn

At,n((un, rn), (vn, sn))

=
1(vn≥un,sn>rn)

|At,n((un, rn), (vn, sn))|B(rn, sn)
(vn + sn − un − rn − 1)!
(sn − rn − 1)!(vn − un)!

.

Moreover, when (u, r) , (v, s), (3.27) and (3.28) alternatively give
n − rn

n
Φn

At,n((un, rn), (vn, sn))
= n−

1
3 (β(t) + o(1))(1(v>u)Φ((v, s), (u, r)) + o(1)).

Swap (un, rn) and (vn, sn) in the above expressions to get the required result for cases (1)–(4)
of Lemma 2.2, i.e., when t ∈ R+µ . �

4. Existence of appropriate contours of descent/ascent

We finally prove Lemmas 3.5 and 3.6.

4.1. Lemma 3.5 for case (1) of Lemma 2.2

Assume the conditions of Lemma 3.5. Additionally assume that case (1) of Lemma 2.2
is satisfied. Fix ξ > 0 sufficiently small such that (2.11), (2.14), (2.17) and (2.31) are
satisfied.

We begin by considering the roots of the functions f ′t , f ′n and f̃ ′n in this case. We
consider f ′n and state that f̃ ′n can be treated similarly. Recall the definitions given in (1.12),
(2.3), (2.4), (2.5), (2.10) and (2.12), and the properties discussed in (2.2) and (2.9). Recall
that S1 := inf S1, S1 := sup S1, etc. (see Section 1.6). Then:

Lemma 4.1. Assume the above conditions. Then, t ∈ J1 = (S1,+∞). Moreover:
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(1) f ′t (s) > 0 for all s ∈ (S1, t), f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) > 0, and f ′t (s) > 0 for
all s ∈ (t,+∞).

(2) f ′t has 0 roots in each of {C \ R, J2, J3, J4}.

(3) f ′t has at most 1 root in each of
⋃3

i=1{K
(i)
1 ,K

(i)
2 , . . .}.

Next note that t ∈ J1,n = (S1,n,+∞). Indeed, fixing ξ > 0 as above, we have t −4ξ > S1
and t − 2ξ > S1,n. Also f ′n has 2 roots in B(t, ξ). We denote these by {t1,n, t2,n} as in
Lemma 2.6, and we recall that one of the possibilities (a)–(c) discussed in that lemma
must be satisfied. Then, whenever possibility (a) is satisfied:

(a1) t1,n ∈ (t − ξ, t + ξ) and t1,n = t2,n. Moreover f ′n(s) > 0 for all s ∈ (S1,n, t1,n),
f ′n(t1,n) = f ′′n (t1,n) = 0 and f ′′′n (t1,n) > 0, and f ′n(s) > 0 for all s ∈ (t1,n,+∞).

(a2) f ′n has 0 roots in each of {C \ R, J2,n, J3,n, J4,n}.

(a3) f ′n has 1 root in each of
⋃3

i=1{K
(i)
1,n,K

(i)
2,n, . . .}.

Moreover, whenever possibility (b) is satisfied:

(b1) {t1,n, t2,n} ⊂ (t−ξ, t+ξ) and t1,n > t2,n. Moreover f ′n(s) > 0 for all s ∈ (S1,n, t2,n),
f ′n(t2,n) = 0 and f ′′n (t2,n) < 0, f ′n(s) < 0 for all s ∈ (t2,n, t1,n), f ′n(t1,n) = 0 and
f ′′n (t1,n) > 0, and f ′n(s) > 0 for all s ∈ (t1,n,+∞).

(b2) f ′n has 0 roots in each of {C \ R, J2,n, J3,n, J4,n}.

(b3) f ′n has 1 root in each of
⋃3

i=1{K
(i)
1,n,K

(i)
2,n, . . .}.

Finally, whenever possibility (c) is satisfied:

(c1) t1,n ∈ B(t, ξ) ∩ H and t2,n is the complex conjugate of t1,n. Moreover, f ′n(s) > 0
for all s ∈ (S1,n,+∞).

(c2) f ′n has 0 roots in each of {C \ (R ∪ {t1,n, t2,n}), J2,n, J3,n, J4,n}

(c3) f ′n has 1 root in each of
⋃3

i=1{K
(i)
1,n,K

(i)
2,n, . . .}.

Proof. Consider f ′t . Note, (2.3), (2.4), and case (1) of Lemma 2.2, give t ∈ Lt =

J1 = (S1,+∞). Also, (1.18) gives f ′t (t) = f ′′t (t) = 0, and case (1) of Lemma 2.2 gives
f ′′′t (t) > 0. Parts (1)–(3) then follow from Lemma 2.1.
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R
H

S3 < S3 ≤ S2 < S2 ≤ S1 < S1 < t − 4ξ
∗
t

R
H

(a) • × • × • • × • × • • × • × •
S3,n < S3,n < S2,n < S2,n < S1,n < S1,n < t − 2ξ

B(t, ξ)

∗
t1,n

R
H

(b) • × • × • • × • × • • × • × •
S3,n < S3,n < S2,n < S2,n < S1,n < S1,n < t − 2ξ

B(t, ξ)

×
t1,n

×
t2,n

R
H

(c) • × • × • • × • × • • × • × •
S3,n < S3,n < S2,n < S2,n < S1,n < S1,n < t − 2ξ

B(t, ξ)

×t1,n

×t2,n

Figure 4.1. Top: Tt , the set of roots of f ′t , as described by Lemma 4.1.
Note, for each i ∈ {1, 2, 3}, Si does not necessarily equal [Si, Si], and
subintervals of [Si, Si] \ Si contain at most 1 root. (a), (b), (c): Tn, the
set of roots of f ′n , as described by Lemma 4.1 for possibilities (a)–(c).
Roots of multiplicity 1 and 2 are represented by × and ∗ respectively,
and elements of Sn = S1,n ∪ S2,n ∪ S3,n are represented by •.

Consider f ′n . First note, since Lt = J1 = (S1,+∞), (2.11) gives t − 4ξ > S1. Also,
(2.12) gives t ∈ Ln = J1,n = (S1,n,+∞), and t − 2ξ > S1,n. Also, part (1) of Lemma 2.6
implies that f ′n has 2 roots in B(t, ξ).

Consider part (b1). First note, since possibility (b) of Lemma 2.6, is satisfied, that
{t1,n, t2,n} ⊂ (t − ξ, t + ξ) ⊂ Ln = J1,n = (S1,n,+∞), t1,n > t2,n, and t1,n and t2,n are roots
of f ′n of multiplicity 1. Next note, (2.7) implies that ( f ′n)|J1,n is real-valued and continuous,
and

lim
w∈R,w↓S1,n

f ′n(w) = +∞.

Finally note that part (1) of Lemma 2.6 implies that f ′n has 0 roots in (t−ξ, t+ξ)\{t1,n, t2,n},
and 0 roots in Ln \ (t − ξ, t + ξ) = J1,n \ (t − ξ, t + ξ) = (S1,n, t − ξ] ∪ [t + ξ,+∞). (b1)
follows from the above observations. Parts (b2) and (b3) similarly follow from Lemma 2.6,
as do parts (a1)–(a3) and (c1)–(c3). �

Next, for convenience, define,

Tt := Set of roots of f ′t and Tn := Set of roots of f ′n . (4.1)
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S1 t

R′′′t (t) > 0
R′t (t) = R′′t (t) = 0

S1,n

(a)

t1,n

R′′′n (t1,n) > 0
R′n(t1,n) = R′′n(t1,n) = 0

S1,n

(b)

t2,n

R′′n(t2,n) < 0
R′n(t2,n) = 0

t1,n

R′′n(t1,n) > 0
R′n(t1,n) = 0

S1,n

(c)

R′n(s) > 0 for all s

H

Ra

da

d

a d

t

π
3

π
3π

3

π
3

π
3

π
3

H

Ra

da

d

a d

t1,n

π
3

π
3π

3

π
3

π
3

π
3

H

Rd

a

d

a

t2,n

π
2

π
2

π
2

π
2

a

d

a

d

t1,n

π
2

π
2

π
2

π
2

H

R

da

d a

t1,n
π
2

π
2

π
2

π
2

Figure 4.2. Top left: Rt |J1 . Top right: The directions of steepest
decent/ascent for ft at t. “a” represents ascent and “d” represents
descent. (a), (b), (c) left: Rn |J1,n for possibilities (a)–(c) of Lemma 4.1.
(a), (b), (c) right: The directions of steepest decent/ascent for fn at
t1,n/t2,n.

Then, recalling that f ′t : C \ S → C and f ′n : C \ Sn → C are analytic, Tt and Tn are
discrete subsets of C \ S and C \ Sn respectively. The previous lemma discusses the
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locations of the elements of these sets, and this is depicted in Figure 4.1. Note that,

Tt = T1,t ∪ T2,t ∪ T3,t ∪ {t} and Tn = T1,n ∪ T2,n ∪ T3,n ∪ {t1,n, t2,n}, (4.2)

where Ti,t is the set of roots of f ′t in [Si, Si] \ Si , and similarly for Ti,n.
Next recall (3.7) gives

(Rt |J1 )
′ = ( f ′t )|J1 and (Rn |J1,n )

′ = ( f ′n)|J1,n,

and similarly for the higher order derivatives. Above, Rt is the real-part of ft and Rn is the
real-part of fn (see (3.2) and (3.3)). The functions on the LHSs are the “real-derivatives”
of Rt |J1 and Rn |J1,n , and the functions on the RHSs are those given in (2.1) and (2.7)
restricted to J1 and J1,n respectively. Part (1) of Lemma 4.1 then implies that Rt |J1 has
the behaviour shown on the top left of Figure 4.2. Also, parts (a1), (b1) and (c1) of
Lemma 4.1 imply that Rn |J1,n have those behaviours shown on the left of Figure 4.2
for the possibilities (a)–(c). Part (3) of Lemma 3.4 also shows that ft and fn have those
directions of steepest descent/ascent shown on the right of Figure 4.2. The following
lemma examines some of the resulting contours of steepest descent/ascent:

Lemma 4.2. There exists simple contours, Dt and At , as shown on the top of Figure 4.3
with the following properties:

(1) Dt and At both start at t, enter H in the directions π
3 and 2π

3 respectively, end in
the intervals shown, and are otherwise contained in H.

(2) Dt and At are contours of steepest descent and ascent (respectively) for ft .

(3) Dt and At do not intersect except at t.

Also, whenever possibility (a) is satisfied, there exists simple contours, Dn and An, as
shown in Figure 4.3 with the following properties:

(a1) Dn and An both start at t1,n, enter H in the directions π
3 and 2π

3 respectively, end
in the intervals shown, and are otherwise contained in H.

(a2) Dn and An are contours of steepest descent and ascent (respectively) for fn.

(a3) Dn and An do not intersect except at t1,n.

Next, whenever possibility (b) is satisfied, there exists simple contours, Dn and An, as
shown in Figure 4.3 with the following properties:

(b1) Dn and An start at t1,n and t2,n respectively, both enter H in the direction π
2 , end

in the intervals shown, and are otherwise contained in H.
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(b2) Dn and An are contours of steepest descent and ascent (respectively) for fn.

(b3) Dn and An do not intersect.

Next, whenever possibility (c) is satisfied, there exists simple contours, Dn, An,D′n, A′n, as
shown in Figure 4.3 with the following properties:

(c1) Dn, An,D′n, A′n all start at t1,n ∈ H, leave t1,n in orthogonal directions in
the counter-clockwise order Dn, An,D′n, A′n, end in the intervals shown or are
unbounded, and are otherwise contained in H.

(c2) Dn, D′n are contours of steepest descent for fn, and An, A′n are contours of
steepest ascent for fn.

(c3) Dn,D′n, An, A′n do not intersect except at t1,n.

Proof. Consider fn. Recall (see (4.1)) that Tn is the set of roots of f ′n , and the behaviour
of Tn is described in Lemma 4.1 and displayed in Figure 4.1. Also, the directions of
steepest decent/ascent for fn at t1,n/t2,n are shown on the right of Figure 4.2. Define:

(i) For possibility (a), let Dn and An denote the contours of steepest descent and
ascent (respectively) for fn, which start at t1,n ∈ (S1,n,+∞), and which enter
H in the directions π

3 and 2π
3 respectively. For possibility (b), let Dn and An

denote the contours of steepest descent and ascent (respectively), which start
at t1,n ∈ (S1,n,+∞) and t2,n ∈ (S1,n,+∞) respectively, and which enter H in the
direction π

2 . For possibility (c), let {Dn,D′n} and {An, A′n} denote the contours
of steepest descent and ascent (respectively) which start at t1,n ∈ H. All contours
are defined to follow the unique directions of steepest descent and ascent (as
appropriate) at each w ∈ C \ (Sn ∪ Tn) (see part (3) of Lemma 3.4), and are
defined to end whenever/if they first intersect a point in Sn ∪ Tn. Finally, if no
such point of intersection exists, the contours are unbounded.

Then, using the above definition, we will first show:

(ii) For possibility (a), Dn and An do not intersect except at t1,n. For possibility (b),
Dn and An never intersect. For possibility (c), Dn, An, D′n, A′n do not intersect
except at t1,n. For all possibilities, the contours are simple.
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H

R ( ) ( )
S3 < S3 ≤ S2 < S2 ≤ S1 < S1 < t − 4ξ < t

Dt

At

(a) H

R
S3,n < S3,n < S2,n < S2,n < S1,n < S1,n< t − 2ξ < t1,n

Dn

An

(b) H

R
S3,n < S3,n < S2,n < S2,n < S1,n < S1,n< t − 2ξ < t2,n < t1,n

Dn

An

(c) H

R
S3,n < S3,n < S2,n < S2,n < S1,n < S1,n< t − 2ξ t1,n

Dn

An

D′n

unbounded

A′n

Figure 4.3. The contours of Lemma 4.2.

