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Abstract

These past few years, new types of computational architectures based on graph-
ics processors have emerged. These technologies provide important computational
resources at low cost and low energy consumption. Lots of developments have been
done around GPU and many tools and libraries are now available to implement
efficiently softwares on those architectures.

This article contains the two contributions of the mini-symposium about GPU
organized by Loïc Gouarin (Laboratoire de Mathématiques d’Orsay), Alexis Hérault
(CNAM) and Violaine Louvet (Institut Camille Jordan). This mini-symposium was
an opportunity to explore the upcoming role of hardware accelerators and how it
will affect the way applications are designed and developed.

As the main issue of the mini-symposium was graphical cards, this document
contains contributions about two feedbacks on the behavior of different numerical
methods on GPU:

• ones on particle method for transport equations,
• the other on Lattice Boltzmann Methods for Navier–Stokes equations, Fi-

nite Volume schemes for Euler equations and particles methods for kinetic
equations.

Keywords: GPU, méthode particulaire, EDP, Mécanique des Fluides, interaction, visu-
alisation, calcul instantané, volumes finis, méthode Lattice Boltzmann, méthode par-
ticulaire, programmation multicœur.
Math. classification: 35L05, 65M08, 76M25, 76N15, 76P05, 97N40.
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Le GPU est-il le futur du calcul scientifique ?
Résumé

Ces dernières années, de nouveaux types d’architectures basés sur les pro-
cesseurs graphiques ont émergés. Ces technologies fournissent d’importantes res-
sources computationelles à faible coût et faible consommation d’énergie. Les nom-
breux dévelopements effectués sur le GPU ont alors permis la création et l’implé-
mentation de logiciels sur ce type d’architecture.

Cet article contient les deux contributions de ce mini-symposium GPU orga-
nisé par Loïc Gouarin (Laboratoire de Mathématiques d’Orsay), Alexis Hérault
(CNAM) et Violaine Louvet (Institut Camille Jordan). La premiere concerne les
méthodes particulaires pour les équations de transport, la seconde concerne la
résolution des équations de Navier-Stokes et des équations d’Euler.
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GPU Computing

1. Particle method on GPU

by Georges-Henri Cottet, Jean-Matthieu Etancelin, Franck Perignon and
Christophe Picard.

In this part we present a graphics processing unit (GPU) implementation
of a particle method for transport equations. More precisely the numeri-
cal method under consideration is a remeshed particle method. Not only
remeshing particles makes simulations more accurate in flows with strong
strain, but it leads to algorithms more regular in term of data structures.
In this work, we develop a Python library using GPU through OpenCL
standard that implements this remeshed particle method which already
shows interesting performances.

1.1. Previous work
1.1.1. Particle method

In the present work, we focus on solving advection equation (1.1) by means
of remeshed particle method

∂tu+ div(au) = 0 . (1.1)
Remeshed particle methods can be seen as forward semi-Lagrangian

methods. For each time step, they consist in 2 sub-steps. An advection
step where particles, carrying local masses of u, are advected with their
local velocity, followed by a remeshing step where particles are restarted
on a regular grid. In the advection step, one solves the following system
of different equations

dx̃p
dt = a(x̃p, t) . (1.2)

The remeshing step is performed with the following general formula

ug =
∑
p

ũpW

(
xg − x̃p

h

)
. (1.3)

In the above formulas x̃p, ũp represent the particle locations and weights
after advection, and xg, ug their location and weights after remeshing on
a regular grid.

The algorithm to solve equation (1.1) for a time step t = n∆t can be
summarized as follows:
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- Initialize particle locations and weights : x̃np ← xg , ũnp ← ung

- Solve equation (1.2) with a 2nd (or 4th) order Runge Kutta scheme
x̃np ← x̃np + ∆tan(x̃np + ∆t

2 a
n(x̃np ))

- Remesh particles on grid : ug =
∑
p ũpW

(
xg−x̃p

h

)
.

Note that depending on the problem at hand, particle velocities are
either computed analytically or interpolated from grid-values.

