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Braids in Pau – An Introduction

Enrique Artal Bartolo
Vincent Florens

Abstract

In this work, we describe the historic links between the study of 3-dimensional
manifolds (specially knot theory) and the study of the topology of complex plane
curves with a particular attention to the role of braid groups and Alexander-like
invariants (torsions, different instances of Alexander polynomials). We finish with
detailed computations in an example.

Tresses à Pau – une introduction
Résumé

Dans ce travail, nous décrivons les liaisons historiques entre l’étude de variétés
de dimension 3 (notamment, la théorie de nœuds) et l’étude de la topologie des
courbes planes complexes, dont l’accent est posé sur le rôle des groupes de tresses et
des invariantes du type Alexander (torsions, différents incarnations des polynômes
d’Alexander). Nous finissons en présentant un example avec des calculs détaillés.

1. Historic

The conference Tresses in Pau, held in Pau from the 5th to the 8th of
October 2009, was devoted to low dimensional topology and interactions
with algebraic geometry. It was organized around three mini-courses and
this volume contains their notes. We would like to thank the authors for
their effort to produce high-quality notes of these courses.

These two branches of mathematics, low dimensional topology and al-
gebraic geometry, have a long common history, as it can be seen in the
work of Klein or Poincaré. In particular, the study of 3 or 4-manifolds,
and knot theory were developed in parallel to the study of topological
properties of singular plane algebraic curves since the late 30’s. Principal

Keywords: Knots, curves, braid groups, torsion, Alexander polynomial.
Math. classification: 14H50, 14D05, 57M25, 57C10, 20F36.
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questions concern topological or smooth classifications of manifolds, or
isotopies of embeddings and stratifications of discriminants.

As a natural invariant, the fundamental group of a manifold or a knot
complement contains much topological information. It was introduced by
Dyck [13], following Cayley [6], and mainly developed by Wirtinger [41, 42]
in the case of knots (the aim of Wirtinger was to compute this group for
algebraic knots or links). From the successive results of Dehn [12, 11],
Fox [15] and later Papakyriakopoulos [35, 36] on the peripheral system,
Waldhausen [40] showed that it is strong enough to determine the knot.
Fundamental groups of knots and links are also helpful to compute groups
of manifolds constructed by Dehn surgery or ramified coverings. One inter-
esting feature of Wirtinger’s presentation is the following: the 2-complex
associated to the presentation has the homotopy type of the complement
of the link.

A parallel work in order to study the topology of complex surfaces was
initiated by Enriques and Zariski. Their main idea was to generalize Rie-
mann’s classical work for Riemann surfaces of a multivalued function. In
order to understand the topology of a complex projective manifold, the
best way is to project this surface onto the complex projective space (of the
same dimension) and, then, interpreting the manifold as a ramified cov-
ering along the discriminant locus of the projection (a hypersurface). A
main step in this process is to compute the fundamental group of the com-
plement of the hypersurface. In fact, as a consequence of Zariski-Lefschetz
theory, by taking generic sections it is enough to study this fundamental
group in the case of surfaces, i.e., for complements of curves. Zariski [43]
and van Kampen [20] developed their well-known method which has been
extensively used since then.

Much more common objects are studied and applied in both settings,
but there is one specially important: the braid groups. Indeed, this con-
ference focuses on several aspects of them. Braid groups appeared histor-
ically with the works of Hurwitz [19] on ramified covering of surfaces and
Magnus [30]. Their beauty and wealth comes from the several ways to de-
fine them, as trajectories of particles, fundamental group of configuration
spaces (Fox-Neuwirth [14]), algebraic objects (Artin [3]) or mapping class
groups. Juan González-Meneses’ lecture [18] is devoted to these differ-
ent approaches. Several classical results on braid groups are proved, with
many original proofs.
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The braids were used in knot theory via a famous theorem of Alexan-
der [1] that expresses any link as the closure of a braid. From that braid
it is possible to obtain invariants of the knot (or link), as the Alexander
and Jones polynomials, among others. There is also a presentation of the
fundamental group of the complement in terms of the braid, with the same
feature as Wirtinger presentation.