Next we investigate the possible end-points of the contours in Sn ∪ Tn. Recall that
these are depicted in Figure 4.1, and that Tn = T1,n ∪ T2,n ∪ T3,n ∪ {t1,n, t2,n} (see (4.2)).
Also, since t1,n and t2,n are the start-points of Dn, An,D′n, A′n, part (ii) implies that the
contours do not intersect {t1,n, t2,n} again. Part (i) thus implies that they end whenever/if
they intersect a point in S1,n ∪ T1,n ∪ S2,n ∪ T2,n ∪ S3,n ∪ T3,n ⊂ R. Next, we will show:
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(iii) Each of Dn, An,D′n, A′n either eventually intersect and end in S1,n ∪ T1,n ∪ S2,n ∪

T2,n ∪ S3,n ∪ T3,n ⊂ R, or they do not intersect R and are unbounded. Moreover,
if we exclude the start-points and end-points, the contours are contained in H.

Finally, we use the above observations to show:

(iv) Each of Dn,D′n eventually intersect and end in S1,n ∪ T1,n ∪ S3,n ∪ T3,n ⊂ R.

(v) Each of An, A′n either eventually intersect and end in S2,n ∪ T2,n ⊂ R, or they do
not intersect R and are unbounded.

(vi) For possibilities (a) and (b), Dn ends in S3,n ∪ T3,n and An ends in S2,n ∪ T2,n.
For possibility (c), one of {Dn,D′n} ends in S3,n ∪ T3,n, one of {An, A′n} ends
in S2,n ∪ T2,n, one of {Dn,D′n} ends in S1,n ∪ T1,n, one of {An, A′n} does not
intersect R and is unbounded. Moreover, if we label so that Dn ends in S3,n ∪T3,n
and An ends in S2,n ∪ T2,n, then they leave t1,n in the counter-clockwise order
Dn, An,D′n, A′n.

The required results follow from parts (i), (ii), (iii) and (vi) since Si,n ∪ Ti,n ⊂ [Si,n, Si,n]
for all i ∈ {1, 2, 3} (see Figure 4.1 and (4.2)).

Consider (ii) for possibility (a). Recall (see part (i)) that Dn, An both start at t1,n. Also,
recall (see part (1) of Lemma 3.4) that Rn strictly decreases along Dn, where Rn is
the real-part of fn, and Rn strictly increases along An. A contradiction argument then
proves part (ii) for possibility (a). Consider (ii) for possibility (b). Recall (see part (i))
that Dn starts at t1,n ∈ R and An starts at t2,n ∈ R, and t1,n > t2,n. Also, recall (see left
of Figure 4.2) that Rn strictly decreases as we move from t2,n to t1,n along R. A similar
contradiction argument then proves part (ii) for possibility (b). Part (ii) for possibility (c)
also follows similarly.

Consider (iii) for possibility (a). Recall (see part (i)) that Dn and An both start at
t1,n ∈ R and immediately enter H. Also, recall that the contours either end in Sn ∪ Tn

or they are unbounded. Finally, recall that Sn ∪ Tn ⊂ R. Thus, to prove part (iii) for
possibility (a), it is sufficient to show that contours of steepest descent and ascent cannot
intersect R \ (Sn ∪ Tn) from H. To show this, fix s ∈ R \ (Sn ∪ Tn). Recall that f ′n(s) ∈ R
(see (2.7)), and note that f ′n(s) , 0 since Tn is the set of roots of f ′n . Therefore f ′n(s) > 0
or f ′n(s) < 0. Part (3) of Lemma 3.4 then implies that fn has 1 direction of steepest ascent
at s. Moreover, the direction of steepest ascent is along the positive real axis whenever
f ′n(s) > 0, and along the negative real axis whenever f ′n(s) < 0. Thus a contour of steepest
descent cannot intersect s from H. Similarly for contours of steepest ascent. This proves
part (iii) for possibility (a). We can similarly prove part (iii) for possibilities (b) and (c).
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Consider (iv). First note, part (4) of Lemma 3.4 implies that Dn,D′n are bounded.
Part (iii) thus implies that each of Dn,D′n eventually intersects and ends in S1,n ∪ T1,n ∪

S2,n ∪ T2,n ∪ S3,n ∪ T3,n ⊂ R. Next note, part (5) of Lemma 3.4 implies that Dn,D′n do
not intersect S2,n. Thus, to prove part (iv), it remains to show that contours of steepest
descent cannot intersect T2,n from H. To show this, fix s ∈ T2,n. Recall (see Figure 4.1
and (4.1)) that s ∈ (x, y) where x and y are consecutive elements of S2,n, s is a root of f ′n
of multiplicity 1, and s is the unique root of f ′n in (x, y) (see parts (a3), (b3) and (c3) of
Lemma 4.1). Also, (2.7) gives f ′n(w) ∈ R for all w ∈ (x, y), and

lim
w∈R,w↑y

f ′n(w) = +∞ and lim
w∈R,w↓x

f ′n(w) = −∞.

It thus follows that f ′n(s) = 0 and f ′′n (s) > 0. Part (3) of Lemma 3.4 thus shows that
there are 2 directions of steepest descent and 2 directions of steepest ascent for fn at s.
Moreover, the directions of steepest descent are given by − π2 and π

2 , and the directions of
steepest ascent are given by 0 and π. Thus a contour of steepest descent cannot intersect s
from H. This proves (iv).

Consider (v). First, recall (see part (iii)) that each of An, A′n eventually intersects
and ends in S1,n ∪ T1,n ∪ S2,n ∪ T2,n ∪ S3,n ∪ T3,n ⊂ R, or they do not intersect R and
are unbounded. Next note, part (5) of Lemma 3.4 implies that An, A′n do not intersect
S1,n ∪ S3,n. Thus, to prove part (v), it remains to show that contours of steepest ascent
cannot intersect T1,n ∪ T3,n from H. This follows from similar arguments to those used in
the proof of part (iv).

Consider (vi) for possibility (a). Recall (see part (iv)) that Dn ends either in S1,n ∪T1,n
or in S3,n ∪ T3,n. We argue by contradiction: Assume that Dn ends in S1,n ∪ T1,n. Recall
(see part (i)) that Dn and An leave t1,n in the directions π

3 and 2π
3 respectively. Next

recall (see part (v)) that An ends either in S2,n ∪ T2,n, or An does not intersect R and is
unbounded. Thus, since S1,n ∪ T1,n ⊂ [S1,n, S1,n] and S2,n ∪ T2,n ⊂ [S2,n, S2,n], Figure 4.1
clearly implies that An must intersect Dn. This contradicts part (ii). Thus Dn cannot end
in S1,n ∪ T1,n, and must end in S3,n ∪ T3,n. Moreover, a similar argument by contradiction
shows that An cannot be unbounded, and so An must end in S2,n ∪ T2,n. This proves (vi)
for possibility (a). (vi) for possibility (b) follows similarly.

Consider (vi) for possibility (c). Recall (see part (iv)) each of {Dn,D′n} end either in
S1,n ∪T1,n or in S3,n ∪T3,n. We argue by contradiction: Assume that both of {Dn,D′n} end
in S1,n ∪ T1,n. Recall (see part (i) and right of Figure 4.2) that Dn,D′n, An, A′n leave from
t1,n ∈ H in orthogonal directions, and we alternately encounter elements from {Dn,D′n}
and {An, A′n} when proceeding counter-clockwise in a neighbourhood of t1,n. Next recall
(see part (v)) that each of {An, A′n} end either in S2,n ∪ T2,n, or they do not intersect R
and are unbounded. Thus, since S1,n ∪ T1,n ⊂ [S1,n, S1,n] and S2,n ∪ T2,n ⊂ [S2,n, S2,n],
Figure 4.1 clearly implies that one of {An, A′n} must intersect at least one of {Dn,D′n}.
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This contradicts part (ii). Thus both of {Dn,D′n} cannot end in S1,n ∪T1,n. Similarly, both
of {Dn,D′n} cannot end in S3,n ∪ T3,n. Thus one of {Dn,D′n} must end in S1,n ∪ T1,n, and
the other must end S3,n ∪ T3,n. Also, we can similarly argue by contradiction that one of
{An, A′n} must end in S2,n ∪ T2,n, and the other is unbounded. Finally, if we choose the
labelling as described in part (vi), it remains to show that the contours do not leave t1,n in
the counter-clockwise order Dn, A′n,D

′
n, An. This again follows from a similar argument

by contradiction. This proves (vi).
Next consider ft . Recall (see (4.1)) that Tt is the set of roots of f ′t , and the behaviour of

Tt is described in Lemma 4.1 and displayed in Figure 4.1. Also, the directions of steepest
decent/ascent for ft at t are shown on the right of Figure 4.2. We define:

(vii) Let Dt and At denote the contours of steepest descent and ascent (respectively)
for ft which start t ∈ (S1,+∞), and which enter H in the directions π

3 and 2π
3

respectively. The contours are defined to follow the unique directions of steepest
descent and ascent (as appropriate) at each w ∈ C \ (S ∪ T) (see part (3) of
Lemma 3.4), and are defined to end whenever/if they first intersect a point in
S ∪T . Finally, if no such point of intersection exists, the contours are unbounded.

This definition, and similar arguments to those used to prove part (ii), above, then give:

(viii) Dt and At do not intersect except at t, and they are simple.

Next we investigate the possible end-points of the contours in S ∪ Tt . Recall that these
are depicted in Figure 4.1, and Tt = T1,t ∪ T2,t ∪ T3,t ∪ {t} (see (4.2)). Also, since t
is the start-point of Dt and At , part (viii) implies that the contours do not intersect
{t} again. Part (vii) thus implies that they end whenever/if they intersect a point in
S1 ∪ T1,t ∪ S2 ∪ T2,t ∪ S3 ∪ T3,t ⊂ R. Similar arguments to those used to prove part (iii),
above, then give:

(ix) Dt and At either eventually intersect and end in S1∪T1,t ∪S2∪T2,t ∪S3∪T3,t ⊂ R,
or they do not intersect R and are unbounded. Moreover, if we exclude the start-
points and end-points, the contours are contained in H.

Next, we use the above observations to show:

(x) Dt ends in (S3, S3] ∪ [S2, S2).

(xi) At ends in (S3, S3] ∪ [S2, S2), or it does not intersect R and is unbounded.

Finally, we will show:
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(xii) Dt ends in (S3, S3).

(xiii) At ends in (S2, S2).

The required results then follows from parts (vii), (viii), (ix), (xii) and (xiii).
Consider (x). First note, part (4) of Lemma 3.4 implies that Dt is bounded. Part (ix) then

implies that Dt ends in S1 ∪T1,t ∪ S2 ∪T2,t ∪ S3 ∪T3,t ⊂ R. Thus, since Si ∪Ti,t ⊂ [Si, Si]
for all i ∈ {1, 2, 3} (see (4.2)), Dt ends in [S3, S3] ∪ [S2, S2] ∪ [S1, S1]. Thus, to show
part (x), it is sufficiently to show that Dt does not end in {S3, S2} ∪ [S1, S1]. We argue by
contradiction: First assume that Dt ends at S1. Then (see parts (vii) and (ix)) Dt starts at
t > S1 in the direction π

3 , ends at S1, and is otherwise contained in H. Consider the simple
closed contour consisting of Dt and the interval [S1, t]. Note, Figure 3.1 and part (2) of
Lemma 3.4 implies that the function w 7→ Im( ft (w)) is constant on this contour (indeed,
the constant valve is 0). Therefore, since this function is harmonic, it is also constant in the
domain bounded by the simple closed contour. (3.4) easily shows that this is not true. Thus
we have a contradiction, and so Dt does not end at S1. Next assume that Dt ends at a point
dt ∈ [S1, S1). Note, as above, w 7→ Im( ft (w)) is constant on Dt . In particular, this gives
Im( ft (dt )) = Im( ft (t)). Recall (see (2.2)) that (S1 − ε, S1] ⊂ S1 for all ε > 0 sufficiently
small. (3.5) and Figure 3.1 then give Im( ft (s)) > 0 for all s ∈ [S1, S1). However, these
also give Im( ft (t)) = 0. This contradicts Im( ft (dt )) = Im( ft (t)), and so Dt does not end
in [S1, S1). Next assume that Dt ends at S2 or at S3. Note, (2.2), (3.5) and Figure 3.1 give
Im( ft (S2)) = πµ[S1] > 0 and Im( ft (S3)) = πη > 0. We then proceed as in the previous
case to get a contradiction, and so Dt does not end at S2 or at S3. This proves (x). Part (xi)
follows similarly.

Consider (xii). Part (x) implies that it is sufficient to show that Dt does not end in
{S3} ∪ [S2, S2). We argue by contradiction: First assume that Dt ends in [S2, S2). Then
(see parts (vii) and (ix)) Dt starts at t in the direction π

3 , ends in [S2, S2), and is otherwise
contained in H. Denote the end-point by dt . Parts (vii), (viii) and (xi) then imply that At

stars at t in the direction 2π
3 , At and Dt do not intersect except at t, At ends in (dt, S2),

and At is otherwise contained in H. Denote the end-point of At by at ∈ (dt, S2). Note,
part (2) of Lemma 3.4 implies that the function w 7→ Im( ft (w)) is constant on Dt and
At (indeed, the constant valve is 0). In particular this gives Im( ft (dt )) = Im( ft (at )). (3.5)
and Figure 3.1 imply that this can only happen when (dt, at ) is entirely contained in a
sub-interval of [S2, S2] \ S2, in which case w 7→ Im( ft (w)) is constant on the interval
[dt, at ] also. Therefore w 7→ Im( ft (w)) is an harmonic function which is constant on the
simple closed contour consisting of Dt and At and interval [dt, at ], and so it also constant
in the domain bounded by the closed contour. (3.4) easily shows that this is not true. Thus
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we have a contradiction, and so Dt does not end in [S2, S2). Similarly, we can argue by
contradiction that Dt does not end at S3. This proves (xii).