In general this scheme is extended to any dimension using tensor-
product formulas for the remeshing kernels. In [7], an alternating di-
rection algorithm was proposed where particles are successively pushed
and remeshed along axis directions. This method reduces the cost of the
remeshing step, allowing to use high order interpolation kernels with large
stencils. In this work we use the 6-point kernel M ′6 [1]
M ′

6(x) =
1

12 (1− |x|)
(

25|x|4 − 38|x|3 − 3|x|2 + 12|x|+ 12
)

if 0 < |x| < 1
1

24 (|x| − 1) (|x| − 2)
(

25|x|3 − 114|x|2 + 153|x| − 48
)

if 1 < |x| < 2
1

24 (3− |x|)3 (5|x| − 8) (|x| − 2) if 2 < |x| < 3
0 if 3 < |x| .

A distinctive feature of remeshed particle methods is the time step does
not depend on the number of particles. This allows to perform accurate
high resolution simulations with large time steps.

1.1.2. OpenCL computing

OpenCL is an open standard for parallel programming of heterogeneous
systems [8]. It provides application programming interfaces for managing
hybrid platforms containing many CPUs and GPUs and a programming
language based on C99 for writing instructions executed concurrently on
the OpenCL devices.

OpenCL applications must define an execution model by setting a host
program that executes on the host system and send OpenCL kernels to
devices using a command queue. A kernel contains executable code that
concurrently runs on devices compute units which are called work-items.
A memory model need to be explicitly defined to manage data layout in
the memory hierarchy. Details of these models such as work-item number
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in a work-group or memory access pattern have a very strong impact on
program efficiency.

1.2. Particle method with OpenCL

Particle methods have already been implemented on GPU. In [11], a two
dimensional solver for bluff body flows is developed using OpenGL and
CUDA. The method allows to deal with particle distributions of up to
10242 at a speed greater than 20 fps. The accuracy of GPU computations
was also addressed by comparing GPU results with high resolution double
precision benchmark calculations on CPU.

Our implementation of the method presented in section 1.1.1 uses dif-
ferent abstract layers by means of a Python class hierarchy in order to
have a well-defined program structure easy to use and develop. Computa-
tions are not performed on the host side of the program but on the devices
in different kernels, unnoticed by user.

According to the method, the algorithm is split into two parts namely
an advection and a remeshing step. These two parts are repeated several
times to perform a dimensional splitting for each simulation time step. We
depict in figure 1.1 the algorithm for one splitting direction. For simplicity
we take the velocity as a constant. In the general case, the velocity field
is computed once at every time step.

Grid velocity
x
y
z

Grid scalar

Particle position

Particle scalar

Advection kernel Remeshing kernel

Figure 1.1. Execution layout on GPU. Memory objects
are depicted in red and OpenCL kernels in green
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The main constraints for implementations on GPU are to make a proper
and optimized use of the memory size and bandwidth. In fact, in a tree-
dimensional case, each particle needs 6 floats in global memory to be
completely defined. For example, 10243 particles need 6GB memory in
simple precision1. This problem will be tackled in future work using several
GPUs. The memory access is detailed in the following sections. In figure
1.1, memory objects are either OpenCL Buffers or Images. The current
work is to determine which type of object is best suited to our algorithm.

In order to take advantage of the splitting algorithm, the different one
dimensional problems are distributed among work-items. In our imple-
mentation, one work-item is not in charge of one grid point but of one line
of grid points in the splitting direction. Advantages of this distribution
are detailed in the following parts. For example, 10243 particles will be
computed over 10242 work-items, each one in charge of 1024 particles.

1.2.1. Advection step

In our splitting algorithm, only one component of velocity and particle
position in the current splitting direction need to be considered. The other
components are respectively unused or leaved unchanged. The particle
position variable reduces to a scalar. In our method, particles are created
on each grid point and initialized with the value on the grid. Grid points
coordinates are re-computed each time from the global OpenCL index
space thanks to buit-in functions.

Once particles are created and initialized, evolution ODEs are solved
for particle position using the grid velocity field. This is done by means of
a 2nd order Runge-Kutta scheme. The problem is to interpolate the grid
velocity to compute intermediary steps in the time-stepping scheme be-
cause the needed data depend on the velocity field. Therefore the memory
access pattern might not be linear, depending on the computation process.

A simple improvement for this point is to make data closer to work-
items, by use of a copy of the needed grid data in private memory. Inter-
polations are then performed in private memory so data are read with the
fastest memory access available.

