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Abstract

In this work three branches of Immersed Boundary Methods (IBM) are de-
scribed and validated for incompressible aerodynamics and fluid-structure interac-
tions. These three approaches are: Cut Cell method, Vortex-Penalization method
and Forcing method. The first two techniques are validated for external bluff-body
flow around a circular obstacle. The last one is used to predict the deformations
of an elastic membrane immersed in a fluid. The paper confirms the ability of this
family of numerical schemes for accurate and robust simulation of incompressible
flows.

Méthodes de frontière immergée pour la simulation numérique
en aérodynamique incompressible et interactions

fluide-structure.
Résumé

Dans ce travail, trois méthodes de frontière immergée sont décrites et validées
pour la simulation numérique en aérodynamique incompressible et interactions
fluide-structure. Ces trois approches sont : une méthode Cut Cell, une méthode
Vortex-Penalisation et une méthode de forçage. Les deux premières techniques sont
validées pour l’écoulement autour d’un obstacle cylindrique. La dernière est utilisée
pour prédire les déformations d’une membrane élastique immergée dans un fluide.
Ce papier confirme la capacité de cette famille de schémas numériques à simuler
les écoulements incompressibles de manière précise et robuste.

Keywords: Immersed boundary method, Momentum forcing method, Vortex penaliza-
tion method, Cut-cell method, Incompressible viscous flows, Complex geometry.
Math. classification: 74F10, 65M06, 76D05.
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1. Introduction

Numerical simulation of fluid mechanics problems is one of the most chal-
lenging scientific computing’s field of research of the last decades. With
the increasing power of computers in terms of memory available, speed
and number of processors, more and more complex problems arising in in-
dustrial applications become accessible to numerical simulations. In com-
plex geometries, the discretization of the Navier Stokes Equations (NSE)
by finite element or finite volume methods on body-fitted grids allows to
simulate flows at low to moderate Reynolds numbers. However, generating
an efficient conformal mesh is a challenging problem when the geometry
gets complex and this pre-processing step is very CPU-time consuming.
Indeed, generating a body-fitted grid can be even more expensive than
computing the solution itself. Even though matrices issued from finite ele-
ment or finite volume discretizations are sparse, the number of connected
nodes is much larger than in finite difference methods on cartesian grids.
Specific and more complex solvers have to be used resulting in a significant
overhead in the computational effort required to obtain discrete solutions.
An alternative to the body-fitted methods is proposed with the Immersed
Boundary (IB) methods. The aim of IB methods is to handle complex geo-
metric configurations without the use of body-fitted meshes. Simulations
are performed on cartesian grids so that the efficiency and robustness of
cartesian grid solvers are achieved. Therefore, significant advances in the
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application of numerical simulations to more and more complex industrial
problems could be expected.

Since the late 90s, IB methods have been investigated in many pub-
lished works and among the most investigated problems are the numerical
simulations of two or three-dimensional flows past obstacles. Several tech-
niques have been developed to take into account the presence of fixed or
mobile obstacles in the flow. In this paper three branches of IB methods
will be studied : Cut-cell methods, penalization methods and momentum
forcing methods.

The Cut-cell methods, called also Cartesian grid methods, focus on the
discretization of the equations in the mesh cells cut by the immersed
boundary (see [50, 48, 13, 32] for instance). In [11, 6], new cut-cell methods,
based on the well-known second-order projection MAC scheme [25] are
proposed. In order to accurately represent the immersed boundary on the
computational cartesian grid, a signed algebraic distance to the obstacle
boundary, as in level-set methods [40] is used. The staggered arrangement
of the unknowns for both the velocity field and the pressure is adapted
to the geometry of the cut-cells. As the boundary conditions are directly
imposed, there is no diffusion of the fluid-solid interface. These methods
are highly efficient from a computational point of view as it is based on the
MAC solver on cartesian grids which has been extensively and successfully
used in numerical simulations of turbulent flows, both in the context of
direct and Large-Eddy simulations. The only problem with these methods,
is the local construction of the discret operators that depends on the
position of the immersed boundary in cut-cells.

The second branch, penalization methods [1], have a mathematical back-
ground. The presence of a solid obstacle in the computational domain is
modeled by adding a penalty term, depending on a penalization parame-
ter, in the incompressible Navier-Stokes equations. The difference between
the penalization solution and the solution of the Navier-Stokes equations
can be bounded in Sobolev norms (energy norm for instance) in terms of
this parameter. The penalization method does not depend on the choice of
the discretization schemes used to approximate the equations and is very
easy to implement. However, in this approach, the immersed interface is
not directly represented in the flow simulation and depends on the mesh
properties.
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Finally, the third branch covers the IB methods for fluid-structure in-
teractions. They have been first developed by Peskin (see [41], and [42] for
a review) for applications in Biology (blood flow). These methods use both
Eulerian and Lagrangian variables, which are related via interaction equa-
tions. Discrete versions of Dirac functions are used to describe the fluid
structure interaction forcing, and to link the Eulerian and Lagrangian
variables. In a similar approach, momentum forcing method, introduced
by Mohd-Yusof [34], have been developped in the context of B-Splines or
finite difference methods and applied to the numerical simulations of flows
in complex geometries. Here, the challenge is to be able to compute the
force applied by the obstacle on the fluid which would be such that the
velocity field satisfies the boundary conditions on the immersed bound-
ary (see [46], [51] and [33] for a review). Momentum forcing methods are
easy to implement and efficient: numerical simulations of flows in com-
plex geometries have been presented in [23] (flows in an full engine) and
in [49] (heart valve dynamics). The only drawback with these methods
is that, coupling of momentum forcing methods with projection schemes
introduces difficulties in imposing at the same time level the continuity
equation and the boundary conditions on the immersed interface (see [26]
for example) and can alter the incompressibility of the flow in the vicinity
of the immersed boundary [36].

The advantages and drawbacks of each method are summarized in the
Table 1.1.

The paper is organized as follows: in section 2, we present the prob-
lem together with the notation, and we describe the mesh used for the
space discretization. In section 3, three numerical methods are detailled:
a cut-cell method, a penalty method and a forcing method. Section 4 is
then devoted to numerical results for different configurations: the two-
dimensional fluid flow around a cylinder at Reynolds number 550 and
the study of a three-dimensional vesicle protrusion immersed in a fluid of
Reynolds 100. These tests show the robustness of the schemes, comparing
them to other experimental and numerical results found in literature.

142



Immersed boundary methods

Methods Advantages Drawbacks

Cut-cell boundary conditions
directly imposed

implementation

Penalization
mathematical background,

independent of the
discretization scheme

parameter
dependency

Forcing physical background,
easy to implement

incompressibility
constraint

Table 1.1. Advantages and drawbacks of some IB methods.