Similarly, braids appear as a main tool in the understanding of the
topology of complex plane curves via its braid monodromy. This invari-
ant, relatively to a given pencil of lines, provides complete information
about the embedding of the curve (as shown by Kulikov-Teicher [24] and
Carmona [4]). It can be understood as a formalization of the Zariski-van
Kampen method to give a presentation of the fundamental group of a sin-
gular plane curve complement, as Chisini [7] realized in the thirties. Much
later, in the eighties, it was extensively used by Moishezon (e.g., [34]) in
order to get information about complex surfaces. Later on, Libgober [26]
proved that the homotopy type of the complement of an affine curve can
be retreived from the presentation of the fundamental group issued from
braid monodromy, as in the case of links. The lecture given by José Igna-
cio Cogolludo [8] provides a detailed exposition of braid monodromy for
plane singular algebraic curves.

The lecture given by Gwénaël Massuyeau [31] deals with Redemeis-
ter torsion, and a famous related invariant, the Alexander polynomial.
It was introduced by Alexander [2] for knot and links, by combinatorial
constructions on the diagram. The torsion invariants were constructed by
Reidemeister and Franz [16], for lens spaces first, from a triangulation and
the action of the fundamental group on the universal covering of the con-
sidered space. Then Milnor [33, 32] showed (see also Turaev [37, 38]) in the
case of link complements that, if the coefficients are taken over a field of
rational functions, the Reidemeister torsion specializes to the Alexander
polynomial. This result was extended to non-abelian specializations of the
torsion, and twisted Alexander polynomials (see Lin [29], Wada [39], and
Kitano [23]). It is worth saying that, in the non-Abelian case, the invari-
ant depends essentially on the fundamental group and a representation.
The point of view of torsion on them gives nice tools of computation and
properties. For 3-manifolds and knot theory, it was used for concordance,
estimation of the genus of to give obstruction to the fiberedness (see Kirk-
Livingston [21, 22], Friedl-Vidussi [17]), in relation with Thurston norm.
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In the case of plane singular curves, the Alexander polynomial (intro-
duced in this case by Libgober [25]) appears also to be a more manageable
invariant than the fundamental group, and also sensitive to the position
of singularities (except in the case of ordinary double points). It was ex-
tensively studied by Libgober and many other authors. As proof of their
close relationship with knot theory, Libgober also showed that the Alexan-
der polynomial of an affine curve divides both the product of Alexander
polynomial of the algebraic links of its singular points and the Alexan-
der polynomial of the link at infinity. There are several generalizations of
Alexander polynomials. Twisted polynomials (associated to a representa-
tion) were introduced by Cogolludo-Florens [9] and they proved that these
polynomials may detect the presence of nodal points. The point of view
of torsion appears here to offer new perspectives on the invariant. Lib-
gober [28] also introduced characteristic varieties for algebraic (reducible)
curves which may be seen as a generalization of multivariate Alexander
polynomials for links.

For knot theory, by the results of Alexander and Markov, braid group
representations can be used to construct invariants. As an example, the
reduced Burau representation allows to recover the Alexander polynomial.
Libgober [27], inspired by this construction showed that by composing
the braid monodromy of a curve with such a representation, one obtains
isotopy invariants of the curve. The particular case of Burau returns the
Alexander polynomial.

As it can be seen from this historical introduction, the role of Anatoly
Libgober in these subjects is very important. Four months before this
workshop, the conference LIB60BER (Topology of Algebraic Varieties: A
Conference in Honor of the 60th Birthday of Anatoly Libgober) was held
in Jaca (Aragón), only one hundred kilometers south of Pau.

Acknowledgment. The first author was partially supported by the
Spanish Ministry of Education MTM2007-67908-C02-01 and MTM2010-
21740-C02-02.
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2. Alexander invariants

Consider a group G and a surjective homomorphism χ : G → Zµ. Let K
be the kernel of χ, and K ′ = [K,K] its commutator. We get

0→ K/K ′ → G/K ′ → Zµ → 0.