A strong performance improvement was obtained by arranging data
layout for the grid velocity. In fact, as data are accessed line by line, we

1Today’s cards memory ranges between 128MB and 8GB.

80



GPU Computing

make the data contiguous in a direction orthogonal to the splitting di-
rection. Consequently, work-items can together read contiguous data in
global memory and then avoid strided accesses. For scalar data, a sim-
ilar memory layout can be used by transposing data from one splitting
direction to the next. This implementation needs further improvements to
cope with small private memory, or larger problems. In these cases, a new
re-arrangement of tasks is required.

1.2.2. Remeshing step

As for advection, memory access pattern is execution dependant since a
particle is remeshed on its nearest grid points. On top of that, two different
particles can have exactly the same remeshing grid points. We need syn-
chronization within particles to avoid concurrent memory writing access.
More precisely, remeshing points overlap for particles that are in the same
one dimensional line in the splitting direction under consideration. Thus,
synchronization is done when only one work-item works on the line. A
simple improvement is to write results in a local buffer and, once all parti-
cles are remeshed, copy this buffer into the global memory. This minimizes
global memory access for remeshing.

1.3. Performances and results

1.3.1. Level set test case

Our method is tested with a classical and challenging problem for level
set methods, namely a sphere subjected to a incompressible velocity field
in a periodic cube [0; 1]3. This test consists in the advection of a passive
scalar initialized with value u = 1 inside a sphere of radius 0.15 and u = 0
elsewhere. The advection velocity is given by the following formula

a(x) =


2 sin(πx)2 sin(2πy) sin(2πz)
− sin(2πx) sin(πy)2 sin(2πz)
− sin(2πx) sin(2πy) sin(πz)2

 .

One of the tests implemented in [7] and the references therein is pre-
sented in Figure 1.2. This simulation is performed with N = 2563 and
a time step value which would correspond to a CFL number equal to 25
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(a) T = 0 (b) T = 0.2 (c) T = 0.4

(d) T = 0.6 (e) T = 0.8 (f) T = 1.0

Figure 1.2. Iso-surface of level 0.5 at different times,
CFL = 25, dt = 0.05.

at this resolution. Time T = 1 is reached in 20 iterations and took 25
seconds.

1.3.2. Computational efficiency

OpenCL kernels can be compute-bound or memory-bound. Our advection
kernel is memory-bound since the operational intensity equals to 2.25 op-
erations per byte of data accessed from the memory and remeshing kernel
is nearly compute-bound with a operational intensity of 9.5.

In figure 1.3, we present profiling results and timings. For larger prob-
lems, almost all compute time is spent in kernels that could be optimized.
The initialization and host code are sequential codes quite independent of
the problem size. The initialization part consists in reading problems data
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and creating python objects structure. The host code tasks are to set the
OpenCL execution layout and to launch the kernels. For 2563 particles,
the whole computation is performed in 25 seconds, which corresponds to
1.25 seconds per time step.

As a comparison, a Fortran/MPI solver performs the same simulation
on 4 Intel Core i7 running at 2.4 GHz in 62 seconds, which corresponds
to 12.4 seconds per time step. This shows a speedup of nearly 10 against
the parallel Fortran code.

0

20

40

60

80

100

256 2
384 2

512 2
768 2

1024 2
1536 2

2048 2
32 3 48 3 64 3 96 3 128 3

192 3
256 3

0.01

0.1

1

T
im

e
di
st
ri
bu

ti
on

T
im

e
pe

r
it
er
at
on

(s
ec
/i
te
)

Code profiling over different problem sizes

Initialisation
Advection kernel
Remeshing kernel

Host code
Total time per iteration

Figure 1.3. Profiling data on ATI Radeon HD 6770M

To give another comparison, the computational times showed in [11]
are about 0.048 seconds per time step for one million particle for the
whole Navier-Stokes solver in simple precision. In our case, we obtain a
computing time of 0.055 for problems of similar size. Note however that the
problems are rather different, since the problems considered in [11] were
two-dimensional and used lower order remeshing schemes but involved
non-local field evaluations (through FFT).
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1.4. Conclusions
In this work we showed implementations of 3D particle methods in GPUs.
A splitting algorithm together with a high order remeshing kernel were
considered for a transport equation discretized on a single GPU with about
16 million particles.