2. The setting of the problem

We consider a two-dimensional flow past a solid obstacle ΩS ⊂ R2 which
is governed by the incompressible Navier-Stokes equations

∂u

∂t
− ν∆u + ∇(u⊗ u) + ∇p = 0, (2.1)

∇ · u = 0, (2.2)
u(x, t = 0) = u0, (2.3)

where u(x, t) = (u, v) is the velocity field at location x = (x, y) ∈ R2

at time t > 0, u0 is the initial condition and ν > 0 is the kinematic
viscosity. We assume that the flow fills a rectangular domain Ω = (0, L)×
(0, H) in which ΩS is embedded : ΩS ⊂ Ω (see Figure 2.1). We denote by
ΩF the fluid domain in which the Navier-Stokes equations (2.1)-(2.3) are
prescribed so that we have

Ω = ΩF ∪ ΩS ∪ ΓS

where ΓS = ∂ΩS is the solid boundary. In order to determine the loca-
tion of each point in the computational domain with respect to the solid
boundary ΓS , we use the signed algebraic distance to ΓS , which is given
by

d : Ω −→ R
(x, y) 7−→ d(x, y)

(2.4)
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ΩF

ΩS

ΓS

Figure 1. The solid body ΩS with boundary ΓS and the
surrounding computational domain ΩF in which the flow
is to be simulated.

Equations (2.1)-(2.3) are supplemented with boundary conditions on Γ =
∂Ω and on ΓS . Depending on the problem under consideration, they will be
detailed in Section 4. On the immersed boundary ΓS , Dirichlet boundary
conditions are imposed, namely

u(x) = g(x) for any x ∈ ΓS, (2.6)

where g is prescribed. The rectangular computational domain Ω = (0, L)×
(0,H) is discretized by a cartesian mesh. Let N and M two integers, the
sequences of points in each direction satisfy

0 = x0 ≤ . . . ≤ xi−1 ≤ xi ≤ . . . ≤ xN = L,

0 = y0 ≤ . . . ≤ yj−1 ≤ yj ≤ . . . ≤ yM = H.

Mesh sizes are defined by : "i = xi − xi−1 and hj = yj − yj−1. In order to
simplify the notations we denote by dij = d(xi, yj) the algebraic distance
of the grid point (xi, yj) to the solid boundary ΓS.

3. Numerical methods

3.1. Cut-cell method

The numerical scheme detailed in this Section is a novel second order cut-
cell method based on the well-known projection MAC scheme [25], which
enforces the incompressibility constraint up to the computer accuracy. In
fluid-cells, that is mesh cells which are far enough from the immersed
boundary, classical centered, second-order finite volume schemes are used.

6

Figure 2.1. The solid body ΩS with boundary ΓS and
the surrounding computational domain ΩF in which the
flow is to be simulated.

and which satisfies : ΓS = {(x, y) ∈ Ω; d(x, y) = 0}. Furthermore, we as-
sume that {

d(x, y) > 0 if (x, y) ∈ ΩS ,

d(x, y) < 0 if (x, y) ∈ ΩF .
(2.5)

Equations (2.1)-(2.3) are supplemented with boundary conditions on Γ =
∂Ω and on ΓS . Depending on the problem under consideration, they will be
detailed in Section 4. On the immersed boundary ΓS , Dirichlet boundary
conditions are imposed, namely

u(x) = g(x) for any x ∈ ΓS , (2.6)

where g is prescribed. The rectangular computational domain Ω = (0, L)×
(0, H) is discretized by a cartesian mesh. Let N and M two integers, the
sequences of points in each direction satisfy

0 = x0 ≤ . . . ≤ xi−1 ≤ xi ≤ . . . ≤ xN = L,

0 = y0 ≤ . . . ≤ yj−1 ≤ yj ≤ . . . ≤ yM = H.

Mesh sizes are defined by : `i = xi − xi−1 and hj = yj − yj−1. In order to
simplify the notations we denote by dij = d(xi, yj) the algebraic distance
of the grid point (xi, yj) to the solid boundary ΓS .
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3. Numerical methods

3.1. Cut-cell method

The numerical scheme detailed in this Section is a novel second order cut-
cell method based on the well-known projection MAC scheme [25], which
enforces the incompressibility constraint up to the computer accuracy. In
fluid-cells, that is mesh cells which are far enough from the immersed
boundary, classical centered, second-order finite volume schemes are used.
In our approach, the location of the velocity component is, as in [11],
adapted to the geometry of cut-cells. However, the discrete pressure is
placed at the center of the cartesian cells for both fluid-cells and cut-cells
(see Figure 3.2). In the vicinity of the obstacle, second-order interpola-
tions using boundary conditions on the solid boundaries are introduced to
evaluate the convective fluxes. This results in a local first-order approx-
imation of the nonlinear terms in cut-cells. A pointwise approximation
of the viscous terms is used in cut-cells. When boundary conditions on
the immersed boundary can be used, a five-point stencil scheme for the
viscous term is employed. Otherwise, a six-point first-order approxima-
tion is introduced. The resulting linear system is close to the five-point
structure symmetric system obtained on cartesian mesh with the MAC
scheme. While first-order truncation errors are locally introduced in the
scheme in the cut-cells, a second-order global accuracy is recovered. Note
that a similar superconvergence result has been proved by Yamamoto in
[30] in the context of elliptic equations.

3.1.1. Time discretization : second-order projection method

The temporal discretization of (2.1)–(2.3) is achieved by using a second-
order projection scheme (BDF2). In a first step, momentum equations are
advanced in time with a semi-implicit scheme decoupling the velocity and
pressure unknowns. Then, the intermediate velocity is projected in order
to obtain a free-divergence velocity field.

Let δt > 0 stand for the time step and tk = k δt discrete time values.
Let us consider that (uj , P j) are known for j ≤ k. The computation of
(uk+1, P k+1) consists in:
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– Computing a predictor ũk+1 by solving:
3ũk+1 − 4uk + uk−1

2δt − 1
Re

∆ũk+1 +∇P k =

− 2∇ · (uk ⊗ uk) +∇ · (uk−1 ⊗ uk−1)
(3.1)

which is supplemented with Boundary conditions applied to ũk+1, depend-
ing on the considered problem.

– Projecting to obtain a divergence free velocity uk+1:
uk+1 − ũk+1

δt
+ 2

3∇(P k+1 − P k) = 0,

∇ · uk+1 = 0, (uk+1 − ũk+1) · n = 0 on Γ.
(3.2)

In the following and unless it is necessary, the superscript k denoting
discrete times will be omitted.