Consider (xiii). Part (xi) implies that it is sufficient to show that At does not end in
(S3, S3] ∪ {S2}, and that At is not unbounded. Using parts (vii) and (xii), this follows from
arguments by contradiction similar to those used in the proof of (xii). �

Remark 4.3. Note, the nature of Dt and At for case (1) of Lemma 2.2, as described
above, proves an interesting inequality. Recall that Dt and At both start at t ∈ (S1,+∞),
Dt ends at a point dt ∈ (S3, S3), and At ends at a point at ∈ (S2, S2). Also recall that
w 7→ Im( ft (w)) is constant along Dt and At . Figure 3.1 implies that Im( ft (t)) = 0, and so
0 = Im( ft (t)) = Im( ft (dt )) = Im( ft (at )). Figure 3.1 also implies that this can only occur
if µ[S1] − (λ − µ)[S2] < 0. This inequality must be satisfied whenever case (1) is satisfied.
The authors are not aware of a direct proof of this inequality, or of its significance. Though
we will not discuss them, analogous inequalities exist for the other cases of Lemma 2.2.

We are now in a position to define the contours, γ+1,n and Γ+1,n, that satisfy Lemma 3.5
for case (1) of Lemma 2.2. As above, fix ξ > 0 sufficiently small such that (2.11), (2.14),
(2.17) and (2.31) are satisfied. Next, fix θ ∈ ( 14,

1
3 ) as in Lemma 3.5, and {qn}n≥1 ⊂ R

as in Definition 2.8. Note, since f ′′′t (t) > 0 (see case (1) of Lemma 2.2), Lemma 2.7
and Definition 2.8 imply that {qn}n≥1 converges to a positive constant as n→∞. Also,
part (4) of Lemma 2.9 gives t1,n = t +O(n−

1
3 ) and t2,n = t +O(n−

1
3 ), and so

{t1,n, t2,n} ⊂ B(t, n−θqn) ⊂ B(t, ξ).

Thus, Dn and An (see previous lemma) both start inside B(t, n−θqn) and B(t, ξ). Moreover,
assuming for simplicity that [0, 1] is the domain of definition of these contours, we define:

d1,n := Dn(sup{y ∈ [0, 1] : Dn(y) ∈ cl(B(t, n−θqn))}),

d2,n := Dn(sup{y ∈ [0, 1] : Dn(y) ∈ cl(B(t, ξ))}),

a1,n := An(sup{y ∈ [0, 1] : An(y) ∈ cl(B(t, n−θqn))}),

a2,n := An(sup{y ∈ [0, 1] : An(y) ∈ cl(B(t, ξ))}).

(4.3)

In words, d1,n and d2,n denote the points where Dn “exits” B(t, n−θqn) and B(t, ξ)
respectively. Similarly for a1,n, a2,n and An.

Next denote the equivalent quantities for Dt and At by d1,t, d2,t, a1,t, a2,t . Also, fixing
ξ > 0 sufficiently small as above, note that case (1) of Lemma 2.2 and (3.1) give

Cξ = {w ∈ C : Re(w) > S1 + 2ξ or |Im(w)| > ξ4}.

Recall that Dt ends in (S3, S3) ⊂ C \Cξ , and At ends in (S2, S2) ⊂ C \Cξ , and let d3,t and
a3,t denote the points where Dt and At “exit” Cξ respectively. Note, it is always possible
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to choose the ξ > 0 sufficiently small that d3,t and a3,t are on the upper boundary of Cξ :

Im(d3,t ) = Im(a3,t ) = ξ
4. (4.4)

Also note, since Dt and At end in (S3, S3) and (S2, S2) respectively, it is always possible to
choose the ξ > 0 sufficiently small such that,

Re(d3,t ) ∈ (S3 + c, S3 − c) and Re(a3,t ) ∈ (S2 + c, S2 − c), (4.5)

where c = c(t) > 0 is some constant which is independent of ξ. Finally define the
following contours, which are depicted in Figure 4.4:

Definition 4.4. Define γ+1,n to be the simple contour which:

• starts at t ∈ (S1,+∞),

• then traverses the straight line from t to d1,n ∈ ∂B(t, n−θqn),

• then traverses that section of Dn from d1,n ∈ ∂B(t, n−θqn) to d2,n ∈ ∂B(t, ξ),

• then traverses the shortest arc of ∂B(t, ξ) from d2,n ∈ ∂B(t, ξ) to d2,t ∈ ∂B(t, ξ),

• then traverses that section of Dt from d2,t to d3,t ,

• then traverses the straight line from d3,t to Re(d3,t ),

• then ends at Re(d3,t ) ∈ (S3 + c, S3 − c).

Next, let D̃n and Ãn denote the contours of steepest descent and ascent (respectively) for
f̃n which are analogous to Dn and An. Moreover, let d̃1,n, d̃2,n, ã1,n, ã2,n denote analogous
quantities to those defined in (4.3). Finally, define Γ+1,n to be the simple contour which:

• starts at t ∈ (S1,+∞),

• then traverses the straight line from t to ã1,n ∈ ∂B(t, n−θqn),

• then traverses that section of Ãn from ã1,n ∈ ∂B(t, n−θqn) to ã2,n ∈ ∂B(t, ξ),

• then traverses the shortest arc of ∂B(t, ξ) from ã2,n ∈ ∂B(t, ξ) to a2,t ∈ ∂B(t, ξ),

• then traverses that section of At from a2,t to a3,t ,

• then traverses the straight line from a3,t to Re(a3,t ),
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d1,n

d2,n

d2, t

γ+1,n

d3, t ã1,n

ã2,n

a2, tΓ+1,n

a3, t

t

ξ4

S1 + 2ξS1<S1≤S2
S2 − cS2 + c

S2≤S3
S3 − cS3 + c

S3

H

R

ξ
n−θqn

Figure 4.4. The contours defined in Definition 4.4. The dashed lines
represent boundaries of Cξ . c = c(t) > 0 is independent of ξ.

• then ends at Re(a3,t ) ∈ (S2 + c, S2 − c).

We finally show that the above contours satisfy the requirements of Lemma 3.5:

Proof of Lemma 3.5 for case (1) of Lemma 2.2. Part (1) of Lemma 3.5 follows easily
from Lemma 4.2 and Definition 4.4 (see also Figures 3.2 and 4.4). Consider (2). We will
show that:

(i) Arg(d1,n − t) = π
3 +O(n−

1
3+θ ) and Arg(a1,n − t) = 2π

3 +O(n−
1
3+θ ).

Similarly,we can show thatArg(d̃1,n−t) = π
3+O(n−

1
3+θ ) andArg(ã1,n−t) = 2π

3 +O(n−
1
3+θ ).

This proves (2).
Consider (3). We will show, for all ξ > 0 sufficiently small as in the statement of this

lemma, that there exists an integer n(ξ) > 0 such that the following are satisfied for all
n > n(ξ):

(ii) Arg(d2,n − t) = π
3 +O(ξ) and Arg(a2,n − t) = 2π

3 +O(ξ).

Then, letting Rn denote the real-part of fn (see (3.3)), we will use this to show that there
exists a choice of the above ξ such that the following are satisfied:

(iii) Rn(w) ≤ Rn(d1,n) for all w on that section of Dn from d1,n to d2,n.

(iv) Rn(w) ≤ Rn(d1,n) for all w on the shortest arc of ∂B(t, ξ) from d2,n to d2,t .

(v) Rn(w) ≤ Rn(d1,n) for all w on that section of Dt from d2,t to d3,t .

(vi) Rn(w) ≤ Rn(d1,n) for all w on the straight line from d3,t to Re(d3,t ).
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d2, t

γ+1,n

d3, t

a2, t
Γ+1,n

a3, t

t

ξ4

S1 + 2ξS1<S1≤S2
S2 − cS2 + c

S2≤S3
S3 − cS3 + c

S3

H

R

ξ
n−θqn

Figure 4.5. The contours defined in Definition 4.4 and depicted in
Figure 4.4. Here, we do not depict those sections of the contours in
cl(B(t, ξ)). Instead, we depict two cones (the shaded areas). For all
ξ > 0 sufficiently small and n > n(ξ), Arg(w − t) = π

3 + O(ξ) and
Arg(z − t) = 2π

3 + O(ξ) uniformly for w and z in the right and left
cones respectively, γ+1,n ∩ B(t, ξ) and Γ+1,n ∩ B(t, ξ) are contained in the
right and left cones respectively, and γ+1,n \ B(t, ξ) and Γ+1,n \ B(t, ξ) are
independent of n.

Definition 4.4 then implies that Rn(w) ≤ Rn(d1,n) for all w ∈ γ+1,n \ B(t, n−θqn). This
proves (3). (4) follows similarly.

Consider (5). First note, we can proceed similarly to the proofs of parts (i) and (ii)
to show the following: For all ξ > 0 sufficiently small, there exists an integer n(ξ) > 0
such that Arg(w − t) = π

3 +O(ξ) for all n > n(ξ) and uniformly for w ∈ γ+1,n ∩ cl(B(t, ξ)),
and Arg(z − t) = 2π

3 + O(ξ) for all n > n(ξ) and uniformly for z ∈ Γ+1,n ∩ cl(B(t, ξ)).
These contour sections are thus contained in the cones shown in Figure 4.5. Next note,
Definition 4.4 implies that γ+1,n and Γ+1,n depend on n inside the cones, are independent of
n outside the cones, and the parts outside the cones never intersect. Then, for ξ > 0 fixed
sufficiently small, Figure 4.5 and a simple geometric argument proves part (5).

Consider (6). Recall (see the proof of part (5)), that for all ξ > 0 sufficiently small,
there exists an integer n(ξ) > 0 such that Arg(w − t) = π

3 + O(ξ) for all n > n(ξ) and
uniformly for w on that section of Dn from d1,n to d2,n. Looking at Figure 4.5, this contour
is contained in that section of the right cone in B(t, ξ) \ B(t, n−θqn). We will show the
following:

(vii) Consider that section of the right cone discussed above. Then, we can choose the
above ξ and n(ξ) such that the direction of steepest descent for fn at w equals
π
3 +O(ξ) for all n > n(ξ) and uniformly for w in that section.
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Finally recall (see Lemma 4.2 and Definition 4.4) that Dn follows the uniquely defined
directions of steepest descent for fn. The above observations imply that the length of that
section of Dn from d1,n to d2,n is of order O(ξ) for all n > n(ξ). Moreover, Definition 4.4
trivially implies that the remaining sections of γ+1,n are of order at most O(1) for all n
sufficiently large. Therefore we can fix ξ > 0 sufficiently small such that |γ+1,n | = O(1).
Similarly, we can show that |Γ+1,n | = O(1). This proves (6).

Consider (i). First recall (see Lemma 4.2) that Dn is a contour of steepest descent
for fn which starts at t1,n, and (see (4.3)) d1,n ∈ ∂B(t, n−θqn) denotes that point at
which Dn “exits” B(t, n−θqn). Thus, letting Rn and In respectively denote the real and
imaginary-parts of fn, parts (1) and (2) of Lemma 3.4 give

Rn(d1,n) < Rn(t1,n) and In(d1,n) = In(t1,n).

Thus, since t1,n = t +O(n−
1
3 ) (see part (4) of Lemma 2.9), and since fn(t) ∈ R, part (1)

of Corollary 3.3 gives

Rn(d1,n) < fn(t) +O(n−1) and In(d1,n) = O(n−1). (4.6)

Similar considerations for the contour, An, of steepest ascent for fn give

Rn(a1,n) > fn(t) +O(n−1) and In(a1,n) = O(n−1). (4.7)

Next note, since θ ∈ ( 14,
1
3 ), part (2) of Lemma 3.2 (take ξn = n−θ ) gives

fn(t + n−θqneiα) = fn(t) +
1
3

n−3θe3iα +O(n−
1
3−2θ ),

uniformly for α ⊂ (−π, π]. Therefore, since fn(t) ∈ R,

Rn(t + n−θqneiα) = fn(t) +
1
3

n−3θ cos(3α) +O(n−
1
3−2θ ), (4.8)

In(t + n−θqneiα) =
1
3

n−3θ sin(3α) +O(n−
1
3−2θ ), (4.9)

uniformly for α ⊂ (−π, π].
(4.9), and the second parts of (4.6) and (4.7) give

sin(3 Arg(d1,n − t)) = O(n−
1
3+θ ) and sin(3 Arg(a1,n − t)) = O(n−

1
3+θ ). (4.10)

Then, since θ ∈ ( 14,
1
3 ), (4.8) and (4.10), and the first parts of (4.6) and (4.7) imply the

following:

• Either d1,n = d ′1,n or d1,n = d ′′1,n where Arg(d ′1,n − t) = π
3 + O(n−

1
3+θ ) and

Arg(d ′′1,n−t) = π+O(n−
1
3+θ ). In either case, Rn(d1,n) = fn(t)− 1

3 n−3θ+O(n−
1
3−2θ ).

• Either a1,n = a′1,n or a1,n = a′′1,n where Arg(a′1,n − t) = O(n−
1
3+θ ) and Arg(a′′1,n −

t) = 2π
3 +O(n−

1
3+θ ). In either case, Rn(a1,n) = fn(t) + 1

3 n−3θ +O(n−
1
3−2θ ).
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H

R

(a)

a′1,n

d′1,na′′1,n

d′′1,n
t1,n = t2,n

DnAn

(b)

a′1,n

d′1,na′′1,n

d′′1,n
t1,n

Dn

t2,n

An

(c)

a′1,n

d′1,na′′1,n

d′′1,n

DnAn

D′n A′n
t1,n

Figure 4.6. The contours An,Dn, A′n,D
′
n of Lemma4.2 in B(t, n−θqn)∩

H for each of the possibilities (a)–(c) of Lemmas 4.1 and 4.2.