Ongoing work concerns further optimizations of our code and its Python
implementation on several GPUs to tackle larger problems.

2. Some examples of instant computations of fluid dynamics
on GPU

by Florian De Vuyst and Christophe Labourdette

This section is a summary of our experience feedback on GPU and GPGPU
computing for two-dimensional computational fluid dynamics using fine
grids and three-dimensional kinetic transport problems. The choice of the
computational approach is clearly critical for both performance speedup
and efficiency. In our numerical experiments, we used a Lattice Boltzmann
approach (LBM) for the incompressible Navier-Stokes equations, a finite
volume Flux Vector Splitting (FVS) method for the compressible Euler
equations and a lagrangian particle approach for a linear kinetic problem.

2.1. GPU computing with instantaneous visualization and
interaction in CFD. Experience feedback

2.1.1. Instantaneous computing and interactive visualization

High performance computing (HPC) knows an important growth since re-
cent years. Theoretical peak processing performance and storage capacity
in supercomputers gained three or four orders of magnitude in less than a
decade. However, scientists and computational engineers would like more
flexibility in terms of delay of response and ease of use. Manufacturers
develop cluster computers to exceed the petaflop (see the exaflop !), but
the cost and planning of very large computations imposes workflow con-
straints in batch mode.

Recently, the design of manycore processors like graphics processing
units GPU, general purpose graphics processing units GPGPU and many-
integrated cores MIC allow one to get theoretical teraflop performance into
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a simple office workstation. This potential flexibility of use with only one
user let us imagine new ways of computing and use cases like interac-
tive simulation and instant computations. The applied mathematicians
are often little concerned with the very large calculations, they are more
interested in the design of methods and algorithms for performing the cal-
culations. That’s why we emphasize here on ways of instant computing,
in particular on GPU or GPGPU. We especially focus on fluid dynamics
problems where time scales of interest allow for interaction with the sim-
ulation, and where the models can be controlled by changing parameters
and operating conditions with effects viewed instantaneously.

The spin-off effect of such applications is the ease with which a user may
“play” with the computational method and the underlying Physics thanks
to the visualization. We believe that the coupling between instantaneous
computing and interactive visualization really brings an extra dimension
to better understand and evaluate methods or schemes. It is a new valuable
tool for the applied mathematician. GPU computing today seems to be
an inevitable affordable way to build such kinds of applications. Of course
there is a price to pay to fully take advantage of GPU resources. We need to
reconsider conventional methods and design new innovative computational
algorithms to really take advantage of the theoretical peak performance.

2.1.2. Impact on the design of numerical methods

As a simple statement of fact, standard sophisticated discretization meth-
ods for partial differential problems or optimization algorithms are not
really suited for high-performance parallelization on manycore GPU-like
architectures. For example, implicit methods lead to a large (sparse) linear
system which is solved either by a direct method involving a sparse factor-
ization and a sequential descent/roll up, or by an iterative algorithm which
is also sequential by nature. Of course, one can find BLAS-like libraries on
many-cores (like cuBLAS on nVIDIA GPU), but today reported speedups
are partially satisfactory. For that reason, explicit methods are certainly
much more suitable on GPU architectures. Another aspect is the mem-
ory access to neighboring degrees of freedom, which is a common issue
for PDE-based problems. It is important to notice that there are strongly
optimized data structures and methods for fixed neighbor stencil patterns
access. This makes cartesian structured grids very suitable candidates. For
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complex geometries, one can imagine immersed boundary methods (IBM)
into cartesian uniform meshes.

Our belief at CMLA is that we have to reconsider both models and
methods, in order to derive efficient single-program multiple-data (SPMD)
algorithms with communications rates that do not affect the floating point
performance too much. For most of the classical PDEs, there are tracks to
achieve manycore-suited computational approaches. For example, Lattice
Boltzmann (LB) methods are a particular class of cellular automata able to
discretize classical equations like the heat equations, convection-diffusion
equations and even the unsteady Navier-Stokes equations or more compli-
cated coupled systems. Because of the explicit nature of the method and
the uniform local spatial pattern/stencil of discretization, the LB methods
are excellent SPMD computational approaches. In the next section, we will
focus and give more details on LB methods for solving the incompressible
Navier-Stokes equations.