3.1.2. The discrete representation of the immersed boundary

We define by Kij = (xi−1, xi)×(yj−1, yj) the mesh cells in Ω. The horizon-
tal edge σxi,j of the mesh cell Kij is defined by σxi,j = (xi−1, xi)×{yj}, the
vertical edge σyi,j is defined similarly. The computational cells Kij , that is
Kij such that Kij ∩ ΩF 6= ∅, can be classified in fluid-cells, namely cells
which are totally filled by the fluid (Kij ∩ ΩS = ∅), and cut-cells, namely
cells such that Kij ∩ ΩS 6= ∅.

Let a cut-cell Kij and assume that its horizontal edge σxi,j is cut by the
obstacle, namely σxi,j ∩ ΩS 6= ∅ then we compute, as in [11], the ratio rxij
by

rxij =



0 if dij ≥ 0 and di−1,j ≥ 0,
di−1,j

di−1,j − dij
if dij ≥ 0 and di−1,j < 0,

di,j
dij − di−1,j

if dij < 0 and di−1,j ≥ 0,

1 elsewhere.

(3.3)

With the ratio rxij we approximate the intersection of σxi,j and ΓS by the
point with coordinates (xi−1 + rxij `i, yj) if di−1,j < 0 and (xi− rxij `i, yj) if
di,j < 0. Similarly, we defined the intersection of σyi,j and ΓS . By doing so,
the obstacle boundary ΓS is approximated by a piecewise-linear curve ΓSh
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(see Figure 3.1). This provides a discrete separation of the computational
domain in Ω = ΩF

h ∪ ΩS
h ∪ ΓSh .

Let a computational cell Kij , that is Kij ∩ ΩF
h 6= ∅, we denote by KF

ij

the part of the cell which is filled by the fluid, namely KF
ij = Kij ∩ ΩF

h

and by σx,Fi,j (resp. σy,Fi,j ) the part of the edge σxi,j (resp. σ
y
i,j) which lies in

ΩF
h , so that we have σx,Fi,j = σxi,j if Kij is a fluid-cell and

σx,Fi,j =
{

(xi−1, xi−1 + rxij `i)× {yj} if di−1,j < 0,
(xi − rxij `i, xi)× {yj} if di,j < 0,

if Kij is a cut-cell.

N. James, E. Maitre, & I. Mortazavi

ui−1,j

vi,j−1

vij

uij

vi+1,j−1

Pi,j Pi+1,j

ΓS
h

xi−1 xi xi+1

yj−1

yj

Figure 3. Location of the unknowns in the cut-cells Kij

(left) and Ki+1,j (right).

that is at point of coordinates (xi−1/2, yj−1/2). This staggered arrangement
of the unknowns is represented on Figure 3.

3.1.4. Description of the discrete operators

In this section, we describe the numerical discretization of the spatial par-
tial derivatives present in the Navier-Stokes equations. Specific numerical
treatments are required in cut-cells while, away from the obstacle, classi-
cal second-order centered finite volume schemes are used. As the discret
operators depend on the local geometrical configuration of the cut-cells,
we refer the reader to [6] for more details about the method.

The Laplace operator. In the classical MAC scheme on cartesian grid,
the horizontal (resp. vertical) momentum equation is discretized by in-
tegration over the volume cell Ku

ij = (xi−1/2, xi+1/2) × (yj−1, yj) (resp.

Kv
ij = (xi−1, xi)× (yj−1/2, yj+1/2)). In order to take into account the pres-

ence of the obstacle, integration is performed over the computational cells

Ku,F
ij = Ku

ij ∩ ΩF
h and Kv,F

ij = Kv
ij ∩ ΩF

h . In the following, we restrict the
presentation to the equation of the horizontal velocity component. The
vertical case is treated similarly.

10

Figure 3.1. The discrete representation ΓSh of the im-
mersed boundary ΓS .
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3.1.3. A staggered arrangement of the unknowns

As in the classical MAC scheme for cartesian grids (see [25]), the ve-
locity unknowns are located at the midpoints of the cell edges. Let a
computational cell KF

ij , the associated velocity unknowns uij and vij are
respectively located at the midpoints κy,Fij of σy,Fij and κx,Fij of σx,Fij . Note
that

κy,Fij =


(xi, yj−1/2) if σy,Fij ⊂ ΩF

h ,

(xi, yj−1 + ry
ijhj

2 ) if σyij ∩ ΩS
h 6= ∅ and di,j−1 < 0,

(xi, yj −
ry

ijhj

2 ) if σyij ∩ ΩS
h 6= ∅ and di,j < 0,

where yj−1/2 = 1
2(yj + yj−1). Even if KF

i,j is a cut-cell, the discrete pres-
sure value Pij is always located at the center of the corresponding mesh
cell Ki,j , that is at point of coordinates (xi−1/2, yj−1/2). This staggered
arrangement of the unknowns is represented on Figure 3.2.IMMERSED BOUNDARY METHODS

ry
ij hj

rx
ij !i

ΓS
h

ΓS

xi−1 xi

yj−1

yj

Figure 2. The discrete representation ΓS
h of the immersed

boundary ΓS .

so that we have σx,F
i,j = σx

i,j if Kij is a fluid-cell and

σx,F
i,j =

{
(xi−1, xi−1 + rx

ij !i) × {yj} if di−1,j < 0,

(xi − rx
ij !i, xi) × {yj} if di,j < 0,

if Kij is a cut-cell.

3.1.3. A staggered arrangement of the unknowns

As in the classical MAC scheme for cartesian grids (see [25]), the velocity
unknowns are located at the midpoints of the cell edges. Let a computa-
tional cell KF

ij , the associated velocity unknowns uij and vij are respec-

tively located at the midpoints κy,F
ij of σy,F

ij and κx,F
ij of σx,F

ij . Note that

κy,F
ij =





(xi, yj−1/2) if σy,F
ij ⊂ ΩF

h ,

(xi, yj−1 +
ry
ijhj

2 ) if σy
ij ∩ ΩS

h %= ∅ and di,j−1 < 0,

(xi, yj − ry
ijhj

2 ) if σy
ij ∩ ΩS

h %= ∅ and di,j < 0,

where yj−1/2 = 1
2(yj +yj−1). Even if KF

i,j is a cut-cell, the discrete pressure
value Pij is always located at the center of the corresponding mesh cell Ki,j,

9

Figure 3.2. Location of the unknowns in the cut-cellsKij

(left) and Ki+1,j (right).