From this exact sequence, K/K ′ can be viewed as a Z[Zµ]-module, where
Z[Zµ] is the group ring which can be identified with the (multivariable)
Laurent polynomial ring. This module is an invariant of (G,χ) and the
Alexander polynomial of (G,χ) is its order. If G is the fundamental group
of a CW-complex X, then χ induces a normal covering with group of deck
transformation Zµ and the module is a topological invariant of (X,χ).
From this, the invariant can be described by homological considerations on
the chain complex, where the coefficients -and boundary maps- are twisted
by the homomorphism χ. This can be recasted in terms of Reidemeister
torsion, a combinatorial invariant of the chain complex. In particular, if the
complex is 2-dimensional (up to homotopy), then the Alexander polyno-
mial coincides exactly with the torsion associated to the coefficients Q(t),
see [31]. This point of view provides nice computation tools, in particular.

The Alexander invariants of links in S3 are defined from their comple-
ment. This complement has the homotopy type of a finite CW-complex,
and the abelianization of its fundamental group is generated by the merid-
ians. In this historical setting, it carries only metabelian information on
the fundamental group. A natural generalization, introduced by Lin [29],
associates a polynomial invariant to a complex together with a choice
of a (linear) representation of its fundamental group. It was shown that
these twisted polynomials can also be interpreted as specializations of the
Reidemeister torsion.

The case of plane curves is very similar. The abelianization of the funda-
mental group of a plane curve complement is generated by the meridians
of the irreducible components. Similarly to the case of links, Libgober [26]
showed that the complement of a place curve has the homotopy type of
a 2-complex. Cogolludo-Florens [9] used this to show the relation with
Reidemeister torsion and extend this to twisted Alexander polynomials.
This allows to extend the classical divisibility properties (by Libgober and
Degtyarev [10]) to the twisted case, and to provide a better geometrical
understanding of them.
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We now briefly present a construction due to Libgober of a family of
invariants of continuous equisingular families of plane curves, using rep-
resentation of braid groups. As stated in the introduction, in the case of
the reduced Burau representation, this gives a direct way to obtain the
Alexander polynomial from the braid monodromy. This result illustrates
the strong relationships between the three subjects of lectures given in the
conference.

Let C be a curve in P2 transversal to the line at infinity L∞, C2 =
P2 \ L∞. Consider a linear projection π : C2 → C of the affine part of P2

from a point at infinity (not belonging to C) such that:

• The fibers of π are all transversal to C except for a finite set of
singular fibers F1, . . . Fn, over the points p1, . . . , pn in C.

• The singular fibers either have a simple tangency to C or pass
through a singular point, transversally to their tangent cone.

Such a generic projection induces a locally trivial fibration of the pair
(C2 \∪Fi, C \∪Fi) over C\{p1, . . . , pn}. Consider a disk D in C containing
the points p1, . . . , pn. Let p be a base point in the boundary ∂D. Let
γ1, . . . , γn be a system of generators of the free group π1(C\{p1, . . . , pn}),
where each γi is the class of a small closed loop around pi. Recall that a
generic fiber of π is homeomorphic to the 2-disk D, with d puncture points
corresponding to the intersection with the curve. Let Bd be the mapping
class group of Dd, that is the group of braids with d strings. The braid
monodromy is the following homomorphism of groups:

ϕ : π1(C \ {p1, . . . , pn})→ Bd, γi 7→ ϕi = ϕ(γi).

Let ρ : Bd −→ GLd−1(Z[t, t−1]) be the reduced Burau representation. Let
us consider the Z[t, t−1]-module

M = H0(π1(C \ {p1, . . . , pn}), ρ ◦ ϕ).

Theorem 2.1. The order of the Z[t, t−1]-moduleM is equal to the Alexan-
der polynomial of C, multiplied by (1 + t+ · · ·+ td−1).