These exit points, and each of the possibilities (a), (b) and (c) of Lemmas 4.1 and 4.2, are
shown in Figure 4.6. We will show, for each possibility, that d1,n = d ′1,n and a1,n = a′′1,n.
This proves (i).

For possibilities (a) and (b), recall that Dn and An have the behaviours described in
Lemma 4.2 and shown in Figure 4.3. Note that the contours do not intersect outside
B(t, n−θqn), and it is easy to see that these behaviours are only possible if Dn “exits”
B(t, n−θqn) at d ′1,n and An “exits” at a′′1,n. Thus d1,n = d ′1,n and a1,n = a′′1,n, as required,
for possibilities (a) and (b). For possibility (c), proceeding as above, we can show that
a′1,n and a′′1,n are the possible “exit” points of both An and A′n, and d ′1,n and d ′′1,n are the
possible “exit” points of both Dn and D′n. Also, the end-points of the contours, and the
fact that they do not intersect outside B(t, n−θqn), implies that one of {An, A′n} “exits” at
a′1,n, one of {An, A′n} “exits” at a′′1,n, one of {Dn,D′n} “exits” at d ′1,n, and one of {Dn,D′n}
“exits” at d ′′1,n. Finally, we can proceed similarly to the proof of part (vi) of the proof of
Lemma 4.2 to show that A′n,Dn, An,D′n respectively “exit” at a′1,n, d

′
1,n, a

′′
1,n, d

′′
1,n. Thus

d1,n = d ′1,n and a1,n = a′′1,n, as required, for possibility (c).
Consider (ii). First recall (see (4.3)) that d2,n and a2,n denote the points at which Dn

and An respectively “exit” B(t, ξ). Then, proceed as in (i) to get,

Rn(d2,n) < fn(t) +O(n−1) and In(d2,n) = O(n−1),

Rn(a2,n) > fn(t) +O(n−1) and In(a2,n) = O(n−1).

Thus, since fn(t) → ft (t),

Rn(d2,n) < ft (t) + o(1) and In(d2,n) = o(1),
Rn(a2,n) > ft (t) + o(1) and In(a2,n) = o(1).

Next, recall that ξ is any positive number for which (2.11), (2.14), (2.17) and (2.31) hold.
Note that this can be fixed arbitrarily small. Also, for all such ξ > 0 chosen sufficiently
small, part (2) of Lemma 3.2 implies (take ξn = ξq−1

n ) that there exists a positive integer,
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n(ξ), such that,

fn(t + ξeiα) = fn(t) +
1
3
ξ3q−3

n e3iα +O(ξ4),

for all n > n(ξ) and uniformly for α ⊂ (−π, π]. Next recall that fn(t) → ft (t) and qn → qt ,
where qt is some positive number. It thus follows that there exists a choice of n(ξ) such
that,

fn(t + ξeiα) = ft (t) +
1
3
ξ3q−3

t e3iα +O(ξ4),

for all n > n(ξ) and uniformly for α ⊂ (−π, π]. Therefore, since ft (t) ∈ R,

Rn(t + ξeiα) = ft (t) +
1
3
ξ3q−3

t cos(3α) +O(ξ4),

In(t + ξeiα) =
1
3
ξ3q−3

t sin(3α) +O(ξ4),

for all n > n(ξ) and uniformly for α ⊂ (−π, π]. Then, for all ξ > 0 sufficiently small, it
follows from similar arguments to those used in part (i) that there exists a choice of n(ξ)
such that we have the following possibilities for d2,n and a2,n for all n > n(ξ):

• Either d2,n = d ′2,n or d2,n = d ′′2,nwhereArg(d ′2,n−t) = π
3+O(ξ) andArg(d ′′2,n−t) =

π +O(ξ). In either case, Rn(d2,n) = ft (t) − 1
3ξ

3q−3
t +O(ξ4).

• Either a2,n = a′2,n or a2,n = a′′2,n where Arg(a′2,n − t) = O(ξ) and Arg(a′′2,n − t) =
2π
3 +O(ξ). In either case, Rn(a2,n) = ft (t) + 1

3ξ
3q−3

t +O(ξ4).

(ii) then follows from similar arguments to those used in part (i), above.
Consider (iii). This follows trivially from part (1) of Lemma 3.4, since Dn is a contour

of steepest descent for fn. Consider (iv). First note, proceeding similarly to the proof of
part (ii) above, we can show that we can choose ξ and n(ξ) such that,

Arg(w − t) =
π

3
+O(ξ) and Rn(w) = ft (t) −

1
3
ξ3q−3

t +O(ξ4),

for all n > n(ξ) and uniformly for w on the shortest arc of ∂B(t, ξ) from d2,n to d2,t . Also
recall (see proof of part (i)) that Rn(d1,n) = fn(t) − 1

3 n−3θ +O(n−
1
3−2θ ). Therefore we can

choose ξ and n(ξ) such that Rn(w) ≤ Rn(d1,n) for all n > n(ξ) and w on this arc. This
proves (iv).

Consider (v). Note, that section of Dt from d2,t to d3,t is independent of n and is
contained in Cξ , and so part (2) of Lemma 3.1 implies that Rn(w) = Rt (w) + o(1)
uniformly for all w on this section. Thus, for all ξ > 0, there exists an integer n(ξ) > 0
such that Rn(w) = Rt (w) + O(ξ4) for all n > n(ξ) and uniformly for w on this section.
Next recall that Dt is a contour of steepest descent for ft . Part (1) of Lemma 3.4 thus
gives Rt (w) ≤ Rt (d2,t ) for all w on this section. Finally, proceeding similarly to part (ii)
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above, we can show that for all ξ > 0 sufficiently small, we can choose the above n(ξ) > 0
such that the following is satisfied for all n > n(ξ): Rt (d2,t ) = ft (t) − 1

3ξ
3q−3

t + O(ξ4).
Combined, these observations give

Rn(w) = Rt (w) +O(ξ4) ≤ Rt (d2,t ) +O(ξ4) = ft (t) −
1
3
ξ3q−3

t +O(ξ4), (4.11)

for all n > n(ξ) and uniformly for w on that section of Dt from d2,t to d3,t . Finally recall
(see proof of part (i)) that Rn(d1,n) = fn(t)− 1

3 n−3θ +O(n−
1
3−2θ ). Therefore we can choose

ξ and n(ξ) such that Rn(w) ≤ Rn(d1,n) for all n > n(ξ) and w on this section.
Consider (vi). Note that we trivially have |w − x | ≤ |d3,t − x | for all w on the vertical

straight line from d3,t to Re(d3,t ) and x ∈ R. (3.3) then gives

Rn(w) ≤
1
n

∑
x∈S1,n

log |d3,t − x | −
1
n

∑
x∈S2,n

log |w − x | +
1
n

∑
x∈S3,n

log |d3,t − x |,

for all w on the vertical line. Next recall that S2,n ≥ χ + η − 1+ o(1) (see (1.18) and (2.5))
and χ + η − 1 ≥ S3 (see (2.2)). (4.5) thus implies that S2,n > Re(d3,t ) +

1
2 c for all ξ > 0

sufficiently small and n sufficiently large chosen independently, where c = c(t) > 0 is
some constant independent of ξ and n. (4.4) and the above expression thus give

Rn(w) ≤
1
n

∑
x∈S1,n

log |d3,t − x | −
1
n

∑
x∈S2,n

(log |d3,t − x | +O(ξ4)) +
1
n

∑
x∈S3,n

log |d3,t − x |,

uniformly for w on the vertical line. Then, (3.3) gives Rn(w) ≤ Rn(d3,t ) +O(ξ4) for all
such n,w. Next note, substituting d3,t in (4.11) gives Rn(d3,t ) ≤ ft (t) − 1

3ξ
3q−3

t +O(ξ4)

for all n > n(ξ). Combined, these give Rn(w) ≤ ft (t) − 1
3ξ

3q−3
t +O(ξ4) for all n > n(ξ)

and uniformly for w on the vertical line. Finally recall (see proof of part (i)) that
Rn(d1,n) = fn(t) − 1

3 n−3θ + O(n−
1
3−2θ ). Therefore we can choose ξ and n(ξ) such that

Rn(w) ≤ Rn(d1,n) for all n > n(ξ) and w on the vertical line. This proves (vi).
Consider (vii). Fixing a constant c > 0, and recalling that {qn}n≥1 is a convergent

sequence with a positive limit, note that it is sufficient to show the following:

• We can fix the ξ sufficiently small, and choose the n(ξ), such that the direction
of steepest descent for fn at t + rqneiα equals π

3 + O(ξ) for all n > n(ξ) and
uniformly for r ∈ [n−θ, ξq−1

n ] and α ∈ ( π3 − cξ, π3 + cξ).

To see this first note, for all such r, α, part (3) of Lemma 3.4 implies that the unique
direction of steepest descent for fn at t + rqneiα is π −Arg( f ′n(t + rqneiα)). Then, we can
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proceed as in part (2) of Lemma 3.2 to show that we can choose the above n(ξ) > 0 such
that,

f ′n(t + rqneiα) = r2q−1
n e2iα +O(n−

2
3 + n−

1
3 r + n−

1
3 r2 + r3)

= r2q−1
n e2iα

(
1 +O(n−

2
3 r−2 + n−

1
3 r−1 + n−

1
3 + r)

)
,

for all n > n(ξ), and uniformly for all such r, α. Also note, since θ < 1
3 and r ∈ [n−θ, ξq−1

n ],
that n−

2
3 r−2 + n−

1
3 r−1 + n−

1
3 = o(1), and r = O(ξ). Therefore we can choose the above

ξ sufficiently small, and we can choose the n(ξ) > 0, such that f ′n(t + rqneiα) =
r2q−1

n e2iα(1 + O(ξ)) for all n > n(ξ) and uniformly for all such r, α. Finally recall that
α ∈ ( π3 − cξ, π3 + cξ) for some c > 0. Thus we can choose the above ξ sufficiently small,
and we can choose the n(ξ) > 0, such that

Arg( f ′n(t + rqneiα)) = 2α +O(ξ) =
2π
3
+O(ξ),

for all n > n(ξ), and uniformly for all such r, α. Thus the direction of steepest descent for
fn at t + rqneiα equals π −Arg( f ′n(t + rqneiα)) = π

3 +O(ξ) for all n > n(ξ) and uniformly
for all such r, α, as required. �

Remark 4.5. Note, it may happen that Re(d3,t ) ∈ Pn (see (1.22)). If this happens, for
simplicity, we deform γ+1,n (see Definition 4.4) in neighbourhoods of Re(d3,t ) to avoid
this. Note, since such deformations are arbitrarily small, they do not significantly affect
the proof of the previous lemma.

4.2. Lemma 3.5 for case (2) of Lemma 2.2

Assume the conditions of Lemma 3.5. Additionally assume that case (2) of Lemma 2.2
is satisfied. Fix ξ > 0 sufficiently small such that (2.11), (2.14), (2.17) and (2.31) are
satisfied. Note, many of the arguments in this section are similar to those used in Section 4.1
for case (1). Therefore, we shall not go into as much detail here, but we shall highlight the
differences where necessary.

We begin by consider the roots of the functions f ′t , f ′n and f̃ ′n in this case. We consider
f ′n and state that f̃ ′n can be treated similarly. Recall the definitions given in (1.12), (2.3),
(2.4), (2.5), (2.10) and (2.12), and the properties discussed in (2.2) and (2.9). These, and
case (2) of Lemma 2.2, give the following:

• Lt is an open interval with t ∈ Lt ∈ {K
(1)
1 ,K (1)2 , . . .}, {Lt, Lt } ⊂ Supp(µ), and

S1 > Lt > t > Lt > S1 ≥ χ. Moreover, f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) > 0.
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• Ln is an open interval with t ∈ Ln ∈ {K
(1)
1,n,K

(1)
2,n, . . .}, Ln and Ln are two

consecutive elements of S1,n, and Ln → Lt and Ln → Lt .

Moreover:

Lemma 4.6. Assume the above conditions. Then, one of the following is satisfied:

(A) f ′t has 1 root in (t, Lt ), denoted by st .

(B) f ′t has 0 roots in (t, Lt ).

Moreover, whenever possibility (A) is satisfied:

(A1) f ′t (s) > 0 for all s ∈ (Lt, t), f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) > 0, f ′t (s) > 0 for all
s ∈ (t, st ), f ′t (st ) = 0 and f ′′t (st ) < 0, and f ′t (s) < 0 for all s ∈ (st, Lt ).

(A2) f ′t has 0 roots in each of {C \ R, J1, J2, J3, J4}.

(A3) f ′t has at most 1 root in each of
⋃3

i=1{K
(i)
1 ,K

(i)
2 , . . .} \ {Lt }.

Also, whenever possibility (B) is satisfied:

(B1) f ′t (s) > 0 for all s ∈ (Lt, t), f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) > 0, f ′t (s) > 0 for all
s ∈ (t, Lt ).

(B2) f ′t has 0 roots in each of {C \ R, J1, J2, J3, J4}.

(B3) f ′t has at most 1 root in each of
⋃3

i=1{K
(i)
1 ,K

(i)
2 , . . .} \ {Lt }.

Next, fixing ξ > 0 as above, then (t − 4ξ, t + 4ξ) ⊂ Lt , and (t − 2ξ, t + 2ξ) ⊂ Ln.
Also, f ′n has 2 roots in B(t, ξ) (denoted by {t1,n, t2,n}), 0 roots in (Ln, t − ξ], and 1 root in
[t + ξ, Ln) (denoted sn). Moreover, whenever possibility (a) of Lemma 2.6 is satisfied:

(a1) t1,n ∈ (t − ξ, t + ξ) and t1,n = t2,n. Moreover f ′n(s) > 0 for all s ∈ (Ln, t1,n),
f ′n(t1,n) = f ′′n (t1,n) = 0 and f ′′′n (t1,n) > 0, f ′n(s) > 0 for all s ∈ (t1,n, sn),
f ′n(sn) = 0 and f ′′n (sn) < 0, and f ′n(s) < 0 for all s ∈ (sn, Ln).