3.1.4. Description of the discrete operators

In this section, we describe the numerical discretization of the spatial par-
tial derivatives present in the Navier-Stokes equations. Specific numerical
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treatments are required in cut-cells while, away from the obstacle, classi-
cal second-order centered finite volume schemes are used. As the discret
operators depend on the local geometrical configuration of the cut-cells,
we refer the reader to [6] for more details about the method.

The Laplace operator. In the classical MAC scheme on cartesian grid,
the horizontal (resp. vertical) momentum equation is discretized by in-
tegration over the volume cell Ku

ij = (xi−1/2, xi+1/2) × (yj−1, yj) (resp.
Kv
ij = (xi−1, xi)× (yj−1/2, yj+1/2)). In order to take into account the pres-

ence of the obstacle, integration is performed over the computational cells
Ku,F
ij = Ku

ij ∩ ΩF
h and Kv,F

ij = Kv
ij ∩ ΩF

h . In the following, we restrict the
presentation to the equation of the horizontal velocity component. The
vertical case is treated similarly.

Let a computational volume control Ku,F
ij , which is surrounding the

velocity unknown uij , the approximation of
∫
Ku,F

i,j
∆u dx depends on the

location of the mesh cell Ki,j with respect to the obstacle. If Ki,j is suffi-
ciently far from the obstacle so that both Ki,j and Ki+1,j are fluid cells,
that is (Ki,j ∪Ki+1,j) ⊂ ΩF

h , and the faces σyi,j−1 and σyi,j+1 are not cut
by the obstacle, then the following classical second-order approximation
is used

1
|Ku,F

i,j |

∫
Ku

i,j

∆u dx = 1
|Ku,F

i,j |

∫
∂Ku

i,j

∂u

∂n
ds

≈ 2
(`i+1 + `i)

(
ui+1,j − ui,j

`i+1
− ui,j − ui−1,j

`i

)
+ 2

(hj+1 + hj)

(
ui,j+1 − ui,j

hj+1
− ui,j − ui,j−1

hj

)
.

(3.4)

In the other cases, that is either Ki,j , Ki+1,j , σ
y
i,j−1 or σyi,j+1 are cut by

the obstacle, we use a pointwise approximation, namely
1

|Ku,F
i,j |

∫
Ku,F

i,j

∆u dx ≈ ∆u(κy,Fi,j ).

Obviously such approximation is first-order. When it is feasible, depend-
ing upon the location of κy,Fi,j with respect to the obstacle, the Dirichlet
condition on ΓSh is used to write a five-point stencil, first-order finite dif-
ference approximation of ∆u(κy,Fi,j ). Otherwise, a sixth point chosen in the
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neighbourhood of κy,Fi,j , namely {κy,Fi±1,j±1}, is added in the approximation
scheme. Therefore, for mesh cells close to the obstacle, a locally first-
order error is done. We observe ( Taylor-Couette flow test case ) that this
locally first-order truncation error near the obstacle does not affect the
global second-order convergence rate, note that the same behaviour was
observed in [28]. We mention that a similar superconvergence result has
also been proved by Yamamoto in [30] in the context of elliptic equations.

The nonlinear (convective) terms. Let a computational volume con-
trol Ku,F

ij , which is surrounding the velocity unknown uij , the nonlinear
term is discretized by first writing∫

Ku,F
ij

∇(uu) dx =
∫
∂Ku,F

ij

uu · n ds =
∑

σ∈∂Ku,F
ij

∫
σ
uu · n ds (3.5)

where n denotes the unit normal vector to the boundary ∂Ku,F
ij , outward

to Ku,F
ij . The computational cell Ku,F

i,j is a polygon which is bounded by,
at most, six edges. In (3.5), the numerical approximation of

∫
σ uu · n ds

is done by using the midpoint integration rule, which induces a third-
order error. For an edge shared with the obstacle boundary, the velocity
boundary conditions are directly used. On the other edges, an interpo-
lation is required in order to obtain an approximation of the velocity at
the midpoint edges. A second-order interpolation is used and the inter-
polation formulae depend on how the cells are cut by the obstacle. Let
us denote by F σi,j the discrete flux corresponding to an edge σ ∈ ∂Ku,F

i,j .
Assuming that the velocity field u is sufficiently regular, we show that the
discretization error near the obstacle is first order. Elsewhere, a second
order approximation is achieved.

The pressure gradient. Let a computational volume control Ku,F
ij .

The approximation of the mean pressure gradient over Ku,F
i,j depends on

the location of the mesh cell Ki,j with respect to the obstacle. If Ki,j

is sufficiently far from the obstacle so that both Ki,j and Ki+1,j are fluid
cells, that is (Ki,j∪Ki+1,j) ⊂ ΩF

h , then the following classical second-order
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approximation is used
1
|Ku

i,j |

∫
Ku

i,j

∂P

∂x
dx = 1

|Ku
i,j |

∫
∂Ku

i,j

P nx ds ≈ 2 (Pi+1,j − Pi,j)
(`i + `i+1) . (3.6)

If either Ki,j orKi+1,j are cut-cell, a first order pointwise approximation is
applied at x = κy,Fi,j . Combining the standard finite difference approxima-
tion with a second-order interpolation, we define the discrete horizontal
component of the pressure gradient at point κy,Fi,j by

(GxP )i,j =



(1 + ryij)
Pi+1,j−Pi,j

`i+`i+1
+ (1− ryij)

Pi+1,j−1−Pi,j−1
`i+`i+1

if di,j−1 < 0 and di,j > 0,

(1 + ryij)
Pi+1,j−Pi,j

`i+`i+1
+ (1− ryij)

Pi+1,j+1−Pi,j+1
`i+`i+1

if di,j−1 > 0 and di,j < 0,

2 (Pi+1,j−Pi,j)
(`i+`i+1) elsewhere.

(3.7)

The vertical component of the pressure gradient is discretized similarly at
point κx,Fi,j and, its discrete approximation is denoted by (GyP )i,j .

The continuity equation. As in the classical MAC scheme on carte-
sian grids, the discrete divergence is obtained by integration over a com-
putational cell KF

ij , namely we write∫
KF

ij

div(u) dx =
∑

σ∈∂KF
ij

∫
σ
u · n ds, (3.8)

where n denotes the unit normal vector to the boundary ∂KF
ij , outward

to KF
ij . The computational cell KF

i,j is a polygon which is bounded by at
most five edges With the use of the midpoint integration rule in (3.8),
we derive the discrete version of the continuity equation in the cell KF

i,j ,
namely

(Du)i,j + |σSi,j |u(κSi,j) · n(κSi,j) = 0. (3.9)
where (Du)i,j = `i(rxi,jvi,j − rxi,j−1vi,j−1) + hj(ryi,jui,j − r

y
i−1,jui−1,j).

