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Holomorphic extension of the de Gennes function
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Abstract

This note is devoted to prove that the de Gennes function has a holomorphic
extension on a half strip containing R+.

1. Introduction

1.1. About the de Gennes operator
The de Gennes operator plays an important role in the investigation of
the magnetic Schrödinger operator. Consider the half-plane

R2
+ = {(s, t) ∈ R2 : t > 0} ,

and a magnetic field B(s, t) = 1. We also introduce an associated vector
potential A(s, t) = (−t, 0) such that B(s, t) = ∇×A(s, t). Then, we define
LA the Neumann realization of the differential operator (−i∇+A)2 acting
on L2(R2

+). By using the partial Fourier transform in s, we obtain the
direct integral:

FLAF−1 =
∫ ⊕
R

Lξ dξ ,

where, for ξ ∈ R, Lξ denotes the Neumann realization on R+ of the differ-
ential operator −∂2

t + (ξ − t)2. The self-adjoint operator Lξ is called the
de Gennes operator with parameter ξ ∈ R. Let us give a precise definition
of this operator. For ξ ∈ R, we introduce the sesquilinear form

∀ ψ ∈ B1(R+) , qξ(ϕ,ψ) =
∫
R+
ϕ′ψ

′ + (t− ξ)2ϕψ dt ,

where
B1(R+) =

{
ψ ∈ H1(R+) : tψ ∈ L2(R+)

}
.

Keywords: de Gennes operator, holomorphic extension, holomorphic perturbation
theory.
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This form is continuous on the Hilbert space B1(R+) and Hermitian. Up
to the addition of a constant, qξ is coercive on B1(R+). Therefore, in
virtue of the Lax–Milgram representation theorem (see for instance [4,
Theorem 3.4]), we can consider the associated closed (and self-adjoint,
since the form is Hermitian) operator Lξ and its domain is

Dom(Lξ) =
{
ψ ∈ B2(R+) : ψ′(0) = 0

}
⊂ B1(R+) ,

where
B2(R+) =

{
ψ ∈ H2(R+) : t2ψ ∈ L2(R+)

}
.

Since B1(R+) is compactly embedded in L2(R+), we deduce that Lξ has
compact resolvent and we can consider the non-decreasing sequence of its
eigenvalues (µk(ξ))k∈N∗ . Each eigenspace is of dimension one (due to the
Neumann condition for instance).

Definition 1.1. We call the function R 3 ξ 7→ µ1(ξ) ∈ R the de Gennes
function. For shortness, we let µ = µ1.

In the terminology of Kato’s perturbation theory (see [6, Section VII.2]),
the family of self-adjoint operators (Lξ)ξ∈R is analytic of type (A). In other
words, for all ξ0 ∈ R, the family (Lξ)ξ∈R can be extended into a family of
closed operators (Lξ)ξ∈V with V a complex open ball containing ξ0 such
that

• the domain Dom(Lξ) does not depend on ξ ∈ V,

• for all ψ ∈ Dom(Lξ0), the map V 3 ξ 7→ Lξψ is holomorphic.

By using Kato’s theory and since µ is a simple eigenvalue, µ is real analytic,
or equivalently, for all given ξ0 ∈ R, µ has a local holomorphic extension
in a neighborhood of ξ0. We refer to [8, Section 2.4] for a direct proof. We
also recall that µ has a minimum (see [2] or [3, Proposition 3.2.2]). We let
Θ0 = min

ξ∈R
µ(ξ).

This note answers the following question: Can the de Gennes function
µ be holomorphically extended on a strip about R+?

1.2. Motivations and result
The aim of this note is to prove the following theorem.
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Theorem 1.2. There exist ε > 0 and F a holomorphic function on the
half strip

Sε := {ξ ∈ C : Re ξ > 0 , |Im ξ| < ε} ,

such that, for all ξ ∈ R, µ(ξ) = F (ξ). Moreover, for all ξ ∈ Sε, we have

ReF (ξ) ≥ µ(Re ξ)− (Im ξ)2 ,

and F (ξ) belongs to the discrete spectrum of Lξ.

Remark 1.3. As we can see from the proof, for all k ∈ N∗, µk has a
holomorphic extension on a half strip about R+. Of course, the size of this
strip depends on k and is expected to shrink when k becomes large.