(a2) f ′n has 0 roots in each of {C \ R, J1,n, J2,n, J3,n, J4,n}.

(a3) f ′n has 1 root in each of
⋃3

i=1{K
(i)
1,n,K

(i)
2,n, . . .} \ {Ln}.

Moreover, whenever possibility (b) is satisfied:
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(b1) {t1,n, t2,n} ⊂ (t − ξ, t + ξ) and t1,n > t2,n. Moreover f ′n(s) > 0 for all s ∈ (Ln, t2,n),
f ′n(t2,n) = 0 and f ′′n (t2,n) < 0, f ′n(s) < 0 for all s ∈ (t2,n, t1,n), f ′n(t1,n) = 0 and
f ′′n (t1,n) > 0, f ′n(s) > 0 for all s ∈ (t1,n, sn), f ′n(sn) = 0 and f ′′n (sn) < 0, and
f ′n(s) < 0 for all s ∈ (sn, Ln).

(b2) f ′n has 0 roots in each of {C \ R, J1,n, J2,n, J3,n, J4,n}.

(b3) f ′n has 1 root in each of
⋃3

i=1{K
(i)
1,n,K

(i)
2,n, . . .} \ {Ln}.

Finally, whenever possibility (c) is satisfied:

(c1) t1,n ∈ B(t, ξ) ∩ H and t2,n is the complex conjugate of t1,n. Moreover, f ′n(s) > 0
for all s ∈ (Ln, sn), f ′n(sn) = 0 and f ′′n (sn) < 0, f ′n(s) < 0 for all s ∈ (sn, Ln).

(c2) f ′n has 0 roots in each of {C \ (R ∪ {t1,n, t2,n}), J1,n, J2,n, J3,n, J4,n}

(c3) f ′n has 1 root in each of
⋃3

i=1{K
(i)
1,n,K

(i)
2,n, . . .} \ {Ln}.

Proof. Consider f ′t . First recall, since case (2) of Lemma 2.2 is satisfied, that t ∈ Lt ∈

{K (1)1 ,K (1)2 , . . .}, and f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) > 0. Part (1) of Lemma 2.1 then
implies that f ′t has at most 1 root in Lt \ {t}. Thus we have three possibilities:

• f ′t has 0 roots in (Lt, t), and 1 root in (t, Lt ) (denoted st ).

• f ′t has 0 roots in (Lt, t), and 0 roots in (t, Lt ).

• f ′t has 1 root in (Lt, t) (denoted st ), and 0 roots in (t, Lt ).

Whenever the first possibility is satisfied, we will show that possibility (A) and parts (A1)–
(A3) are also satisfied. Moreover, whenever the second possibility is satisfied, we can
similarly show that possibility (B) and parts (B1)–(B3) are also satisfied. Finally, we will
show that the third possibility is never satisfied.

Suppose that the first possibility is satisfied. Possibility (A) is then trivially satisfied.
Moreover, f ′t has 0 roots in (Lt, t), f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) > 0, f ′t has 0 roots in
(t, st ), f ′t (st ) = 0 and f ′′t (st ) , 0, and f ′t has 0 roots in (st, Lt ). Thus, since ( f ′t )|Lt is
real-valued and continuous (see (2.1)), the above observations are only possible if part (A1)
is satisfied. Moreover, since Lt ∈ {K

(1)
1 ,K (1)2 , . . .}, parts (2) and (3) of Lemma 2.1 imply

parts (A2) and (A3). Thus, whenever the first possibility is satisfied, possibility (A) and
parts (A1)–(A3) are also satisfied.
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R
H

(A)
S3 < S3 ≤ S2 < S2 ≤ S1 < Lt Lt < S1

∗
t

×
st

R
H

(B)
S3 < S3 ≤ S2 < S2 ≤ S1 < Lt Lt < S1

∗
t

R
H

(a) • × • × • • × • × • • × • × • • × • × •
S3,n < S3,n < S2,n < S2,n < S1,n < Ln Ln < S1,n

B(t, ξ)

∗
t1,n

×
sn

R
H

(b) • × • × • • × • × • • × • × • • × • × •
S3,n < S3,n < S2,n < S2,n < S1,n < Ln Ln < S1,n

B(t, ξ)

×
t1,n

×
t2,n

×
sn

R
H

(c) • × • × • • × • × • • × • × • • × • × •
S3,n < S3,n < S2,n < S2,n < S1,n < Ln Ln < S1,n

B(t, ξ)

×t1,n

×t2,n
×
sn

Figure 4.7. (A), (B): Tt , the set of roots of f ′t , as described by
Lemma 4.1, for possibilities (A) and (B). Note, for each i ∈ {1, 2, 3},
the subintervals of [Si, Si] \ Si contain at most 1 root (except Lt ).
(a), (b), (c): Tn, the set of roots of f ′t , as described by Lemma 4.1 for
possibilities (a), (b) and (c). Roots of multiplicity 1 and 2 are represented
by × and ∗ respectively, and elements of Sn = S1,n ∪ S2,n ∪ S3,n are
represented by •.

Suppose that the third possibility is satisfied. First, recall that st ∈ (Lt, t) is a root of f ′t
of multiplicity 1. Thus, we can fix an ε > 0 sufficiently small such that Lt + ε < st < t − ε ,
and st is the unique root of f ′t in B(st, ε). Next, we can proceed similarly to part (iii) in the
proof of Lemma 2.6 to show that f ′n has 1 root in B(st, ε). Also, since roots of f ′n occur in
complex conjugate pairs (see (2.7)), this root must be contained in (st − ε, st + ε). Finally,
note that (2.12) implies that we can choose ε and ξ such that (st − ε, st + ε) ⊂ (Ln, t − ξ].
Therefore f ′n has a root in (Ln, t − ξ]. However, as we will shortly show below, such a root
does not exist. Thus we have a contradiction, and so the third possibility is never satisfied.

Consider f ′n . First recall that (t − 4ξ, t + 4ξ) ⊂ Lt , and (t − 2ξ, t + 2ξ) ⊂ Ln comes
from (2.11) and (2.12). Also, part (1) of Lemma 2.6 implies that f ′n has 2 roots in B(t, ξ).

Suppose that possibility (a) of Lemma 2.6 is satisfied, i.e., that t1,n ∈ (t − ξ, t + ξ) ⊂ Ln,
and t1,n = t2,n is root of f ′n ofmultiplicity 2. Thus f ′n(t1,n) = f ′′n (t1,n) = 0 and f ′′′n (t1,n) , 0.
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Figure 4.8. (A), (B), left: Rt |Lt for possibilities (A) and (B) of
Lemma 4.6. (a), (b), (c), left: Rn |Ln for possibilities (a)–(c) of
Lemma 4.6. (A), (B), right: The associated directions of steepest
decent/ascent in C for ft for possibilities (A) and (B). (a), (b), (c),
right: The associated directions of steepest decent/ascent in C for fn
for possibilities (a)–(c).
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Indeed, f ′′′n (t1,n) → f ′′′t (t) > 0 (see part (4) of Lemma 2.9, and Lemma 3.1). Next note,
(2.7) implies that ( f ′n)|Ln is real-valued and continuous. Moreover, recalling that Ln and
Ln are two consecutive elements of S1,n, this equation gives

lim
w∈R,w↓Ln

f ′n(w) = +∞ and lim
w∈R,w↑Ln

f ′n(w) = −∞.

Also, recalling that Ln ∈ {K
(1)
1,n,K

(1)
2,n, . . .}, part (1) of Lemma 2.6 implies that f ′n has 0 roots

in (t−ξ, t+ξ)\ {t1,n}, and 1 root (denoted sn) in Ln \(t−ξ, t+ξ) = (Ln, t−ξ]∪[t+ξ, Ln).
The above observations are only possible if sn ∈ [t + ξ, Ln) and part (a1) is satisfied.
Finally, since t1,n ∈ (t − ξ, t + ξ) and t1,n = t2,n (see possibility (a) of Lemma 2.6), and
since Ln ∈ {K

(1)
1,n,K

(1)
2,n, . . .}, parts (1)–(3) of Lemma 2.6 imply parts (a2) and (a3). Thus,

whenever possibility (a) of Lemma 2.6 is satisfied, we have parts (a1)–(a3). Similarly,
whenever possibilities (b) and (c) are satisfied, we have parts (b1)–(b3) and (c1)–(c3)
respectively. �

As in Section 4.1, let Tt ⊂ C \ S and Tn ⊂ C \ Sn respectively denote the set of
roots of f ′t and the set of roots of f ′n . The previous lemma discusses the locations of the
elements of these discrete sets, and this is depicted in Figure 4.7. Next recall, similarly to
Section 4.1, (3.7) gives (Rt |Lt )

′ = ( f ′t )|Lt and (Rn |Ln )
′ = ( f ′n)|Ln , and similarly for the

higher order derivatives. Parts (A1), (B1), (a1), (b1) and (c1) of Lemma 4.6 then imply
that Rt |Lt and Rn |Lt have those behaviours shown on the left of Figure 4.8 for the various
possibilities. Part (3) of Lemma 3.4 also shows that ft and fn have those directions of
steepest descent/ascent shown on the right of Figure 4.8. For possibility (B), in anticipation
of the following lemma, we also display the directions of steepest descent/ascent in the
neighbourhood of an arbitrary point st + iε ∈ H, where st ∈ (t, Lt ) and ε > 0. Note,
part (B2) of Lemma 4.6 implies that f ′t (st + iε) , 0 for any such st + iε , and so part (3)
of Lemma 3.4 implies that there is a unique direction of steepest descent and a unique
direction of steepest ascent as shown. The following lemma examines the resulting
contours of steepest descent/ascent:

Lemma 4.7. Whenever possibility (A) of Lemma 4.6 is satisfied, st ∈ [t+ξ, Lt ) (see (2.11)
and part (A1) of Lemma 4.6). Moreover, there exists simple contours, Dt, At, A′′t , as
shown in Figure 4.9 with the following properties:

(A1) Dt , At , A′′t start at t, t, st respectively, enter H in the directions π
3 ,

2π
3 , π

2
respectively, and end in the intervals shown or are unbounded.

(A2) Dt is a contour of steepest descent for ft , and At, A′′t are contours of steepest
ascent for ft .
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(A3) Dt and At intersect at t, and Dt, At, A′′t do not otherwise intersect.

When possibility (B) is satisfied, fix an arbitrary st ∈ (t, Lt ). Moreover, fix the ξ > 0
sufficiently small such that st ∈ [t + ξ, Lt ), and fix an arbitrary ε > 0. Then, when the
ε > 0 is fixed sufficiently small, there exists simple contours, Dt, At,D′′t , A′′t , as shown in
Figure 4.9 with the following properties:

(B1) Dt and At both start at t, enter H in the directions π
3 and 2π

3 respectively, and
end in the intervals shown. D′′t and A′′t both start at st + iε ∈ H, leave st + iε
in opposite directions, and end in the interior of the intervals shown or are
unbounded.

(B2) Dt,D′′t are contours of steepest descent for ft , and At, A′′t are contours of steepest
ascent for ft .

(B3) Dt and At intersect at t, D′′t and A′′t intersect at st + iε , and Dt , At , D′′t , A′′t do
not otherwise intersect.

Also, whenever possibility (a) is satisfied, there exists simple contours, Dn, An, A′′n , as
shown in Figure 4.9 with the following properties:

(a1) Dn, An, A′′n start at t1,n, t1,n, sn respectively, enter H in the directions π
3 ,

2π
3 ,

π
2

respectively, and end in the intervals shown or are unbounded.

(a2) Dn is a contour of steepest descent for fn, and An, A′′n are contours of steepest
ascent for fn.

(a3) Dn and An intersect at t1,n, and Dn, An, A′′n do not otherwise intersect.

Next, whenever possibility (b) is satisfied, there exists simple contours, Dn, An, A′′n , as
shown in Figure 4.9 with the following properties:

(b1) Dn, An, A′′n start at t1,n, t2,n, sn respectively, all enter H in the direction π
2 , and

end in the intervals shown or are unbounded.

(b2) Dn is a contour of steepest descent for fn, and An, A′′n are contours of steepest
ascent for fn.

(b3) Dn, An, A′′n do not intersect.

Next, whenever possibility (c) is satisfied, there exists simple contours, Dn, An,D′n, A′n, A′′n ,
as shown in Figure 4.9 with the following properties:
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(c1) Dn, An,D′n, A′n all start at t1,n ∈ H, leave t1,n in orthogonal directions in the
counter-clockwise order Dn, An,D′n, A′n, and end in the intervals shown or are
unbounded. A′′n starts at sn, enters H in the direction π

2 , and is unbounded.

(c2) Dn,D′n are contours of steepest descent for fn, and An, A′n, A′′n are contours of
steepest ascent for fn.

(c3) Dn, An,D′n, A′n intersect at t1,n, and Dn, An,D′n, A′n, A′′n does not otherwise
intersect.

Proof. Many of the arguments here are similar to those used in Lemma 4.2, so we do not
go into as much detail here.

Consider fn. First, for possibilities (a) and (b), define Dn and An as in Lemma 4.2. Also,
for possibility (c), define Dn, An,D′n, A′n as in Lemma 4.2. Moreover, for possibilities (a)–
(c), let A′′n denote the contour of steepest ascent for fn which starts at sn ∈ Ln, and which
enters H in the direction π

2 . Then, proceeding similarly to the proof of Lemma 4.2, we
can show that each of Dn,D′n end in Sn ∪ Tn, each of An, A′n, A′′n either end in Sn ∪ Tn or
are unbounded, and the contours are otherwise in H. We will show:

(i) There exists a δ ∈ (0, ξ) for which A′′n does not intersect cl(B(t, δ)).