The velocity correction step. In projection schemes, the intermediate
velocity ũ is corrected with the help of the pressure gradient in order
to obtain a free-divergence velocity field. For the horizontal velocity, the
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correction step is discretized by integration of (3.2) over each edges σy,Fij ,
namely we write ∫

σy,F
ij

(
u− ũ+ 2

3δt
∂

∂x
(δP k+1)

)
dy = 0 (3.10)

where δP k+1 = P k+1−P k. The discrete version of (3.10) follows by writing

uij − ũij + 2
3δt(GxδP

k+1)i,j = 0 (3.11)

and similarly for the vertical velocity component

vij − ṽij + 2
3δt(GyδP

k+1)i,j = 0. (3.12)

By reporting (3.11) and (3.12) in the definition of (Du)ij above, and using
(3.9), we derive

`ir
x
i,j (GyδP k+1)i,j − `irxi,j−1 (GyδP k+1)i,j−1 + hjr

y
i,j (GxδP k+1)i,j

−hjryi−1,j (GxδP k+1)i−1,j = 3
2δt(Dũ)i,j + 3

2δt |σ
S
i,j |u(κSi,j) · n(κSi,j).

(3.13)

which is a discrete Poisson equation satisfied by the pressure increment
δP k+1 in a computational cut-cell KF

i,j . As for the classical MAC scheme,
the resolution of this linear system ensures that the incompressiblity con-
dition is enforced up to the computer accuracy.

3.2. Vortex penalization method

Vortex methods (see [18], [22] and [35]) and penalization methods (see
[1] and [9]) have been separately used to compute incompressible high
Reynolds number flows around obstacles. In this section, a novel hybrid
particle-penalization technique is proposed to achieve efficient computa-
tions of bluff-body flows designing a more efficient technique that cov-
ers the advantages of both approaches [17]. In this approach, the vortex
method is used to approximate the penalized Vorticity Transport Equa-
tions (VTE). This technique that permits to solve the flow equations in
a fast lagrangian way, overcomes the difficulty of the vortex methods to
satisfy accurately the no-slip boundary conditions, introducing the penal-
ization term in the Vorticity Transport Equations. Here, the idea is to
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extend the fluid velocity inside the solid body and to solve the flow equa-
tions with a penalization term to enforce rigid motion inside the solid,
using a vorticity formulation. The main interest of the penalized vorticity
formulation is that it replaces the usual vorticity creation algorithm in
order to satisfy the no-slip boundary condition for vortex methods. This
new technique avoids the convergence difficulties due to the creation of
the particles on the solid boundaries. This approach is also able to take
into account the moving obstacles and boundaries in the flow thanks to
an immersed boundary algorithm that is used to complement this hybrid
technique as shown in [14] and [15]. Then, the method is validated for two-
dimensional transitional and turbulent flows around a moving vertical axis
turbine.

3.2.1. Vortex method

Taking the curl of the momentum equation (2.1), we get the Helmholtz or
the Vorticity Transport Equation (VTE):

∂ω

∂t
+ u · ∇ω − ω · ∇u = ν∆ω in Ω, (3.14)

expressing the transport of vorticity by convection and diffusion. Here, u
is the velocity vector and ω is the vorticity (curl of the velocity). Solving
this equation permits us to convect and diffuse the vorticity field. Once
the vorticity field known, integrating the vorticity and the continuity equa-
tion (2.2) permits to describe the velocity field. The unsteady structure of
these equations permits to find out the solution along the time. Finally,
because the VTE doesn’t contain directly the pressure term (taking the
curl of Navier-Stokes equations this term is vanished), the pressure can be
recovered from the velocity field.

The previous equations are approximated using a Vortex method [18].
These methods that are robust and low-cost to simulate high Reynolds
number recirculating flows, are more recently used to implement control
techniques in fluid mechanics [22]. In this kind of approach, the VTE
equation (3.14) is solved using a two-fractional step (or viscous splitting)
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method. It corresponds to approximate separately the diffusion and con-
vection terms at each time step. The two fractional steps are:

∂ω

∂t
+ u · ∇ω − ω · ∇u = 0, (3.15)

∂ω

∂t
= ν∆ω. (3.16)

The convective part is solved using a "Vortex-In-Cell (VIC)" method
(see e.g. [18] or [22]) with a semi-Lagrangian resolution. In this fractional
step, the transport of vorticity due to convection is obtained from the
solution of equation (3.15) in terms of the Lagrangian displacement of a
set of finite vortex elements. If we define the stream function ψ by:

u = ∂ψ

∂y
and v = −∂ψ

∂x
, (3.17)

and then substituting it in the vorticity definition ω = ∂v
∂x −

∂u
∂y , the fol-

lowing Poisson equation is achieved:

−∆ψ = ω. (3.18)

Let assume that a number nvn of the finite vortex elements, located at
xn(it) with a circulation (strength) γn(it), are known at time tn, 1 ≤ it ≤
nvn. Let also assume that the vorticity field ωn(xi, yj) at time tn is known
on the Cartesian mesh. The main target of the resolution method is to
compute the same quantities at time tn+1 = tn + δt as nvn+1, xn+1(it),
γn+1(it) and ωn+1(xi, yj).
In the first step of the computational procedure, the equation (3.18) with
associated boundary conditions is solved to recover the stream function
field ψn(xi, yj). Then, solving the equation (3.17), the velocity un(xi, yj)
is computed at each node of the mesh. Finally, using a high order in-
terpolation procedure, a convective velocity unv (it) is associated to each
finite vortex element (1 ≤ it ≤ nvn), and the convective displacement
is achieved using a fourth order Runge-Kutta method. Particles are then
remeshed on the original grid. Finally diffusion is solved through a implicit
solver on the grid, with a classical 7-points second order scheme.

Then, the final location of each finite vortex element xn+1
∗ (it) at time

tn+1 is obtained as the sum of the convective and diffusive movements
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during the last time step:

xn+1
∗ (it) = xn(it) + dlnconv(it) + dlndiff (it). (3.19)

In incompressible flows the unique source of generation of the vortic-
ity is the no-slip boundary condition. The no-slip boundary condition is
expressed in terms of the velocity field at the wall and does not involve ex-
plicitly the vorticity. To overcome this problem, classical vortex methods
that directly deal with the vortex elements, mimic the vortex generation
phenomenon on solid boundaries. So, the slip velocity on the wall is nul-
lified by the generation of new vortex elements on the boundary [12]; it
also compensates the vorticity leaving the domain from the exit bound-
ary. Nevertheless, there is no straightforward mathematical proof related
to the convergence of this strategy for Navier-Stokes wall-bounded flows.
The alternative to this approach is to satisfy the no-slip conditions using
the penalization method that does not need any local condition on the
solid-fluid interface. In this work, this later approach is coupled to the
vortex method avoiding the almost heuristic vortex generation approach.