Remark 1.4. The method used in this note can be applied to the family
of Montgomery operators

−∂2
t +

(
ξ − tn+1

n+ 1

)2

,

acting on L2(R), with n ∈ N∗ and ξ ∈ R. Their eigenvalues have holo-
morphic extensions on a half strip about R+. The Montgomery operators
appear in the case of vanishing magnetic fields.

This theorem is motivated by various spectral questions. Firstly, it plays
an important role in the investigation of the resonances induced by local
perturbations of LA. Indeed, these resonances can often be defined by
analytic dilations (see for instance [5, Chapter 16]) and the existence of a
holomorphic extension of the band functions µk could be useful to reveal
new magnetic spectral phenomena. Secondly, it is also strongly related
to complex WKB analysis (as we have shown in [1]). In particular, the
WKB constructions in [1, Section 1.2.2] are a priori local and an accurate
knowledge of the holomorphy strip would allow to extend the domain of
validity of these constructions (see [1, Section 4.2] where the size of the
holomorphy strip is involved). Moreover, this holomorphic extension is
crucial in the study of the semiclassical magnetic tunneling effect when
there are symmetries. Actually, this effect can only be fully understood in
the complexified phase space.
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2. Proof of the theorem

2.1. Preliminary considerations
Let us prove the following separation lemma.

Lemma 2.1. For all k ∈ N∗, there exists ck > 0 such that
∀ ξ ∈ R , µk+1(ξ)− µk(ξ) ≥ ck .

Proof. We recall that the functions µk are real analytic and that, for all
integer k, we have µk < µk+1. As a consequence of the harmonic approxi-
mation (see for instance [3, Section 7.1] or [8, Section 3.2]), we have

∀ k ∈ N∗ , lim
ξ→+∞

µk(ξ) = 2k − 1 . (2.1)

Therefore, for all k ∈ N∗, there exist Ξk, dk > 0 such that, for all ξ ≥ Ξk,
µk+1(ξ)− µk(ξ) ≥ dk .

For α > 0, let us consider L−α. By dilation, this operator is unitarily
equivalent to the Neumann realization on R+ of the differential operator

α2(α−4D2
τ + (τ + 1)2) ,

where we denote Dt = −i∂t. The potential R+ 3 τ 7→ (τ + 1)2 is minimal
at τ = 0 and thus a variant of the harmonic approximation near τ = 0
shows that (see for instance [7, Théorème 1.7])

∀ k ∈ N∗ , µk(−α) =
α→+∞

α2 + νkα
2
3 + o(α

2
3 ) , (2.2)

where (νk)k∈N∗ is the increasing sequence of the eigenvalues of the Neu-
mann realization on R+ of D2

τ + 2τ . Let us briefly recall the main steps of
the proof of (2.2). The regime α→ +∞ is equivalent to the semiclassical
regime h = α−2 → 0 and one knows that the eigenfunctions associated
with the low lying eigenvalues are concentrated near the minimum of the
potential τ = 0. Near this point, we can perform a Taylor expansion so
that the operator asymptotically becomes

α2(α−4D2
τ + 1 + 2τ) .

Then, we homogenize this operator with the rescaling τ = h
2
3 τ̃ and the

conclusion follows.
We deduce that

lim
α→+∞

(µk+1(−α)− µk(−α)) = +∞ . (2.3)
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Combining (2.1), (2.3), the simplicity of the µk and their continuity, the
result follows. �

2.2. The family (Lξ)ξ∈Sε
Let us fix ε > 0 and explain how the operator Lξ is defined for ξ ∈ Sε. We
let, for all ξ ∈ Sε,

∀ ϕ,ψ ∈ B1(R+) , qξ(ϕ,ψ) =
∫
R+
ϕ′ψ

′ + (t− ξ)2ϕψ dt .

The sesquilinear form qξ is well defined and continuous on B1(R+). In
order to apply the Lax–Milgram representation theorem, let us consider
the quadratic form B1(R+) 3 ψ 7→ Re qξ(ψ,ψ). We have

Re qξ(ψ,ψ) = ‖ψ′‖2 +
∫
R+

Re (t− ξ)2|ψ|2 dt ,

and
Re (t− ξ)2 = (t− Re ξ)2 − (Im ξ)2 .

In particular, we have
Re qξ(ψ,ψ) ≥ qRe ξ(ψ,ψ)− (Im ξ)2‖ψ‖2 ≥ (µ(Re ξ)− (Im ξ)2)‖ψ‖2

≥ (Θ0 − (Im ξ)2)‖ψ‖2 . (2.4)

Thus, up to the addition of constant, Re qξ is coercive on B1(R+). We
deduce that, for all ε > 0 and all ξ ∈ Sε, there exist C, c > 0 such that,
for all ψ ∈ B1(R+), ∣∣∣qξ(ψ,ψ) + C‖ψ‖2

∣∣∣ ≥ c‖ψ‖2B1(R+) .