(ii) For possibility (a), Dn and An do not intersect except at t1,n, and Dn and A′′n
never intersect. For possibility (b), Dn and An never intersect, and Dn and A′′n
never intersect. For possibility (c), Dn, An,D′n, A′n do not intersect except at t1,n,
Dn and A′′n never intersect, and D′n and A′′n never intersect. For all possibilities,
the contours are simple.

Then, we can investigate the possible end-points of Dn, An,D′n, A′n, A′′n using arguments
by contradiction similar to those used in the proof of Lemma 4.2. We omit the details,
and simply state that this investigation gives the required results.

Consider (i). First recall that A′′n starts at sn, and Rn strictly increases along A′′n . It is
thus sufficient to show that there exists a δ ∈ (0, ξ) for which the following is satisfied:

Rn(w) < Rn(sn) for all w ∈ cl(B(t, δ)). (4.12)

To see this first note, part (2) of Lemma 3.1 implies that Rn(w) = Rt (w) + o(1) uniformly
for w ∈ B(t, ξ). Also, since Rt is continuous, Rt (w) = Rt (t) +O(δ) = ft (t) +O(δ) for all
δ > 0 sufficiently small and uniformly for w ∈ cl(B(t, δ)). Next recall (see statement of
this lemma) that st ∈ [t + ξ, Lt ) for possibilities (A) and (B), and so parts (A1) and (B1)
of Lemma 4.6 imply that ft (t) < ft (t + ξ). Moreover, part (2) of Lemma 3.1 implies that
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Figure 4.9. The contours of Lemma 4.7.

ft (t + ξ) = fn(t + ξ) + o(1). Finally, parts (a1), (b1) and (c1) of Lemma 4.6 imply that
fn(t + ξ) < fn(sn) = Rn(sn). Combined, the above imply (4.12). This proves part (i).

Consider (ii) for possibility (a). Recall that Dn and An start at t1,n, Rn strictly decreases
along Dn, and Rn strictly increases along An. Also recall that Dn starts at t1,n ∈ Ln and A′′n
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starts at sn ∈ Ln, Rn strictly decreases along Dn, Rn strictly increases along A′′n , sn > t1,n,
and Rn strictly increases as we move from t1,n to sn along Ln (see left of Figure 4.8). A
contradiction argument then proves part (ii) for possibility (a). Part (ii) for possibility (b)
follows similarly.

Consider (ii) for possibility (c). This follows from similar arguments to those used in
the proof of Lemma 4.2, except we need to additionally argue that Dn never intersects A′′n ,
and D′n never intersects A′′n . Recall that Dn and D′n start at t1,n, A′′n starts at sn, Rn strictly
decreases along Dn and D′n, Rn strictly increases along A′′n , and Rn(t1,n) < Rn(sn) (recall
that t1,n → t, and apply part (i) above). A contradiction argument then proves that Dn

and D′n never intersect A′′n . This proves part (ii) for possibility (c).
Consider ft . First, define Dt and At as in Lemma 4.2. Next, for possibility (A) of

Lemma 4.6, let A′′t denote the contour of steepest ascent for ft which starts at st ∈ Lt , and
which enters H in the direction π

2 . For possibility (B), let D′′t and A′′t denote the contours
of steepest descent and ascent (respectively) which start at st + iε ∈ H. Then, proceeding
similarly to the proof of Lemma 4.2, we can show that each of Dt,D′′t end in S ∪ Tt , each
of At, A′′t either end in S ∪ Tt or are unbounded, and the contours are otherwise in H. We
will show:

(iii) For possibility (A), Dt and At do not intersect except at t, and Dt and A′′t never
intersect. For possibility (B), Dt and At do not intersect except at t, D′′t and A′′t
do not intersect except at st + iε , and we can fix the ε > 0 sufficiently small such
that D′′t , A′′t never intersect Dt, At . For both possibilities, the contours are simple.

(iv) For possibilities (A) and (B), Dt ends in [S3, S3), and At ends in (S2, S2).

(v) For possibility (A), A′′t is unbounded. For possibility (B), fixing the ε > 0
sufficiently small as above, A′′t is unbounded and D′′t ends in [S3, dt ), where dt
denotes the end-point of Dt (thus, necessarily, we must have dt ∈ (S3, S3)).

These prove the required results.
Consider (iii) for possibility (A). This follows from similar arguments to those used to

show part (ii) for possibility (a), above. Consider (iii) for possibility (B). Similar arguments
show that Dt and At do not intersect except at t, D′′t and A′′t do not intersect except at st+iε ,
and the contours are simple. It thus remains to show that we can fix the ε > 0 sufficiently
small such that D′′t , A′′t never intersect Dt, At . Recalling that Im( ft (w)) = Im( ft (t)) and
Im( ft (z)) = Im( ft (st + iε)) for all w on Dt ∪ At and z on D′′t ∪ A′′t (see part (2) of
Lemma 3.4), and Im( ft (t)) = Im( ft (st )) (recall that t and s are both in Lt ⊂ R \ S, and
see Figure 3.1), it is thus sufficient to show that Im( ft (st + iε)) , Im( ft (st )) for all ε > 0
sufficiently small. To see this recall that st ∈ (t, Lt ), and so part (B1) of Lemma 4.6 implies
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that f ′t (st ) > 0. Also, a Taylor expansion gives ft (st + iε) = ft (st ) + iε f ′t (st ) +O(ε2) for
all ε > 0 sufficiently small. Therefore, for all ε > 0 sufficiently small,

Im( ft (st + iε)) > Im( ft (st )) + 1
2 ε f ′t (st ). (4.13)

This proves part (iii) for possibility (B).
Consider (iv). Recall that Dt ends in S ∪Tt , and At either ends S ∪Tt or is unbounded,

where Tt is the set of roots of f ′t . The behaviours of Tt for possibilities (A) and (B) are
discussed in Lemma 4.6, and these behaviours are displayed in Figure 4.7. It follows that
S ∪ Tt ⊂ [S3, S3] ∪ [S2, S2] ∪ [S1, Lt ] ∪ {t, st } ∪ [Lt, S1] for possibility (A), and S ∪ Tt ⊂
[S3, S3] ∪ [S2, S2] ∪ [S1, Lt ] ∪ {t} ∪ [Lt, S1] for possibility (B). Next recall that Dt and At

start at t, and A′′t starts at st for possibility (A). The above observations, and part (iii), thus
imply the following for both possibilities: Dt ends in [S3, S3]∪ [S2, S2]∪ [S1, Lt ]∪ [Lt, S1],
and At either ends in [S3, S3] ∪ [S2, S2] ∪ [S1, Lt ] ∪ [Lt, S1] or is unbounded. Then, since
Dt and At start at t ∈ Lt , part (iv) follows from similar arguments to those used to show
parts (xii) and (xiii) in the proof of Lemma 4.2.

Consider (v) for possibility (A). Recall that A′′t starts at st ∈ (t, Lt ), and ends either in
S ∪ Tt or is unbounded. Then, similar considerations to those used in part (iv), above,
show that A′′t either ends in [S3, S3] ∪ [S2, S2] ∪ [S1, Lt ] ∪ [Lt, S1] or is unbounded. We
must thus show that A′′t does not end in [S3, S3]∪ [S2, S2]∪ [S1, Lt ]∪ [Lt, S1]. We argue by
contradiction: First assume that A′′t ends in [dt, S3]∪[S2, S2]∪[S1, Lt ], where dt ∈ [S3, S3)

denotes the end point of Dt (see part (iv)). Then Dt starts at t ∈ Lt and ends at dt , A′′t
starts at st ∈ (t, Lt ) and ends in [dt, t), and Dt and A′′t are otherwise contained in H.
A′′t must therefore intersect Dt , which contradicts part (iii). Next assume that A′′t ends
at a point a′′t ∈ [S3, dt ]. Then Dt starts at t ∈ Lt and ends at dt ∈ [S3, S3), A′′t starts at
st ∈ (t, Lt ) and ends at a′′t ∈ [S3, dt ], and Dt and A′′t are otherwise contained in H and do
not intersect (see part (iii)). Consider the simple closed contour consisting of Dt and A′′t
and [a′′t , dt ] and [t, st ]. We can proceed as in part (xii) in the proof of Lemma 4.2 to show
that w 7→ Im( ft (w)) is a constant harmonic function on the above simple closed contour,
and so it also constant in the domain bounded by the closed contour. (3.4) easily shows
that this is not true. Thus we have a contradiction, and so A′′t does not end in [S3, dt ].
Finally suppose that A′′t ends in [Lt, S1]. Then A′′t starts at st ∈ (t, Lt ), ends in [Lt, S1],
and is otherwise contained in H. We can then proceed as in part (xii) in the proof of
Lemma 4.2 to show that this gives a contradiction, and so A′′t does not end in [Lt, S1].
This proves (v) for possibility (A).

Consider (v) for possibility (B). Recall that D′′t and A′′t start at st + iε where st ∈ (t, Lt ),
D′′t ends in S∪Tt , and A′′t ends either in S∪Tt or is unbounded. Then, similar considerations
to those used in part (iv), above, show that D′′t ends in [S3, S3]∪[S2, S2]∪[S1, Lt ]∪[Lt, S1],
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and A′′t either ends in [S3, S3] ∪ [S2, S2] ∪ [S1, Lt ] ∪ [Lt, S1] or is unbounded. Also, letting
dt ∈ [S3, S3) denote the end point of Dt (see part (iv)), similar considerations to those
used above (in the proof of part (v) for possibility (A)) show that both D′′t and A′′t do
not end in [dt, S3] ∪ [S2, S2] ∪ [S1, Lt ]. It thus remains to show that D′′t does not end
in [Lt, S1], and A′′t does not end in [S3, dt ) ∪ [Lt, S1]. We argue by contradiction: First
assume that D′′t and A′′t both end in [S3, dt ), at d ′′t and a′′t respectively. Then D′′t starts at
st + iε and ends at d ′′t ∈ [S3, dt ), A′′t starts at st + iε and ends at a′′t ∈ [S3, dt ), and D′′t
and A′′t are otherwise contained in H and do not intersect except at st + iε (see part (iii)).
Consider the simple closed contour consisting of D′′t and A′′t and [a′′t ∧ d ′′t , a

′′
t ∨ d ′′t ]. We

can proceed as in part (xii) in the proof of Lemma 4.2 to show that w 7→ Im( ft (w)) is a
constant harmonic function on the above simple closed contour, and so it also constant in
the domain bounded by the closed contour. (3.4) easily show that this is not true. Thus
we have a contradiction, and so D′′t and A′′t cannot both end in [S3, dt ). Next assume that
D′′t ends at a point d ′′t ∈ [Lt, S1]. Recall (see part (2) of Lemma 3.4) that w 7→ Im( ft (w))
is constant on D′′t . In particular this gives Im( ft (d ′′t )) = Im( ft (st + iε)). Also recall (see
case (2) of Lemma 2.2 and (2.4)) that st ∈ Lt ⊂ [S1, S1] \ S1 and [Lt, Lt + δ) ⊂ S1 for
all δ > 0 sufficiently small. (3.5) and Figure 3.1 then give Im( ft (st )) ≥ Im( ft (s)) for
all s ∈ [Lt, S1]. (4.13) thus gives Im( ft (st + iε)) > Im( ft (s)) for all s ∈ [Lt, S1]. This
contradicts Im( ft (d ′′t )) = Im( ft (st + iε)), and so D′′t does not end in [Lt, S1]. We can
similarly show that A′′t does not end in [Lt, S1]. This proves (v) for possibility (B). �

As in the Section 4.1 for case (1) of Lemma 2.2, we are now in a position to define the
contours, γ+1,n and Γ

+
1,n and Γ

+
2,n, that satisfy Lemma 3.5 for case (2) of Lemma 2.2. We

do not go into as much detail here as the Section 4.1, as the construction is quite similar
to that used for case (1), but we will highlight the differences.

Fix ξ > 0, θ ∈ ( 14,
1
3 ) and {qn}n≥1 ⊂ R as in the Section 4.1. Note, since

f ′′′t (t) > 0 (see case (2) of Lemma 2.2), Lemma 2.7 and Definition 2.8 imply that
{qn}n≥1 converges to a positive constant. Then, part (4) of Lemma 2.9 implies that
{t1,n, t2,n} ⊂ B(t, n−θqn) ⊂ B(t, ξ). Thus, Dn and An both start inside B(t, n−θqn) and
B(t, ξ). Define d1,n, d2,n, a1,n, a2,n as in (4.3). Denote the equivalent quantities for Dt and
At by d1,t, d2,t, a1,t, a2,t . Also, fixing ξ > 0 sufficiently small as above, defineCξ is in (3.1).
Recall that Dt ends in [S3, S3) ⊂ C \ Cξ , and At ends in (S2, S2) ⊂ C \ Cξ , and let d3,t
and a3,t denote the points where Dt and At “exit” Cξ respectively. We choose the ξ > 0
sufficiently small such that (4.4) is satisfied in this case also: Im(d3,t ) = Im(a3,t ) = ξ

4.
Moreover, we choose the ξ > 0 sufficiently small such that Re(d3,t ) ∈ (−∞, S3 − c) and
Re(a3,t ) ∈ (S2 + c, S2 − c), where c = c(t) > 0 is some constant which is independent of
ξ. Next, define ε := 0 whenever possibility (A) of Lemmas 4.6 and 4.7 is satisfied, and fix
ε > 0 as in Lemma 4.7 whenever possibility (B) is satisfied. Finally, fix E > 0 such that
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Γ+1,n

a3, t

st

ε

a4, t
Γ+2,n

t

ξ4

2ξ

ξ4

2ξ

S1Lt
LtS1S2 − cS2 + cS3 − c

H

R

ξ
n−θqn

Figure 4.10. The contours defined in Definition 4.8. The dashed lines
represent boundaries of Cξ . c = c(t) > 0 is independent of ξ.