Another track is the underlying microscopic dynamics behind macro-
scopic models. Generally PDEs are nothing else but a deterministic macro-
scopic representation of some microscopic or mesoscopic dynamics with
“uncertainty” taken into account (stochastic effects like brownian motion).
The Laplace operator for example is the macroscopic diffusion operator
of the microscopic brownian random walk. Generally, at the microscopic
scale, there is an underlying transport process and a collision/interaction
phenomenon. On the other hand, the possible numerical simulation at
microscopic scale will require a large number of “individuals” in order
to derive accurate statistics able to return the macroscopic effects accu-
rately. Manycore architectures are excellent hardware candidates to run
population-based computational approaches (like particle methods) on a
very large number of individuals. In the sequel we shall give some illus-
trative examples.

Incompressible flows. Consider the two-dimensional incompressible
Navier-Stokes equations defined on a bounded spatial domain Ω of R2:

∇ · u = 0, t > 0, x ∈ Ω, (2.1)

ρ (∂tu + u · ∇u) +∇p− ρν∆u = 0, t > 0, x ∈ Ω, (2.2)
where ρ is the (constant) density, u the fluid velocity, p the pressure
and ν > 0 the kinematic
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viscosity of the fluid. There is lot of literature on how to discretize this
system of equations. Because of the implicit incompressibility constraint
∇ · u = 0, generally an implicit solver is used leading to the solution of
a large linear system to solve at each time step, what is not very directly
suitable for GPU.

Since two decades, a new family of discrete explicit methods, namely
the Lattice Boltzmann methods (LBM) (see the book [12] for example or
the review paper [9]) are a kind of kinetic-based cellular automata. They
are based on a discretization of the Boltzmann equation

∂tf + e · ∇xf = (∂tf)coll
governing the distribution f = f(x, e, t) of gas particles having speed e at
position x and time t. The term (∂tf)coll models all the possible pairwise
particle collisions. It is expected that the system fulfils the so-called H-
theorem, stating that the entropy functional H(f) =

∫
f log f de decreases

in time. The equilibrium steady state returns the well-known Maxwellian
distribution (see for example [3] for a general theory).

Lattice Boltzmann methods have the advantage to be implemented very
easily and even to deal with complex geometries using an immersed bound-
ary approach while being potentially very accurate. Let us consider the
2D Navier-Stokes case: the basic LB method is the so-called Lattice BGK
(LBGK) method that uses a BGK collision operator

(∂tf)coll = feq − f
τ

for an equilibrium distribution feq and a characteristic collision time scale
τ > 0. The discretization process first deals with a finite set of discrete
velocities {ei}i=1,...,N , N > 1. This leads to a coupled system of spatial
transport equations

∂tfi + ei · ∇xfi = feqi − fi
τ

, i = 1, ..., N

with fi(x, t) ≈ f(x, ei, t). The standard D2Q9 lattice makes use of a uni-
form spatial grid with constant space step per direction ∆x = 1, and
(only) N = 9 discrete microscopic velocities {ei}i=0,...,8 (with e0 = 0) as
shown in figure 2.1. Then we have nine discrete transport-collision equa-
tions to solve. Using the characteristic method for integrating transport
term and a first order explicit Euler dicretization for the collision term,

87



G.H. Cottet et al.

we get

fi(x + ei∆t, t+ ∆t)− fi(x, t) = ∆t
τ

[feqi (x, t)− fi(x, t)] , i = 0, ..., 8,
(2.3)

with τ > 0 the characteristic collision time, for each lattice point x. The
zeroth-order and first-order moments allow us to retrieve both density and
momentum. Denoting by S = {0, ..., 8}, we have∑

i∈S
(1, ei) fi(x, t) = (ρ, ρu)(x, t). (2.4)

From a formal Chapman-Enskog expansion of the discrete density proba-
bility functions fi,

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + ...