Therefore, we can apply the Lax–Milgram theorem and define a closed
operator Lξ. It satisfies

∀ ψ ∈ B1(R+) , ∀ ϕ ∈ Dom(Lξ) , qξ(ϕ,ψ) = 〈Lξϕ,ψ〉 .
We can easily show that

Dom(Lξ) =
{
ψ ∈ B2(R+) : ψ′(0) = 0

}
,

so that Lξ has compact resolvent and (Lξ)ξ∈Sε is a holomorphic family of
type (A). If ε ∈ (0,

√
Θ0), as a consequence of (2.4), we get that, for all

ξ ∈ Sε, Lξ is bijective. Indeed, we have, for all ψ ∈ Dom(Lξ),
(Θ0 − ε2)‖ψ‖ ≤ ‖Lξψ‖ .
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From this, the operator Lξ is injective with closed range. Since L∗ξ = Lξ,
we deduce that L∗ξ is also injective and thus Lξ has a dense image. We get
that, for all ξ ∈ Sε,

‖L−1
ξ ‖ ≤ (Θ0 − (Im ξ)2)−1 .

2.3. Resolvent and projection estimates
Let us now prove the main result of this note.

2.3.1. Difference of resolvents

For 0 < r1 < r2, and z0 ∈ C, we define the annulus
Ar1,r2(z0) = {z ∈ C : r1 < |z − z0| < r2} .

We consider, for all r > 0 and all ξ ∈ Sε,
Ar,ξ := Ar,2r(µ(Re ξ)) .

Using Lemma 2.1 with k = 1, we know that there exists r0 > 0 such that

• for all ξ ∈ Sε,
Ar0,ξ ⊂ ρ(LRe ξ) , dist(Ar0,ξ, sp(LRe ξ)) ≥ r0 > 0 ,

where ρ(LRe ξ) denotes the resolvent set of LRe ξ,

• the disk of center µ(Re ξ) with radius r0, denoted by D(µ(Re ξ), r0),
contains only one eigenvalue of LRe ξ.

The following proposition states an approximation of the resolvent of Lξ
by the one of LRe ξ when ε goes to 0.

Proposition 2.2. There exist C, ε0 > 0 such that for all ε ∈ (0, ε0) and
all ξ ∈ Sε, we have Ar0,ξ ⊂ ρ(Lξ). In addition, we have, for all ξ ∈ Sε
and z ∈ Ar0,ξ, ∥∥∥(Lξ − z)−1 − (LRe ξ − z)−1

∥∥∥ ≤ Cε. (2.5)

Proof. For all z ∈ Ar0,ξ, we have
Lξ − z = LRe ξ − 2i Im ξ(t− Re ξ)− (Im ξ)2 − z ,

or, equivalently,
Lξ−z = (Id−2i Im ξ(t−Re ξ)(LRe ξ−z)−1−(Im ξ)2(LRe ξ−z)−1)(LRe ξ−z) .
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Thus, we have to show that

Id− 2i Im ξ(t− Re ξ)(LRe ξ − z)−1 − (Im ξ)2(LRe ξ − z)−1

is bijective. By the spectral theorem, we get

‖(LRe ξ − z)−1‖ ≤ 1
dist(z, sp(LRe ξ))

≤ 1
r0
. (2.6)

Let us also estimate (t− Re ξ)(LRe ξ − z)−1. Take u ∈ L2(R+) and let

v = (LRe ξ − z)−1u.

We have
(D2

t + (t− Re ξ)2 − z)v = (LRe ξ − z)v = u,

and we must estimate (t − Re ξ)v. Taking the scalar product with v, we
get

‖(t− Re ξ)v‖2 − Re z‖v‖2 ≤ 〈v, u〉 ≤ ‖u‖‖v‖ ≤ r−1
0 ‖u‖

2 .

Since the de Gennes function satisfies µ(Re ξ) ≤ 1 when Re ξ ≥ 0 (see [3,
Proposition 3.2.2]), we get, for all z ∈ Ar0,ξ,

Re z ≤ µ(Re ξ) + 2r0 ≤ 1 + 2r0 .