B(0, E) contains S1 ∪ S2 ∪ S3 and the point st + iε , and let a4,t ∈ ∂B(0, E) denote that
point where A′′t “exits” B(0, E) for the first time. We then define the following contours,
which are depicted in Figure 4.10:

Definition 4.8. Define γ+1,n and Γ+1,n similarly as in Definition 4.4 (they both start at
t ∈ Lt = (Lt, Lt ), γ+1,n ends at Re(d3,t ) ∈ (−∞, S3−c), Γ+1,n ends at Re(a3,t ) ∈ (S2+c, S2−c)
etc.). Moreover, define Γ+2,n to be the opposite (traversed in the opposite direction) of the
simple contour which:

• is independent of n,

• starts at st ∈ (t, Lt ),

• then traverses the straight line from st to st + iε ,

• then traverses that section of A′′t from st + iε to a4,t ∈ ∂B(0, E),

• then traverses (clockwise) the arc of ∂B(t, ξ) from a4,t ∈ ∂B(0, E) to E ,

• then ends at E ∈ (S1,+∞).

We finally show that the above contours satisfy the requirements of Lemma 3.5:

Proof of Lemma 3.5 for case (2) of Lemma 2.2. The proof for case (2) of Lemma 2.2 is
very similar to the proof for case (1) (see the end of Section 4.1). Parts (1), (2), (3), (5)
and (6) follow from similar arguments. Similarly for part (4), except that we need to
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additionally show that R̃n(z) ≥ R̃n(ã1,n) for all z ∈ Γ+2,n, where R̃n denote the real-part of
f̃n. We will show that there exists a sufficiently small choice ε, ξ in Definition 4.8, and a
sufficiently large choice of the E > 0, such that the following are satisfied:

(i) R̃n(z) > R̃n(ã1,n) for all z ∈ cl(B(st, ε)).

(ii) R̃n(z) > R̃n(ã1,n) for all z on that section of A′′t from st + iε to a4,t ∈ ∂B(0, E).

(iii) R̃n(z) > R̃n(ã1,n) for all z ∈ ∂B(0, E).

Definition 4.8 then implies that R̃n(z) > R̃n(ã1,n) for all z ∈ Γ+2,n. This proves (4).
Consider (i) for possibility (B). First, we fix the ξ, ε > 0 sufficiently small such that

cl(B(st, ε)) ⊂ Cξ (see Figure 4.10 to see that this can be done). Then, part (2) of Lemma 3.1
implies that R̃n(z) = Rt (z) + o(1) uniformly for z ∈ cl(B(st, ε)). Next note, since Rt is
continuous at st , that Rt (z) = Rt (st ) +O(ε) for all ε > 0 sufficiently small and uniformly
for z ∈ cl(B(st, ε)). Next recall that st ∈ (t, Lt ), and so Rt (st ) > Rt (t) (see part (B1) of
Lemma 4.6 and Figure 4.8). Finally note, since ã1,n = t + o(1), (2.8), (3.2) and (3.3) give
Rt (t) = R̃n(ã1,n) + o(1). Combined, the above proves part (i) for possibility (B). Part (i)
for possibility (A), where ε = 0 by the remarks preceding Definition 4.8, can be shown
similarly.

Consider (ii). First, we fix ξ, ε sufficiently small such that A′′t ⊂ Cξ (see Figure 4.10 to
see that this can be done). Then, part (2) of Lemma 3.1 implies that R̃n(z) = Rt (z) + o(1)
uniformly for z on that section of A′′t from st + iε to a4,t ∈ ∂B(0, E). Next note, part (1)
of Lemma 3.4 gives Rt (z) ≥ Rt (st + iε) for z on A′′t . Moreover, since Rt is continuous at
st , Rt (st + iε) = Rt (st ) +O(ε) for all ε > 0 sufficiently small. We can then proceed as in
the proof of part (i), above, to prove part (ii).

Consider (iii). First note, letting log be natural logarithm, (3.3) gives the following
when z , 0:

R̃n(z) =
1
n

(
|S̃1,n | − |S̃2,n | + |S̃3,n |

)
log |z |

+
1
n

∑
x∈S̃1,n

log
����1 − x

z

���� − 1
n

∑
x∈S̃2,n

log
����1 − x

z

���� + 1
n

∑
x∈S̃3,n

log
����1 − x

z

���� .
Recall (see (2.2) and (2.9)) that 1

n (|S̃1,n | − |S̃2,n | + |S̃3,n |) → η ∈ (0, 1). Also recall
(see (2.2)) that supx∈S1,n∪S2,n∪S3,n

|x | = O(1). Thus R̃n(z) > 1
2η log |z | for all n and |z |

sufficiently large, chosen independently. Finally recall (see the proof of part (i), above)
that R̃n(ã1,n) → Rt (t). Combined, the above prove part (iii). �
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4.3. Lemma 3.5 for cases (3-12) of Lemma 2.2

In Sections 4.1 and 4.2 we proved Lemma 3.5 for cases (1) and (2) of Lemma 2.2. In this
section we discuss cases (3)–(6). We will be very brief here, as no new ideas are needed.
Instead we seek to highlight some differences which may cause confusion. Indeed, we
only recall the possible behaviours of the roots of f ′t in Lt for cases (1) and (2), and state
the possible behaviours of the roots of f ′t in Lt for cases (3)–(6). For cases (3)–(6), the
behaviour of the remaining roots of f ′t , the behaviour of the roots of f ′n , the contours of
steepest descent/ascent, and the definitions of the contours γ+1,n, etc., then follow from
similar considerations to those used for cases (1) and (2). Similar considerations also
apply for cases (7)–(12).

First recall the situation for case (1) of Lemma 2.2 (see Section 4.1). Here, t > χ,
t ∈ Lt , Lt = J1 = (S1,+∞), and f ′′′t (t) > 0. Moreover f ′t (s) > 0 for all s ∈ (Lt, t),
f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) > 0, and f ′t (s) > 0 for all s ∈ (t, Lt ).

Next recall the situation for case (2) of Lemma 2.2 (see Section 4.2). Here, t > χ,
t ∈ Lt , Lt ∈ {K

(1)
1 ,K (1)2 , . . .}, and f ′′′t (t) > 0. Moreover, one of the following is satisfied:

(A) There exists an st ∈ (t, Lt ) for which: f ′t (s) > 0 for all s ∈ (Lt, t), f ′t (t) = f ′′t (t) =
0 and f ′′′t (t) > 0, f ′t (s) > 0 for all s ∈ (t, st ), f ′t (st ) = 0 and f ′′t (st ) < 0, and
f ′t (s) < 0 for all s ∈ (st, Lt ).

(B) f ′t (s) > 0 for all s ∈ (Lt, t), f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) > 0, f ′t (s) > 0 for all
s ∈ (t, Lt ).

Consider case (3). Lemma 2.2 gives t > χ, t ∈ Lt , Lt ∈ {K
(1)
1 ,K (1)2 , . . .}, and

f ′′′t (t) < 0. Moreover, we state that one of the following is satisfied:

(A) There exists an st ∈ (Lt, t) for which: f ′t (s) > 0 for all s ∈ (Lt, st ), f ′t (st ) = 0
and f ′′t (st ) < 0, f ′t (s) < 0 for all s ∈ (st, t), f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) < 0,
and f ′t (s) < 0 for all s ∈ (t, Lt ).

(B) f ′t (s) < 0 for all s ∈ (Lt, t), f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) < 0, f ′t (s) < 0 for all
s ∈ (t, Lt ).

Consider cases (4) and (5). Lemma 2.2 gives t > χ for case (4), and t ∈ (χ + η − 1, χ)
for case (5). Moreover, for both cases, t ∈ Lt , χ ∈ Lt , Lt = J3 = (S2, S1) and f ′′′t (t) < 0.
Moreover, we state that f ′t (s) < 0 for all s ∈ (Lt, t), f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) < 0,
f ′t (s) < 0 for all s ∈ (t, Lt ).
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Consider case (6). Lemma 2.2 gives t ∈ (χ + η − 1, χ), t ∈ Lt , Lt ∈ {K
(2)
1 ,K (2)2 , . . .},

and f ′′′t (t) < 0. Moreover, we state that one of the following is satisfied:

(A) There exists an st ∈ (t, Lt ) for which: f ′t (s) < 0 for all s ∈ (Lt, t), f ′t (t) = f ′′t (t) =
0 and f ′′′t (t) < 0, f ′t (s) < 0 for all s ∈ (t, st ), f ′t (st ) = 0 and f ′′t (st ) > 0, and
f ′t (s) > 0 for all s ∈ (st, Lt ).

(B) f ′t (s) < 0 for all s ∈ (Lt, t), f ′t (t) = f ′′t (t) = 0 and f ′′′t (t) < 0, and f ′t (s) < 0 for
all s ∈ (t, Lt ).

4.4. Lemma 3.6 for cases (1)–(4) of Lemma 2.2

Note, many of the arguments in this section are similar to those used in the previous
sections. Therefore, we shall not go into as much detail here. Assume the conditions of
Lemma 3.6. Additionally assume that one of cases (1)–(4) of Lemma 2.2 is satisfied. Fix
ξ > 0 sufficiently small such that (2.11), (2.14), (2.17) are (2.31) are satisfied. Define Un

and Vn as in (2.29), and recall (2.30).
First, since one of case (1)–(4) of Lemma 2.2 is satisfied, and since v > u, we can

proceed as in the proof of Lemma 3.13 to show the following:

vn > un and vn + sn − 1 > un + rn + 1 and VU(n) , ∅ and UV(n) , ∅,

and

t − 2ξ > χ + 2ξ > max(VU(n)) > min(VU(n)) > χ − 2ξ
> χ + η − 1 + 2ξ > max(UV(n)) > min(UV(n)) > χ + η − 1 − 2ξ. (4.14)

Also, (2.32) gives

Fn(w) = −
1
n

∑
x∈VU (n)

log(w − x) +
1
n

∑
x∈UV(n)

log(w − x),

for all w ∈ (C \ R) ∪ (t − 2ξ, t + 2ξ), where the branch cuts are all (−∞, 0]. Therefore,

F ′n(w) = −
1
n

∑
x∈VU (n)

1
w − x

+
1
n

∑
x∈UV(n)

1
w − x

,

and F ′n extends analytically to C\ ((VU(n))∪ (UV(n)). Finally define Gt as in (2.26). Recall
that this is also analytic in (C \R) ∪ (t − 2ξ, t + 2ξ), and recall (see (2.27)) that G′t extends
analytically to C \ {χ, χ + η − 1}.

We now consider the roots of G′t and F ′n:
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Lemma 4.9. Assume the above conditions. Then, t ∈ (χ,+∞). Indeed, t − 4ξ > χ.
Moreover:

(1) G′t (s) < 0 for all s ∈ (χ, t), G′t (t) = 0 and G′′t (t) > 0, and G′t (s) > 0 for all
s ∈ (t,+∞).

(2) G′t has no other roots in C \ {χ, χ + η − 1}.

Next, note t ∈ (max(VU(n)),+∞). Indeed, t − 2ξ > χ + 2ξ > max(VU(n)). Also F ′n
has 1 root in (t − ξ, t + ξ). We denote this by wn as in Lemma 2.12. Finally:

(3) F ′n(s) < 0 for all s ∈ (max(VU(n)),wn), F ′n(wn) = 0 and F ′′n (wn) > 0, and
F ′n(s) > 0 for all s ∈ (wn,+∞).

(4) F ′n has 1 root in each interval of the form (x, y), when x and y are any two
consecutive elements of either VU(n) or UV(n).

(5) F ′n has no other roots, other than those listed above.

Proof. Consider G′t . (4.14) gives t − 4ξ > χ. Also, Lemma 2.10 implies that G′t has a
root of multiplicity 1 at t, has no other roots in C \ {χ, χ + η − 1}, and that,

G′′t (t) =
eC(t)C ′(t)2

eC(t) − 1
.

Thus, since one of cases (1)–(4) of Lemma 2.2 is satisfied, Lemma 2.3 gives G′′t (t) > 0.
This proves parts (1) and (2).

Consider F ′n. First note, (4.14) implies that t − 2ξ > χ + 2ξ > max(VU(n)). Next
note, part (1) of Lemma 2.12 implies that F ′n has 1 root in (t − ξ, t + ξ). We denote this
by wn, and we recall that wn → t (see part (5) of Lemma 2.12). Moreover, part (2) of
Lemma 2.11 gives

n
1
3 F ′′n (w) = mn(v − u)G′′t,n(w) +O(n−

1
3 ),

uniformly for w ∈ B(t, ξ). Recall that v − u > 0 by assumption. Also recall that {mn}n≥1
is a convergent sequence of real-numbers with a non-zero limit (see Definition 2.8),
mn(eCn(t) − 1)/eCn(t) > 0 (see Definition 2.8), and eCn(t) − 1 → eC(t) − 1 > 0 (see
cases (1)–(4) of Lemma 2.2, Lemma 2.3, and (1.27)). Therefore mn → mt for some
mt > 0. Moreover (see Lemma 2.10), G′′t,n(w) = G′′t (w) + o(1) uniformly for w ∈ B(t, ξ).
Finally (see part (5) of Lemma 2.12), wn → t. Combined, the above observations give
n

1
3 F ′′n (wn) → mt (v −u)G′′t (t) > 0. Therefore F ′′n (wn) > 0. Parts (3)–(5) then follow from

parts (2)–(4) of Lemma 2.12. �
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χ + η − 1 χ t − 4ξ t

R
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χ + η − 1 − 2ξ UV(n) χ + η − 1 + 2ξ

χ − 2ξ
VU (n)

χ + 2ξ

t − 2ξ

t − ξ

wn

t + ξ

Figure 4.11. Top: The roots of G′t . Bottom: The roots of F ′n. Roots of
multiplicity 1 are represented by ×, and elements of VU(n) and UV(n)
are represented by •.