The proof of this theorem uses Fox calculus. An alternative geometrical
proof should be obtained via the Reidemeister torsion, using multiplica-
tivity and Mayer–Vietoris arguments.
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3. A detailed example

The following example illustrates some aspects appearing in this volume,
see [5].

We consider a classical curve C ⊂ C2 (Figure 3.1), called the deltoid,
given by the equation:

f(x, y) := (x2 + y2)2−48x(x2 + y2) + 72(x2 + y2) + 64x3−432 = 0. (3.1)

Figure 3.1. Real deltoid with non-transversal vertical lines

Its compactification in P2 is the tricuspidal quartic and the line at infin-
ity L∞ is the unique bitangent. Though this does not follow the genericity
hypothesis of [8, §3], it is not hard to see that all the statements in that
section apply to any affine curve as long as the equation of C is monic in
y (which is the case), i.e., there are no vertical asymptotes.

In order to compute the braid monodromy of this curve with respect
to the projection on the x-axis, we need to compute the discriminant of f
with respect to y:

∆(x) := 1048576(x− 2)(x+ 6)3(x− 3)6. (3.2)
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Following the notation of [8, Def. 3.3], we consider the set Z3 := {z1 :=
3, z2 := 2, z3 := −6}. We choose suitable closed disks Dx,Dy ⊂ C and
z0 ∈ ∂Dx, z0 ∈ R�3. The group π1(Dx \ Z3; z0) has a geometric basis
(γ1, γ2, γ3) constructed as follows. Let z+i , z

−
i ∈ R be such that z±i := zi±ε,

0 < ε� 1. We define the following paths:

• α0 is the segment [z0, z+1 ] and αi, i = 1, 2, is the segment [z−i , z
+
i+1];

• δi is the path running counterclockwise along the circle of center
zi and radius ε starting and ending at z+i ;

• δ+i is the path running counterclockwise along the upper semicircle
of center zi and radius ε starting at z+i and ending at z−i .

Then,

γ1 :=α0 · δ1 · α−1
0 ,

γ2 :=(α0 · δ+1 · α1) · δ2 · (α0 · δ+1 · α1)−1

γ3 :=(α0 · δ+1 · α1 · δ+2 · α2) · δ3 · (α0 · δ+1 · α1 · δ+2 · α2)−1.

We want to describe the braid monodromy µ : π1(Dx \ Z3; z0) → B4 in
terms of classical Artin generators. Considering the basis (γ1, γ2, γ3), the
map µ is defined by the images of the basis by µ, producing an element
in B := (µ(γ1), µ(γ2), µ(γ3)) ∈ (B4)3, which is usually called a Braid
Monodromy Factorization BMF [8, Def. 3.3]. For generic curves at infinity
of degree d, i.e. its link at infinity is the Hopf link with d components, the
product of the coordinates of a BMF (in the reversed order) is the positive
generator of the center of the braid group. This will not be the case for
our deltoid, since the link at infinity is not a Hopf link.

We consider the generators of B4 as in [18, §1.5], but in order to be
coherent with notations in [8], we number the strings from right to left.
In order to draw the braids, we would like to use the standard projection
C → R by taking the real part. This projection is not generic for our
braids since we may have pairs of conjugate complex numbers. In order to
avoid this problem, we perturb the projection near the conjugate complex
numbers such that the image of the number with negative imaginary part
is (slightly) smaller than the image of the number with positive imaginary
part.
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Using this convention and the computations in [8, Ex. 1.53], we obtain:

α0 7→ 1 δ1 7→ σ3
1σ

3
3 δ

+
1 7→ σ2

1σ
2
3 α1 7→ 1

δ2 7→ σ2 δ
+
2 7→ 1 α2 7→ σ−1

1 σ
−1
3 δ3 7→ σ3

2.

The calculation of α2 and δ is slightly more complicated and follows the
ideas in [8, Example 2.20]. Since any conjugation of a BDM is also a BDM,
one can replace B by B1 := Bσ2

1σ
2
3 to obtain a simpler one:

B1 = (σ3
1σ

3
3, σ2, σ

−1
1 σ

−1
3 σ

3
2σ3σ1).