We find

‖(t− Re ξ)(LRe ξ − z)−1‖ ≤
√

3r−1
0 + r−2

0 =: r1 . (2.7)

From (2.6) and (2.7), it follows that

‖ − 2i Im ξ(t− Re ξ)(LRe ξ − z)−1 − (Im ξ)2(LRe ξ − z)−1‖

≤ 2|Im ξ|r1 + |Im ξ|2r−1
0 ≤ 2εr1 + (εr−

1
2

0 )2 .

Thus, there exists ε0 > 0 such that for all ε ∈ (0, ε0), we have, for all
ξ ∈ Sε and z ∈ Ar0,ξ,

‖ − 2i Im ξ(t− Re ξ)(LRe ξ − z)−1 − (Im ξ)2(LRe ξ − z)−1‖ < 1 .

This shows that Id − 2i Im ξ(t − Re ξ)(LRe ξ − z)−1 − (Im ξ)2(LRe ξ − z)−1

is bijective and thus Lξ − z is bijective. The estimate of the difference of
the resolvents immediately follows. �
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2.3.2. Projections

Let us now introduce

Pξ = 1
2iπ

∫
Γξ

(z − Lξ)−1 dz ,

where Γξ is the circle of center µ(Re ξ) and radius 3
2r0. It is classical to

show, by using the resolvent and Cauchy formulas, that Pξ is the projection
on the characteristic space associated with the eigenvalues of Lξ enlaced
by Γξ.

Lemma 2.3. There exists ε0 > 0 such that for all ε ∈ (0, ε0) and all
ξ ∈ Sε, the rank of Pξ is 1 and Pξ is holomorphic on Sε.

Proof. Let us fix ξ0 ∈ Sε. There exists δ > 0 such that, for all ξ ∈ D(ξ0, δ),
we have ξ ∈ Sε, Γξ0 ⊂ Ar0,ξ and

Pξ = 1
2iπ

∫
Γξ0

(z − Lξ)−1 dz .

This comes from the continuity of the family of circles Γξ and the holo-
morphy of the resolvent z 7→ (z−Lξ)−1. From this, we now see that Pξ is
holomorphic on the disk D(ξ0, δ). Indeed, since (Lξ)ξ∈Sε is a holomorphic
family of type (A), D(ξ0, δ) 3 ξ 7→ (z−Lξ)−1 is holomorphic, uniformly for
z ∈ Γξ0 . Finally, with (2.5), there exists ε0 > 0 such that, for all ε ∈ (0, ε0)
and all ξ ∈ Sε,

‖Pξ − PRe ξ‖ ≤
3r0
2 Cε < 1 .

By a classical lemma about pairs of projections (see [6, Section I.4.6]) and
since the rank of PRe ξ is 1, we deduce that the rank of Pξ is 1. �

Remark 2.4. We can also choose ε0 > 0 so that, for all ε ∈ (0, ε0), all
ξ ∈ Sε and all ψ ∈ L2(R+),∣∣∣∣∣

∫
R+

(Pξψ)2 dt−
∫
R+

(PRe ξψ)2 dt
∣∣∣∣∣ ≤ 1

2‖ψ‖
2 .

2.3.3. Conclusion

Since Pξ commutes with Lξ, we can consider the restriction of Lξ to the
range of Pξ. This restriction is a linear map in dimension one. Therefore,
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for all ξ ∈ Sε, there exists a unique F (ξ) ∈ C such that

∀ ψ ∈ L2(R+) , Lξ(Pξψ) = F (ξ)Pξψ .

Taking the scalar product with Pξψ, we get, for all ψ ∈ L2(R+) and all
ξ ∈ Sε,

F (ξ)
∫
R+

(Pξψ)2 dt =
∫
R+

Lξ(Pξψ)Pξψ dt .

Let ξ0 ∈ Sε. By Remark 2.4, there exists ψ0 ∈ L2(R+) (a real normalized
eigenfunction of LRe ξ0 associated with µ(Re ξ0)) such that∫

R+
(Pξ0ψ0)2 dt 6= 0 .

Thus there exists a neighborhood V of ξ0 such that, for all ξ ∈ V,

F (ξ) =
∫
R+

Lξ(Pξψ0)Pξψ0 dt∫
R+

(Pξψ0)2 dt .

Thus F is holomorphic near ξ0. When ξ ∈ R, we have clearly F (ξ) = µ(ξ).
This, with (2.4), terminates the proof of Theorem 1.2.
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