R

H

χ + η − 1 χ t − 4ξ t

Dt

R

H

χ + η − 1 − 2ξ UV(n) χ + η − 1 + 2ξ

χ − 2ξ
VU (n)

χ + 2ξ

t − 2ξ

t − ξ

wn

t + ξ

Dn

Figure 4.12. The contours of Lemma 4.10.

A depiction of (4.14) and the root behaviours described in Lemma 4.9 is given in
Figure 4.11. Next we state (without proof) a result which follows from similar arguments
to those used to show Lemma 4.2:

Lemma 4.10. There exists simple contours, Dt and Dn, as shown in Figure 4.12 with
the following properties:

• Dt starts at t, enter H in the direction π
2 , ends at χ + η − 1, and is otherwise

contained in H. Moreover, Dt is a contour of steepest descent for Gt .

• Dn starts at wn, enters H in the direction π
2 , ends in the interval shown, and is

otherwise contained in H. Moreover, Dn is a contour of steepest descent for Fn.
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Similarly to the previous sections, we are now in a position to define the contour, κ+n ,
that satisfies Lemma 3.6 for cases (1)–(4) of Lemma 2.2. As in those sections, recalling
(see part (5) of Lemma 2.12) that wn = t + O(n−

1
3 ), then wn ∈ B(t, n−θ |qn |) ⊂ B(t, ξ).

Also, similarly to the previous section, we let D1,n and D2,n denote the points where Dn

“exits” B(t, n−θ |qn |) and B(t, ξ) respectively. We denote the equivalent quantities for Dt

by D1,t,D2,t . Finally, define Cξ as in (3.1), and let D3,t denote the point where Dt “exits”
Cξ . Similarly to the previous sections, note that it is always possible to choose the ξ > 0
sufficiently small such that,

Im(D3,t ) = ξ
4 and Re(D3,t ) ∈ (−∞, χ − c),

where c = c(t) > 0 is some constant which is independent of ξ. Finally define:

Definition 4.11. Define κ+n to be the simple contour which:

• starts at t ∈ (χ,+∞),

• then traverses the straight line from t to D1,n ∈ ∂B(t, n−θ |qn |),

• then traverses that section of Dn from D1,n ∈ ∂B(t, n−θ |qn |) to D2,n ∈ ∂B(t, ξ),

• then traverses the shortest arc of ∂B(t, ξ) from D2,n ∈ ∂B(t, ξ) to D2,t ∈ ∂B(t, ξ),

• then traverses that section of Dt from D2,t to D3,t ,

• then traverses the straight line from D3,t to Re(D3,t ),

• then ends at Re(D3,t ) ∈ (−∞, χ − c),

where c = c(t) > 0 is some constant which is independent of ξ.

We finally show that the above contour satisfies the requirements of Lemma 3.6:

Proof of Lemma 3.6 for case (1)–(4) of Lemma 2.2. Note, Lemma 4.10 and Figure 4.12
and Definition 4.11 imply that κ+n starts at t, ends in the interior of the intervals shown
in Figure 3.3, is otherwise contained in H, and is independent of n outside cl(B(t, ξ)).
Moreover, using similar arguments to those used in the proof of Lemma 3.5 (see end of
Section 4.1), we can show that Re(Fn(w)) ≤ Re(Fn(D1,n)) for all w ∈ κ+n \ B(t, n−θ |qn |),
and that |κ+n | = O(1). It thus remains to show that Arg(D1,n − t) = π

2 +O(n−
1
3+θ ).

To see the above, first recall (see Lemma 4.10), thatDn is a contour of steepest descent
for Fn which starts at wn ∈ (t − ξ, t + ξ), and which “exits” B(t, n−θ |qn |) at D1,n. Thus
parts (1) and (2) of Lemma 3.4 give

Re(Fn(D1,n)) < Re(Fn(wn)) and Im(Fn(D1,n)) = Im(Fn(wn)).
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Thus, since wn = t +O(n−
1
3 ) (see part (5) of Lemma 2.12), and since Fn(t) ∈ R, and since

Fn = fn − f̃n (see (2.25)), parts (1) and (2) of Corollary 3.3 give

Re(Fn(D1,n)) < Fn(t) +O(n−1) and Im(Fn(D1,n)) = O(n−1).

Next note, since θ ∈ ( 14,
1
3 ), and since Fn = fn − f̃n, parts (2) and (3) of Lemma 3.2 (take

ξn = n−θ ) give

Fn(t + n−θqneiα) = Fn(t) + n−
1
3−2θ (v − u)e2iα +O(n−

2
3−θ ),

uniformly for α ⊂ (−π, π]. Therefore, since Fn(t) ∈ R,

Re(Fn(t + n−θqneiα)) = Fn(t) + n−
1
3−2θ (v − u) cos(2α) +O(n−

2
3−θ ),

Im(Fn(t + n−θqneiα)) = n−
1
3−2θ (v − u) sin(2α) +O(n−

2
3−θ ),

uniformly for α ⊂ (−π, π]. Finally recall that v > u. We can then proceed similarly to
the proof of part (i) of Lemma 3.5 (see end of Section 4.1) to show that Arg(D1,n − t) =
π
2 +O(n−

1
3+θ ), as required. �

4.5. Lemma 3.6 for cases (5)–(12) of Lemma 2.2

In Section 4.4 we proved Lemma 3.6 for cases (1)–(4) of Lemma 2.2. In this section we
discuss cases (5) and (6). As in Section 4.3, we will be very brief, as the considerations
are very similar. We only seek to highlight the differences here. Similar considerations
also apply for cases (7)–(12).

Assume the conditions of Lemma 3.6, and that one of cases (5) and (6) are satisfied.
Note, since v > u, we can proceed similarly to the proof of Lemma 3.13 to get:

vn > un and vn + sn < un + rn and VU(n) , ∅ and VU(n) , ∅,

and

χ + 2ξ > max(VU(n)) > min(VU(n)) > χ − 2ξ > t + 2ξ > t − 2ξ
> χ + η − 1 + 2ξ > max(VU(n)) > min(VU(n)) > χ + η − 1 − 2ξ.

Also, (2.32) gives

Fn(w) = −
1
n

∑
x∈VU (n)

log(w − x) −
1
n

∑
x∈VU(n)

log(w − x),

for all w ∈ (C \R) ∪ (t − 2ξ, t + 2ξ), where the branch cuts in the 1st sum on the RHS are
all [0,+∞), and the branch cuts in the 2nd sum are all (−∞, 0]. Therefore,

F ′n(w) = −
1
n

∑
x∈VU (n)

1
w − x

−
1
n

∑
x∈VU(n)

1
w − x

,
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and F ′n extends analytically to C \ ((VU(n)) ∪ (VU(n)). Finally, define Gt as in (2.26).
Recall that this is also analytic in (C \ R) ∪ (t − 2ξ, t + 2ξ), and recall (see (2.27) that G′t
extends analytically to C \ {χ, χ + η − 1}. Then t ∈ (χ + η − 1, χ), and we can proceed
as in the proof of Lemma 4.9 to show that G′t (s) < 0 for all s ∈ (χ + η − 1, t), G′t (t) = 0
and G′′t (t) > 0, and G′t (s) > 0 for all s ∈ (t, χ). Moreover, G′t has no other roots in
C \ {χ, χ + η − 1}. The behaviour of the roots of F ′n, the contours of steepest descent, and
the definitions of the contour κ+n , then follow from similar considerations in the previous
section.

Acknowledgements. This research was carried out at the Royal Institute of Technology
(KTH), Stockholm, and at Uppsala University. It was partially supported by grant
KAW 2010.0063 from the Knut and Alice Wallenberg Foundation. Special thanks to
Kurt Johansson for helpful comments and suggestions. Special thanks also to Takis
Konstantopoulos for his support.

References

[1] Zhidong Bai and Jack W. Silverstein. Spectral Analysis of Large Dimensional
Random Matrices. Springer Series in Statistics. Springer, New York, 2010.

[2] Alexei Borodin and Jeffrey Kuan. Asymptotics of plancherel measures for the
infinite-dimensional unitary group. Adv. Math., 219(3):894–931, 2008.

[3] Alexey Bufetov and Knizel Knizel. Asymptotics of random domino tilings of
rectangular aztec diamonds. https://arxiv.org/abs/1604.01491, 2016.

[4] Sunil Chhita, Kurt Johansson, and Benjamin Young. Asymptotic domino statistics
in the aztec diamond. Ann. Appl. Probab., 25(3):1232–1278, 2015.

[5] Henry Cohn, Michael Larsen, and James Propp. The shape of a typical boxed plane
partition. New York J. Math., 4:137–165, 1998.

[6] Manon Defosseux. Orbit measures, random matrix theory and interlaced determi-
nantal processes. Ann. Inst. Henri Poincaré, Probab. Stat., 46(1):209–249, 2010.

[7] Erik Duse, Kurt Johansson, and Anthony Metcalfe. The cusp-airy process. Electron.
J. Probab., 21:57, 50, 2016.

[8] Erik Duse and Anthony Metcalfe. Asymptotic geometry of discrete interlaced
patterns: Part i. Int. J. Math., 26(11):1550093, 66, 2015.

[9] Erik Duse and Anthony Metcalfe. Asymptotic geometry of discrete interlaced
patterns: Part ii. https://arxiv.org/abs/1507.00467, 2015.

195

https://arxiv.org/abs/1604.01491
https://arxiv.org/abs/1507.00467


E. Duse & A. Metcalfe

[10] Walid Hachem, Adrien Hardy, and Jamal Najim. Large complex correlated wishart
matrices: Fluctuations and asymptotic independence at the edges. Ann. Probab.,
44(3):2264–2348, 2016.

[11] Kurt Johansson. Universality of the local spacing distribution in certain ensembles
of hermitian wigner matrices. Commun. Math. Phys., 215:683–705, 2001.

[12] Kurt Johansson. Discrete polynuclear growth and determinantal processes. Commun.
Math. Phys., 242:277–329, 2003.

[13] Kurt Johansson. The arctic circle boundary and the airy process. Ann. Probab.,
33(1):1–30, 2005.

[14] Kurt Johansson. Random matrices and determinantal processes. InMathematical
Statistical Physics, Session LXXXIII: Lecture Notes of the Les Houches Summer
School, pages 1–56. Elsevier, 2006.

[15] Kurt Johansson and Eric J.G. Nordenstam. Eigenvalues of gue minors. Electron. J.
Probab., 11:1342–1371, 2006. erratum in ibid., 12:1048–1051, 2007.

[16] Richard Kenyon and Andrei Okounkov. Limit shapes and the complex burgers
equation. Acta Math., 199(2):263–302, 2007.

[17] Richard Kenyon, Andrei Okounkov, and Scott Sheffield. Dimers and amoebae. Ann.
Math., 163(3):1019–1056, 2006.

[18] Madan Lal Mehta. Random Matrices, volume 142 of Pure and Applied Mathematics.
Elsevier, 3rd edition, 2004.

[19] Anthony Metcalfe. Universality properties of gelfand-tsetlin patterns. Probab.
Theory Relat. Fields, 155(1-2):303–346, 2013.

[20] James Murray. Asymptotic Analysis, volume 48 of Applied Mathematical Sciences.
Springer, New York, 1984.

[21] Leonid Pastur and Mariya Shcherbina. Universality of the local eigenvalue statistics
for a class of unitary invariant random matrix ensembles. J. Stat. Phys., 86:109–147,
1997.

[22] Leonid Pastur and Mariya Shcherbina. Eigenvalue Distribution of Large Ran-
dom Matrices, volume 171 ofMathematical Surveys and Monographs. American
Mathematical Society, 2011.

[23] Leonid Petrov. Asymptotics of random lozenge tilings via gelfand-tsetlin schemes.
Probab. Theory Relat. Fields, 160(3-4):429–487, 2014.

196



Universal edge fluctuations

[24] Michael Prähofer and Herbert Spohn. Scale invariance of the png droplet and the
airy process. J. Stat. Phys., 108(5-6):1071–1106, 2002.

[25] Craig A. Tracy and Harold Widom. The pearcey process. Commun. Math. Phys.,
263:381–400, 2006.

Erik Duse
PB 68
Gustaf Hällströms gata 2b
000 14 Helsingfors, Finland
erik.duse@helsinki.fi

Anthony Metcalfe
Kostervägen 2B
181 35 Lidingö, Sweden
metc.alf@kth.se

197

mailto:erik.duse@helsinki.fi
mailto:metc.alf@kth.se

	1. Introduction
	1.1. Overview of the model, the asymptotic assumptions, and results
	1.2. The determinantal structure of discrete Gelfand–Tsetlin patterns
	1.3. The asymptotic ``shape'' of discrete Gelfand–Tsetlin patterns
	1.4. Motivation and statement of main results
	1.5. Other asymptotic situations and conjectures
	1.6. Notation and terminology

	2. The roots of the steepest descent functions
	2.1. The roots of ft'
	2.2. The roots of fn' and fn'
	2.3. The rates of convergence
	2.4. The asymptotic behaviour of fn-fn

	3. Steepest descent analysis
	3.1. Local asymptotic behaviour
	3.2. Contours of descent/ascent
	3.3. Alternative contour integral expressions
	3.4. Proof of Theorem 1.11

	4. Existence of appropriate contours of descent/ascent
	4.1. Lemma 3.5 for case (1) of Lemma 2.2
	4.2. Lemma 3.5 for case (2) of Lemma 2.2
	4.3. Lemma 3.5 for cases (3-12) of Lemma 2.2
	4.4. Lemma 3.6 for cases (1)–(4) of Lemma 2.2
	4.5. Lemma 3.6 for cases (5)–(12) of Lemma 2.2

	References