3.2.2. Penalization method for the velocity formulation

The penalization method was initially designed to be introduced in the
Navier-Stokes equations in order to take into the account solid obstacles
in fluid flows. In this section, we show how the penalization method can
be used successfully to model the flow of an incompressible fluid around
an obstacle [1]. In the penalization technique the system is considered as
a single flow, subject to the Navier-Stokes equation with a penalization
term that enforces continuity at the solid-fluid interface and rigid motion
inside the solid. We solve simultaneously the Brinkman equations in the
solid and the Navier-Stokes equations in the fluid, considering whole the
domain as a porous medium with zero (solid) or infinite permeabilities
(fluid). The main advantage of this method is that it needs neither the
mesh to fit the boundaries nor to specify no-slip boundary conditions. In
addition it allows to compute the pressure as a continuous field on the
whole domain including the solids, and the lift and drag coefficients by
integrating the penalization term inside the solid bodies [9].
The zone variation is realized changing the penalization coefficient that
defines the permeability of each region. Numerically, the fluid is considered
as a porous medium with a very high permeability (K = 1016) and the
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bodies are considered as porous media with a very small permeability
(K = 10−8) . Let us define a penalization parameter λ ≈ 1/K, that is
λ→ 0 in the fluid region ΩF and λ >> 1 in the solid region ΩS . By means
of the λ, the velocity term is penalized for a solid in Brinkman equations.
That means that Navier-Stokes equations are replaced by the following
equations:

∂tu + (u · ∇)u− ν∆u + λu +∇p = 0 in Ω (3.20)
div u = 0 in Ω (3.21)

where λ is the penalization parameter with the dimension [s−1].

3.2.3. Penalization method for vorticity formulation

In this section, the idea is to extend the fluid velocity inside the solid body
and to solve the flow equations with a penalization term to enforce rigid
motion inside the solid, using a vorticity formulation. The main interest
of the penalized vorticity formulation is that it replaces the usual vorticity
creation algorithm in order to satisfy the no-slip boundary condition for
vortex methods. This new technique avoids the convergence difficulties
due to the particle creation on the solid boundaries (see[15] and [19]).
Defining the Reynolds number as Re = uref lref/ν, the non-dimensional
penalized vorticity equation reads:

∂ω

∂t
+ (u · ∇)ω = (ω ·∇)u + 1

Re∆ω + λ∇× [χS(ū− u)], (3.22)

where χS is the characteristic function that yields 0 in the fluid and 1 in
the solid and ū indicates the velocity of the solid body.

To discretize the penalized vorticity equation (3.22) in a vortex method,
the equation is split in three substeps. At each time step, one successively
solves the following equations:

∂ω

∂t
= λ∇×[χS(u− u)] (3.23)

∂ω

∂t
+ (u ·∇)ω = (ω ·∇)u + 1

Re
∆ω (3.24)

To solve (3.23) we use a an implicit scheme [15] and we set:

ω̃n+1 =∇×
[
un + λ∆tχSun

1 + λ∆tχS

]
. (3.25)
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where ∆t is the time step. The right hand side above is evaluated by
centered finite differences.
At this stage, grid vorticity above a certain cut-off is used to create particle
at grid point locations and equation (3.24) is solved by a classical vortex-
in-cell method [18]. The velocity field is obtained solving:

∆ψ = −ω (3.26)

with boundary conditions on the stream function ψ where u = ∇×ψ . Par-
ticles are pushed with a RK4 time-stepping. Particles are then remeshed
on the original grid using the following third order interpolation kernel

Λ3(x) =


0 if |x| > 2
1
2(2− |x|)2(1− |x|) if 1 ≤ |x| ≤ 2
1− 5x2

2 + 3|x|3
2 if |x| ≤ 1

(3.27)

Finally diffusion is solved through an implicit solver on the grid, with
a classical 7-points second order scheme. Note that the same kernel is
used to interpolate grid velocity values onto particles in the RK4 particle
pusher. Grid values for vorticity, velocity and level set functions are now
available for time tn+1 and a new cycle of iterations can start. Moreover,
the no-slip boundary conditions are naturally satisfied penalizing the vor-
ticity transport equations.

3.3. Fluid-Structure interactions with IBM
The Immersed Boundar Methods were originally designed for fluid-struc-
ture computations in biology and are progressed towards more robust
techniques more recently. We will start from a Lagrangian representation
of the membrane since it is more usual, and then show that an Eulerian
formulation based on the level set method is equivalent.

3.3.1. Lagrangian elasticity of an immersed interface

Let a smooth elastic surface Γ̃ in R3 in a rest configuration, parametrized
by a regular θ : [0,M ]2 → R3, M > 0. We assume that this surface reacts
only to membrane deformation (no flexural effects), and more specifically
to area change, and not to membrane shear. As well, we considered a sur-
face with a boundary which is not coherent with a vesicle, but this is to
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introduce the Lagrangian representation. This will be worked around au-
tomatically by the Level Set representation. For the sake of simplicity we
assume the membrane to react only to tangential stress and more specifi-
cally to area change. The membrane surface density in that configuration
is denoted by λθ(r, s). The surface is moving between time t = 0 et t = T ,
and we call Γt, its position at time t. In particular Γ0 is its initial posi-
tion, and generally Γ0 6= Γ̃ unless the elastic surface is initially at rest.
We denote by (r, s)→ γ0(r, s) and (r, s)→ λ0(r, s) a regular parametriza-
tion and surface density for Γ0 such that λ0|γ0,r × γ0,s| = λθ|θr × θs|.
Let γ : [0,M ]2 × [0, T ] → γ(r, s, t) the regular parametrization of Γt
transported by the velocity field u of the continuous medium, that is
γ(r, s, t) = X(t; γ0(r, s)) or equivalently:{

∂tγ(r, s, t) = u(γ(r, s, t), t), (r, s) ∈ [0,M ]2, t ∈]0, T ]
γ(r, s, 0) = γ0(r, s), (r, s) ∈ [0,M ]2.

(3.28)

Γt is immersed into a Newtonian incompressible and homogeneous fluid
with given density ρf and visocity µ. This example corresponds to consider
a singular density for the whole continuous medium defined by:

ρ = ρf + λδΓt

where δΓt is the measure supported by Γt, which is defined by

∀h ∈ C0
0(Ω), 〈δΓt , h〉 =

∫
Γt

h(x)dσ.