where ε is a lattice Knudsen number, for ε � 1 it is possible retrieve
the macroscopic Fluid Mechanics equations. In order to reproduce the
Navier-Stokes equations, only the first two approximations f (0)

i and f (1)
i

are required [9]. The zero-th order term f
(0)
i identifies with the equilibrium

discribution feqi . Let us consider a dimensionless lattice size ∆x = 1 and a
lattice speed c = 1 (∆t = 1). By choosing the equilibrium density function

feqi = wi ρ

(
1 + 3ei · u + 9

2(ei · u)2 − 3
2 |u|

2
)
, (2.5)

with weighting factors w0 = 4/9, wk = 1/9 for k = 1, ..., 4 and wk = 1/36
for k = 5, ..., 8, then for |u| � 1, we get (up to a scaling) second order
accurate approximations of the incompressible Navier-Stokes equations
with a kinematic viscosity ν equal to

ν = 1
3

(
τ − 1

2

)
. (2.6)

Actually, for a given fluid kinematic viscosity ν, we compute τ > 1
2 such

that (2.6) holds. It can be shown that the LBGK method is linearly stable
as soon as τ > 1/2. Practically, it becomes unstable for τ close to 1

2 (high
Reynolds number), but stabilization methods exist in this case (MRT,
entropy fix, positivity preserving, etc, see [2]).
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Figure 2.1. The two-dimensional D2Q9 lattice pattern.

LBM code porting on GPU. It is easy to check that LBM can be
rewritten as a two-step fractional step method, with i) a collisionless trans-
port evolution, ii) a pure collision process. The GPU collision step can be
perfectly done in parallel because of only pointwise operations. The trans-
port step requires communications with the direct first neighboring lattice
points. But, because this communication pattern is uniform over the whole
computational domain, there are potentially important ways of improve-
ment and performance gain of memory access. On NVIDIA GPU boards,
using CUDA programming, one can use texture memory (both structures
and access methods) that are optimized for fixed memory patterns.

We implemented the D2Q9 LBGK scheme with a stabilization method
proposed by Brownlee et al. in [2]. We used Pixel Buffer Object (PBO)
for openGL instant visualization and binding between CUDA structures
and PBO. On a lattice grid of typical size 1024×1024, we observe speedup
factors of about 100 compared to a single-thread CPU sequential compu-
tation, allowing for interactivity, visual appearance and evolution of von
Karman vortex sheddings. Flow interaction is made possible by adding
new obstacles during computation with the mouse (see figure 2.2). This is
easily handled by the GPU programming using a solid mask array.

Compressible flows. Let us now consider a compressible fluid. The Eu-
ler equations govern the dynamics of a perfect fluid. The mass, momentum
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Figure 2.2. Instant Lattice Boltzmann GPU computa-
tion of the Navier-Stokes equations on a cartesian grid of
typical size 1024×512. Flow interaction is made possible by
adding new obstacles during computation with the mouse.

and total energy conservation equations read
∂tρ+∇ · (ρu) = 0, (2.7)

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0, (2.8)

∂t(ρE) +∇ · ((ρE + p)u) = 0 (2.9)
with density ρ, velocity vector u, pressure p and specific total energy E.
The energy E is the sum of the kinetic energy |u|2/2 and the internal
energy e. For the perfect gas with constant specific heat ratio γ, γ ∈ (1, 3],
we have

E = e+ 1
2 |u|

2, e = 1
γ − 1

p

ρ
. (2.10)

The above system can be written in condensed vector form
∂tU +∇ · F (U) = 0, U = (ρ, ρu, E)T . (2.11)

This system is known to be hyperbolic on its admissible state space ([4]).
For discretization, we consider a conservative finite volume scheme built

on an unstructured finite volume mesh made of cells K. We will denote
AKL the edge separating the two volumes K and L and νKL the unit
exterior vector orthogonal to AKL. A general explicit first-order finite
volume scheme reads

Uk+1
K = UnK −

∆t
|K|

∑
L∈V (K)

|AKL|Φ(UnK , UnL , νKL), (2.12)
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with a numerical flux Φ(UnK , UnL , νKL) having at least Lipschitz-continuous
regularity, and being consistent i.e. Φ(U,U, ν) = F (U)ν. For stability pur-
poses, numerical fluxes are generally built to fulfil an upwinding property.
In this context, two main families of upwind flux are identified (see [6]):
the Flux Difference Splitting (FDS) one, and the Flux Vector Splitting
(FVS) one. FDS fluxes (including Godunov, Osher, Roe, HLLE, etc...)
are written in the form