From B1 it is easy to compute the fundamental group of C2 \ C.

Proposition 3.1. The presentation
〈x, y, z : xyx = yxy, xzx = zxz, yzy = zyz〉

is a Zariski presentation for π1(C2 \ C); in particular, C2 \ C has the ho-
motopy type of the 2-complex associated to the presentation, see [8, The-
orem 3.3].

Proof. We fix a basis a1, . . . , a4 for the fundamental group of a vertical
line (minus the points in C). Since the first braid σ3

1σ
3
3 corresponds to two

singular points (of multiplicity two) we obtain two relations:

a1 = aσ
3
1σ

3
3

1 = aσ
3
1

1 = (a2a1)a2(a2a1)−1,

a3 = aσ
3
1σ

3
3

3 = aσ
3
3

3 = (a4a3)a4(a4a3)−1.

For the braid σ2 we obtain the relation a2 = a3. In order to obtain the
relation for σ−1

1 σ
−1
3 σ

3
2σ3σ1) one needs to work some more. One obtains

b2 = (b3b2)−1b3(b3b2), where bi = aσ3σ1
i :

(a2a1a−1
2 ) = (a3a2a1a−1

2 )a3(a3a2a1a−1
2 )−1.

To obtain the presentation of the statement we perform two Tietze trans-
formations which do not change the homotopy type of the associated 2-
complexes: we eliminate the generator a3 and we rename the generators
as x = a2a1a−1

2 , y = a2 and z = a4. �

Remark 3.2. This proposition works even if the braid monodromy is not
generic, as it was stated by Libgober [26]. Following carefully his proof, it
is not hard to see that neither the genericity of the braid nor the genericity
at infinity of the affine line are needed in the statement. The only needed
condition is the non-existence of vertical asymptotes.
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We finish this section by computing the Alexander polynomial from
braid monodromy using Libgober’s method as stated in the previous sec-
tion. As in the above remark, this method also works for non-generic braid
monodromies (with no vertical asymptotes). Let us consider the reduced
Burau representation

σ1 7→

−t 0 0
t 1 0
0 0 1

 , σ2 7→

1 1 0
0 −t 0
0 t 1

 , σ3 7→

1 0 0
0 1 1
0 0 −t

 .
We obtain the following matrix list:

S1 :=

 −t3 0 0
t3 − t2 + t 1 t2 − t+ 1

0 0 −t3

 , S2 :=

1 1 0
0 −t 0
0 t 1

 ,
S3 :=

 t− t2 − t2−t+1
t − t2−t+1

t(
t− t2

)(
t2 − t+ 1

)
−t3 + 2 t2 − 2 t+ 2 (1− t)

(
t2 − t+ 1

)
−t3 + t2 − t −t2 + t− 1 −(t− 1)t

 .
To apply Libgober’s method we must compute the greatest common

divisor of the three minors of the matrix (S1 − I3|S2 − I3|S3 − I3). It is
clear we can forget the second, fourth, sixth, and last two columns. We can
perform row operations in order to get (1, 0, 0) in the new third column.
We eliminate the first row and the third column and we obtain:

(
−
(
t2 − t+ 1

)(
t2 + t+ 1

)
t2 − t+ 1 −

(
t2 + 1

)(
t2 − t+ 1

)
(t+ 1)

(
t2 − t+ 1

)
t −(t+ 1)

(
t2 − t+ 1

)
0

)
If we add the first row (multiplied by t + 1) to the second one, then we
can perform column operations to obtain zeroes in the first row outside
the second column, obtaining:(

0 t2 − t+ 1 0
−(t3 + t2 + t+ 1)(t2 − t+ 1) 0 −(t3 + t2 + t+ 1)(t2 − t+ 1)

)
.

We know that the gcd of the minors is the product of the Alexander
polynomial and t3 + t2 + t+ 1. We obtain (as it was already known) that
the Alexander polynomial equals (t2 − t+ 1)2.
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