3.3.2. Immersed boundary model

Formally, we obtain a non-homogeneous Navier-Stokes equation with a
singular forcing term and a density with a singular part. We write it
under the following compact form of IBM:

(ρf + λδΓt)(∂tu+ u · ∇u)− 2∇ · µD(u) +∇p
= F (r, s, t)δΓt + (ρf + λδΓt)g in Ω×]0, T [

∇ · u = 0 on Ω×]0, T [
∂tγ = u(γ, t) on [0,M ]×]0, T [

where F (r, s, t) and g are respectively the elastic force per unit of surface
and the gravity force. In addition, the evolution of the elastic surface is
dictated by (3.28).
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This formulation is exactly the immersed boundary method from Pe-
skin [43, 42] although it is written in a different form, and for an elastic
surface rather than a volume collection of fibers. Indeed using Peskin’s
notations the immersed boundary condition amounts to mix Eulerian
and Lagrangian quantities. Fluid unknowns are Eulerian while Lagrangian
markers are used for the surface. The interaction of these two representa-
tions is done thanks to a discrete Dirac measure. With the not so mathe-
matical notations of [42], adapted to the surface case (terms in |θr × θs|),
IBM form of Peskin reads:
Eulerian description of velocity field and Lagrangian description of im-
mersed structure (made of a family of elastic fibers), interpolated in the
Eulerian domain.

I A velocity field (x, t) ∈ Ω× [0, T ]→ u(x, t).

I (r, s, t) ∈ U × [0, T ] → γ(r, s, t) position of points on the elastic
surface Γt.

I Force density with respect to the surface measure (r, s) in the
reference configuration is a known function Fθ(r, s, t).

I The surface density in the reference configuration is a known func-
tion λθ(r, s, t).

I Equations of motion (stress coupling):
(ρf + Λ)(∂tu+ u · ∇u)− ν∆u+∇p = f (3.29)
∇ · u = 0 (3.30)

f(x, t) =
∫
U
|θr × θs|Fθ(r, s, t)δ(x− γ(r, s, t))drds (3.31)

Λ(x, t) =
∫
U
|θr × θs|λθ(r, s, t)δ(x− γ(r, s, t))drds (3.32)

∂tγ = u(γ(r, s, t), t) =
∫

Ω
u(x, t)δ(x− γ(r, s, t))dx (3.33)

Fθ(r, s, t) = Fθ[γ(r, s, t)] (3.34)

The immersed boundary method we just described is simple and attrac-
tive. However, at each time iteration one has to convert back and forth
the coordinates, which introduces serious volume conservation issues. In-
deed the interpolated velocity field is not divergence free thus the curve
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described does not enclose a volume of constant measure. This volume
loss is acknowledged and in a good extent cured in [44, 29, 27], but the
method looses its inherent simplicity. The foremost aim of our Eulerian
formulation, introduced in [19, 20] was to maintain the method simplicity
while introducing an Eulerian localization of the interface which suppress
these interpolation problems. The original immersed boundary method
can be implemented so that it is order 2 in the case of thick interfaces,
but order 1 for thin structures [24]. Stability studies have been developed
in [3, 4, 47].

Let us point out that our Eulerian formulation will by structure make
natural the handling of closed membrane, which is less straightforward in
Lagrangian coordinates. Moreover, the variable viscosity or density case,
which is not considered in the IBM is very simply handled in our formula-
tion. This is important in application to biological cell models that often
exhibit a viscosity contrast between the inner and outer fluids to take into
account the biological material inside it.

3.3.3. Eulerian Elasticity of an immersed membrane

We now skip to a new representation of the interface to avoid caveats
encountered with the Lagrangian formulation.

Level Set formulation. We assume that Γt is the zero level set of a
function φ : Ω× [0, T ]→ R so that

Γt = {x ∈ Ω, φ(x, t) = 0}.

As φ(γ(r, s, t), t) = 0 on [0,M ]2× [0, T ], and ∂tγ = u(γ, t), we get by time
differentiation

∂tφ(γ(r, s, t), t) + u(γ(r, s, t), t) · ∇φ(γ(r, s, t), t) = 0.

The Level Set method [39] takes as initial condition a function φ0 whose
zero level set is Γ0 and amounts to find a function φ which is solution to
the above transport equation on the whole computational domain:{

∂tφ+ u · ∇φ = 0 on Ω×]0, T [
φ = φ0 on Ω× {0}.

(3.35)
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A common choice for φ0 is the signed distance to the interface:

φ0(x) =
{
−dist(x,Γ0) if x is inside Γ0,

dist(x,Γ0) if x is outside Γ0.

With this choice of φ0 the exterior normal to the domain enclosed by Γt,
and the surface mean curvature are expressed in terms of φ as follows:

n(x) = ∇φ
|∇φ|

κ(x) =∇ · ∇φ
|∇φ|

Deformations and Level Set. What is more original and proved in [19]
is that in the case of an incompressible flow, the surface stretching is
recorded in the function φ, which allows us to rephrase our fluid-structure
problem with this function. There is several ways to prove this intuitive
fact, see [8, 7, 2]. We could start from the stretching written in Lagrangian
and prove that |∇φ| verifies the same equation, as in [19] that is to say

∂t|∇φ|+ u∇|∇φ| = −|∇φ|∇φ
T∇u∇φ
|∇φ|2 = −|∇φ| ∇φ

|∇φ| ⊗
∇φ
|∇φ| : ∇u

(3.36)
However we will propose a more intrinsic demonstration, which relies on
the following proposition.

Proposition 3.1. Let u : Rd × [0, T ] → Rd of class C1 with ∇ · u = 0
and φ solution of class C1 of ∂tφ+ u · ∇φ = 0, φ = φ0 with |∇φ| ≥ α > 0
in a neighborhood of {φ = 0}. We assume that s →

∫
{|φ(x,t)|<s} f(x)dx is

of class C1 in a neighborhood of s = 0 for any t ∈ [0, T ] and f ∈ Cc(Rn).
Then for every function f continuous and with compact support,∫
{φ0(ξ)=0}

f(ξ)|∇φ0|−1(ξ)dσ(ξ) =
∫
{φ(x,t)=0}

f(Y (x, t))|∇φ|−1(x, t)dσ(x)

(3.37)
which means that |∇φ|/|∇φ0| represents the variation of surface measure
between Γt and Γ0.

Corollary 3.2. In dimension 3, if (r, s) ∈ ω → γ(r, s, t) ∈ R3 is a (patch
of) parametrization of Γt, we still have Y (γ(r, s, t), t) = γ(r, s, 0) which
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gives∫
ω
f(γ(r, s, 0))|∇φ0|−1(γ(r, s, 0))|γr × γs|(r, s, 0)drds

=
∫
ω
f(γ(r, s, 0))|∇φ|−1(γ(r, s, t), t)|γr × γs|(r, s, t)drds

therefore
|∇φ|(γ(r, s, t), t)
|∇φ0|(γ(r, s, 0)) = |γr × γs|(r, s, t)

|γr × γs|(r, s, 0) .