Φ(UnK , UnL , νKL) = (2.13)

1
2 (F (UnK , νKL) + F (UnL , νKL))− 1

2

∫
Γn

KL

|A(U(s), νKL)|U ′(s) ds

where A(U, ν) denote the (diagonalizable) Jacobian matrix of the flux in
the direction ν, and ΓnKL = Γ(UnK , UnL , s) is a Lipschitz continuous path
linking the states UnK and UnL with a curvilinear parameter s ∈ [0, 1]. The
second term of the RHS of (2.13) corresponds to the upwind artificial
viscosity term.

From the GPU computational point of view, FDS schemes require at
each time step i) the computation of the FDS flux with memory reads
of the cell states; ii) cell updates with memory reads of the FDS fluxes
(see figure 2.3). Memory transfer may be a limiting performance factor for
GPUs if the DRAM bandwidth is saturated.

(a) (b)

Figure 2.3. FV scheme with Flux Difference Splitting
FDS schemes. FDS require two memory transfers: (a) com-
putation of the numerical flux with memory reads of states;
(b) state update into control volumes with memory reads
of numerical fluxes.

The Flux Vector Splitting (FVS) family [6] has numerical fluxes written
in the form

Φ(UnK , UnL , νKL) = F+(UnK , νKL) + F−(UnL , νKL) (2.14)
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with F+ representing the leftward part of the flux and F− representing
the rightward part. Consistency requirements involve the identity

F+(U, ν) + F−(U, ν) = F (U)ν.
What is peculiar with FVS is that F+(UnK , νKL) can be computed without
any knowledge of the neigboring state UnL , and conversely. Then the GPU
computation of F+(UnK , νKL) may be seen as a pointwise, cell-centered
computation, perfectly done in parallel. For that reason, one has only to
send F+ and F− to the neighboring cells for state updates, thus reducing
memory reads and DRAM transfer (see figure 2.4). Moreover, FVS fluxes

Figure 2.4. FV scheme with Flux Vector Splitting (FVS)
fluxes. FVS only require one memory transfers: F+ ou F−
are sended to the neighboring cells for state update.

generally do not require neither eigenstructure decomposition nor matrix-
vector products, what improves the whole performance. For example, the
van Leer’s FVS with Hänel-Schwane energy-flux modification [5] leads to
the scripts (written here for ν = (1, 0)):

F+
ρ = ρc

4 (M + 1)2 1(|M |≤1) + max(u, 0) 1(|M |>1), (2.15)

p+ = p

4(M + 1)2(2−M) 1(|M |≤1) + p 1(M>1), (2.16)

F+
ρu = uF+

ρ + p+, F+
ρv = v F+

ρ , (2.17)

F+
ρE = (E + p/ρ)F+

ρ (2.18)

where c =
√
γp/ρ is the speed of sound and M = u/c is the normal Mach

number. For these reasons, FVS are clearly better candidates for GPU im-
plementation and high-performance computation [13]. On figure 2.5, we
show an instant computation of the well-known 2D Mach 3 forwarding
step case on a very fine grid, using (2.15)-(2.18) as FVS scheme. Again,
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mouse interactivity allows us to add obstacles on-the-fly and observe the
fluid response. This is of great interest for training, education and com-
prehension of Fluid Dynamics.

Figure 2.5. Instant GPU computation on the well-known
Mach 3 forward step channel 2D problem. Hänel’s FVS is
here used. The flow can be perturbed by directly adding
new wall obstacles with the mouse pointer.

Three-dimensional free transport kinetic equations. This case
was designed to evaluate GPU performance of particle methods. Let us
consider the following homogeneous Vlasov equation in 3D: find f =
f(x,v, t), x ∈ Ω(t) ⊂ R3, v ∈ R3, t > 0, solution of

∂tf + v · ∇xf + a(x)∇vf = 0, x ∈ Ω(t) ⊂ R3, v ∈ R3, t > 0 (2.19)

with f(., ., 0) ∈ L1(Ω × R3). Standard eulerian discretization methods
would involve a mesh in a space of dimension 6, what is still not realistic
to address at the present time. An alternative approach is to reformulate
the transport dynamics behind this equation. Let us consider the following
system of motion equations defined on a large set of particles {xk}k:{

ẋk(t) = vk,

v̇k(t) = a(xk)
(2.20)

and the discrete measure-valued distribution

f =
N∑
k=1

ωk δ(x− xk(t)) δ(v − vk(t)) (2.21)
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for some given weighting factors {ωk}k, ωk > 0. We want to evaluate the
L1 norm on f in the time-dependent domain Ω(t) (a pulsating sphere for
example, see [14]). For that we have to compute at each time step

‖f(t)‖L1(Ω(t)) =
N∑
k=1

ωk 1(xk∈Ω(t)). (2.22)

The summation has to be “optimized” on a GPU architecture. For that we
used the sum-reduction algorithm proposed in the GPU code examples of
the CUDA SDK. We have observed parallel speedup factors of about 25-30
for particles sets between 1 million and 8 million particles on a GPGPU
TESLA C2070.

(a) (b)

Figure 2.6. Validation of GPU acceleration of free trans-
port equations on a moving domain with parallel reduction
at each time step for L1-norm computation. (a) Schematic
of the particles and moving domain; (b) Discrete L1(Ω(t))-
norm of the distribution during time t.

2.1.3. Impact on the data structures

In the above sections, we have seen how GPU computing may change the
way of thinking both physical models and computational methods. Be-
yond pure computational aspects, there is of course the programming and
code optimization dimensions. The obtained “speedup” and the necessary
work of specidifc GPU programming are subject to a search of thrust per-
formance. Parallel computing strongly alters the balance of power in the
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classical duality memory-computation. A first simple rule is to try to keep
as much as possible data on the parallel ”device” and transfer data as less
as possible because of limited bandwidth. To illustrate, it is even often
cheaper to recompute a result than transmitting it.

Communication performance is also strongly linked to the way to handle
complex data. Data coalescence is a critical keypoint for optimal perfor-
mance. To offset a large latency of global memory a rational way is to
read consecutive blocks in memory (coalescing). There are two kinds of
non-coalescing memory accesses, described in the figure 2.7:

• either the threads cannot access to neighboring fields in the right
order;

• or there is an alignment problem, the first thread of a warp must
access one memory multiple of 32, 64 or 128 (depending on the
data), see [10].

It is difficult when looking to optimized performance, to work with
very sophisticated data models. The notion of array perfectly fits to this
scheme, data types more developed as structures or classes instead readily
scatter in the data. For example it is much more efficient to manipulate
Structures of Arrays (SoA) that Arrays of Structures (AoS). To be effi-
cient, it is necessary to stay close to the data and always keep in mind the
specific hardware architecture of GPU and the constraints it imposes to
the data. This is probably the main reason why we think that today CUDA
is one of the most appropriate language to obtain optimal performance on
GPU.

2.1.4. General experience feedback and concluding remarks

Let us conclude by some humble advices. Today’s GPU for scientific com-
puting is a question a tradeoff between performance and design and/or
implementation effort. Reasonable (suboptimal) speedup (say 10 or 20)
is easy to reach. GPU parallel programming is far easier for computa-
tional methods feined on cartesian grids or meshfree particle methods.
For stronger performance, the way is to fing a good tradeoff between im-
plementation effort, code readability and performance. GPU computing
requires a real reflection on the choice of data structures, especially for
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Figure 2.7. Schematic of data coalescence, extracted
from the “CUDA C Best Practices Guide”, NVIDIA 2012
[10]

the sake of memory coalescence: arrays of structures AoS versus structures
of arrays SoA, byte alignment, etc. In the same spirit, the strategy/use of
intermediate cache memory level (per streaming multiprocessor for exam-
ple) is also of great importance for high performance. Texture memory is
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particularly suited for local partial differential operators involving uniform
spatial stencils.

Our belief at CMLA is that GPU/manycore processors will deeply im-
pact the numerical solvers in the next years. We have to think about
paradigm shifts for both modeling and discretization for strong better
GPU performance.

2.2. Videos of instant GPU computations on youtube
All the interactive computations can be found at the following URL:

http://www.youtube.com/user/floriandevuyst/videos.
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