More precisely we construct φ0 such that its zero level set is Γ0, and
such that

|∇φ0|(γ(r, s, 0)) = |γr × γs|(r, s, 0)
|θr × θs|(r, s)

which corresponds to the area change between the initial and rest config-
uration. Then we have

|∇φ|(γ(r, s, t), t) = |γr × γs|(r, s, t)
|θr × θs|(r, s)

.

If the initial stretching does not depend on (r, s) (uniform stretching) this
amounts to initialize φ0 to this stretching times the signed distance to the
surface.

Energy and elastic force expressed in Level Set. We are now in a
position to express the elastic energy of an elastic membrane in terms of
the Level Set function. But we must first cope with the surface integral,
which leads us to consider the following energy (here for a surface with
stretching 1 at rest)

E [φ] =
∫
{φ=0}

E(|∇φ|) 1
|∇φ|dσ.

Then we could differentiate this energy with respect to t in order to identify
the singular elastic force (Thomas Milcent in his thesis [31] inspected this
direction). We could then develop a finite element method to give a weak
meaning to measure, which is made in [3, 4] in the framework of immersed
boundary method. However we chose, as in the usual Level Set method, to
approximate the surface measure by a non singular function. Then we can
use a finite difference method on a cartesian grid with fast FFT solver for
Poisson equation. In this aim we have the following Proposition (proved
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in [20] and originally in [10]) which gives a volume approximation of a
Dirac Measure supported by an hypersurface localized by a level set:

Proposition 3.3. Let r → ζ(r) be a continuous function with support in
[−1, 1], such that r → 1

εζ( rε) converges toward δ0 in the sense of distribu-
tions. Then under assumption (Hφ), when ε→ 0,

1
ε
ζ

(
φ

ε

)
|∇φ|⇀ δ{φ=0} inM(Rd).

Therefore we see that a sound numerical approximation of δ{φ=0} is
given by |∇φ|1εζ

(
φ
ε

)
, which allows to define a regularized energy by

Eε(φ) =
∫

Ω
E(|∇φ|)1

ε
ζ(φ
ε

)dx. (3.38)

4. Numerical results

4.1. Flow around a circular cylinder

In this section the cut-cell and the vortex-penalization methods are used
to perform computations around a circular cylinder. Here, to take into
account a transitional case we focus on an impulsively started flow at
Re = 550 and compare the results to [45]. The time evolution of drag
coefficients are studied using the ’momentum equation’ method ([37]), as
shown on the Figure 4.1. It should be outlined that the ’hydrodynamical
impulse’ method needs a zero far-field velocity. Here, a Galilean trans-
formation is used moving the body with a −u∞ velocity to achieve the
correct boundary and force computations. Moreover, in order to avoid any
reflecting effect of the outgoing vortices from the exit boundaries the com-
putations are performed on a short time t = 6. As the curve shows, the
results have a good agreement. Also, they correspond to the drag com-
putations obtained in [45] (almost placed just between two curves). The
figure 4.2 shows the vorticity iso-contours for both methods which are very
similar to each other and to the vorticity field presented by Ploumhans &
Winckelmans [45], introducing accurately the separation contours and the
recirculation area sizes. Here, the grid convergence in a computational do-
main [−3.75, 12.5]× [−3.75, 3.75] is achieved with parameters h = 0.005
and λ = 109 for the penalization method.
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Figure 4.1. Comparison of drag evolution for cut-cell
and penalization methods for an impulsively started flow
around a circular cylinder at Reynolds 550.

4.2. Cellular motility and parametric instability

For the sake of realism of biological cells modeling, the forcing method
detailed in section 3.3 is natively designed to simulate three dimensional
flows. Several tests have been developed in order to validate this method
[20, 21]. We present an application of our method to the study of vesi-
cle protrusions. Cells, for example for their motion, create protrusions
on their membrane. The underlying mechanism is still controversial in
the Biologists community. It is attributed to polymerization / depolymer-
ization process of actin filaments in the neighborhood of the membrane,
but this is modeled differently between authors (cf [38, 5] and references
therein), either formulated as a two-phase continuous medium, a visco-
elastic medium, or as a microscale network. In an article of Cortez, Peskin,
Stockie and Varela [16] the authors study the parametric instability of the
system formed by an elastic membrane immersed in a 2D fluid. Paramet-
ric instability is well known to everybody who once use a swing. In the
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Figure 4.2. Vorticity contours around an impulsively
started flow around a circular cylinder for times 1, 3 and 5
(from top to bottom) at Reynolds number 550 (left: vortex-
penalization method; right: cut-cell method)

immersed membrane case, we could imagine that the periodic variation of
some parameter of the system, as the stiffness for example, could lead to
large unstable deformations. This is what is proved in [16] and that we
study here numerically in dimension 3.
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From a numerical point of view the tests we developed with our mem-
brane model clearly illustrated that a spherical membrane slightly per-
turbed, and with a stiffness varying with a precise periodicity, could ex-
hibit an instability, which means very large displacements compared with
the initial perturbation. We want to stress out that this does not corre-
spond to a resonance phenomenon under a suitably chosen forcing term.
For example without initial perturbation of the membrane the periodic
fluctuations of its stiffness do not create any motion.

The following example (Figure 5.1) is academic: it corresponds to a
membrane with stiffness 1 immersed in a fluid of Reynolds 100. The spher-
ical membrane is perturbed in the following way: we consider a meridian
on this sphere that we perturb by a small amplitude (2.5%) oscillation
in cos(4θ). Then we consider the surface generated by this perturbed
meridian. The membrane stiffness is oscillating between 0.5 and 1.5. The
pictures below show the deformed immersed membrane (the fluid is not
represented). The colors on the surface give the stretching. The pressure
slices in the middle of the vesicle are plotted on the edges of the graphical
box.

5. Conclusions

In this paper, three branches of Immersed Boundary Methods (IBM) were
analyzed and validated for incompressible aerodynamics (Cut-Cell and
vortex penalization techniques) and fluid-structure interactions (Forcing
method). All three methods show that the IBM either with Eulerian
or with Lagrangian frameworks can efficiently simulate incompressible
flows with fixed and moving boundaries. The paper also underlines some
challenging problems to increase the robustness of these promising ap-
proaches.
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Figure 5.1. Parametric instability of an immersed elastic membrane
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