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On the local time of sub-fractional Brownian
motion

Ibrahima Mendy

Abstract

SH = {SHt , t ≥ 0} be a sub-fractional Brownian motion with H ∈ (0, 1). We
establish the existence, the joint continuity and the Hölder regularity of the local
time LH of SH . We will also give Chung’s form of the law of iterated logarithm
for SH . This results are obtained with the decomposition of the sub-fractional
Brownian motion into the sum of fractional Brownian motion plus a stochastic
process with absolutely continuous trajectories. This decomposition is given by
Ruiz de Chavez and Tudor [10].

1. Introduction

The intuitive idea of a local time L(t, x) for a process X is that L(t, x)
measures the amount of time X spends at the level x during the interval
[0, t]. We are concerned in this paper with the existence and regularity of
the local time of the sub-fractional Brownian motion (Sub-fBm). We will
also give Chung’s form of the law of iterated logarithm for SH .
Sub-fractional Brownian motion SH = {SHt , t ≥ 0} is a centered Gaussian
process with covariance function

E[SHs SHt ] = sH + tH − 1
2

[(s+ t)H + |s− t|H ]

where H ∈ (0, 2). This process was introduced by Bojdecky et al [8] as
an intermediate process between standard Brownian motion and fractional
Brownian motion. Recall that fractional Brownian motion (fBm for short)
BH = {BHt , t ≥ 0} is a centered Gaussian process with covariance function

E[BHs BHt ] = 1
2

(sH + tH − |s− t|H)

Keywords: Sub-fractional Brownian motion, local time, local nondeterminism, Chung’s
type law of iterated logarithm.
Math. classification: 60G15, 60G17, 60G18.
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I. Mendy

where H ∈ (0, 2). Note that both fBm and Sub-fBm are standard Brow-
nian motion for H = 1. For H 6= 1, Sub-fBm preserves some of main
properties of fBm, such as long-range dependence, but its increments are
not stationary, they are more weakly correlated on non-overlapping inter-
vals than fBm ones, and their covariance decays polynomially at a higher
rate as the distance between the intervals tends to infinity. For a more
detailed discussion of Sub-fBm and its properties we refer the reader to
Bojdecky et al [8]. Some properties of this process have also been studied
in Tudor [21] and [22].

In [10] the authors obtain the following equality in law

SHt
d= C1X

H
t +BHt (1.1)

where C1 =
√

H
2Γ(1−H) , H ∈ (0, 1), XHt =

∫∞
0 (1 − e−θt)θ−

H+1
2 dWθ and

standard Brownian motion W and fractional Brownian motion BH are
independents. The centered Gaussian process XH = {XHt , t ≥ 0} is in-
troduced by Lei and Nualart [17] in order to obtain a decomposition of
bifractional Brownian motion into the sum of a transformation of XHt and
a fBm. We will establish our results by using an approach based on the con-
cept of local nondeterminism (LND for simplicity), introduced by Berman
[6] to unify and extend his earlier works on the local times of stationnaire
Gaussian processes. The joint continuity as well as Hölder conditions in
both the space and the (time) set variable of the local time of locally
nondeterministic (LND) Gaussian process and fields have been studied by
Berman [4] and [6], Pitt [20], Kôno [15], Geman and Horowitz [13], and
recently by Csörgo, Lin and Shao [11] and [23]. Recently, Boufoussi, Dozzi
and Guerbaz [9] and Guerbaz [14] have studied respectively the local time
of the multifractional Brownian motion (mBm) and the local time of the
filtered white noises. Th multifractional Brownian motion extend the fBm
in the sens that its Hurst parameter is not more constant, but a Hölder
function of time. The paper is organized as follows. Section 2 contains a
brief review on the local times of Gaussian processes and Berman’s concept
of local nondeterminism. In section 3 we prove the existence of a square
integrable version of the local time, the joint continuity and Hölder regu-
larity in time and in space. Chung’s form of the law of iterated logarithm
for Sub-fBm is obtained in section 4, which is applied to derive a lower
bound for local moduli of continuity of local times of Sub-fBm. Will use
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On the local time of sub-fractional Brownian motion

C,C1, . . . to denote unspecified positive finite constants which may not
necessary be the same at each occurrence.

2. Preliminaries

We recall some aspects of local times and we refer to the paper of Geman
and Horowitz [13] for an insightful survey local times. Let X = {X(t), t ≥
0} be a real valued separable random process with Borel sample functions.
For any Borel set B of the real line, the occupation measure of X is defined
as follows

µ(A,B) = λ{s ∈ A : X(s) ∈ B} ∀ A ∈ B(R+),

and λ is the Lebesgue measure on R+. If µ(A, .) is absolutely continuous
with respect to the Lebesgue measure on R, we say that X has local times
on A and define its local time, L(A, .), as the Radon-Nikodym derivative
of µ(A, .). Here x is the so-called space variable, and A is the time vari-
able. The existence of jointly continuous local time reveals information on
the fluctuation of the sample paths of process itself [1, Chap 8]. There are
several approach for proving the joint continuity of the local times, one
of them is the Fourier analytic method developed by Berman to extend
his early works on the local times of stationary Gaussian processes. The
main tool used in Berman’s approach (see Berman [6]) is the local nonde-
terminism. We give a brief review of the concept of local nondeterminism,
more informations on the subject can be found in [6]. Let J be an open
interval on t axis. Assume that {X(t), t ≥ 0} is a zero mean Gaussian
process without singularities in any interval of length δ, for some δ > 0,
and without fixed zeros; i.e. there exists δ > 0 such that

(P)
{

E(X(t)−X(s))2 > 0,whenever 0 < |t− s| < δ
E(X(t))2 > 0, for t ∈ J.

To introduce the concept of local nondeterminism, Berman defined the
relative conditioning error,

Vm = V ar{X(tm)−X(tm−1)/X(t1), . . . , X(tm−1)}
V ar{X(tm)−X(tm−1)}

; (2.1)

where, for m ≥ 2, t1, . . . , tm are arbitrary points in J ordered according to
their indices, i.e. t1 < t2 < · · · < tm. We say that the process X is locally
nondeterministic (LND) on J if for every m ≥ 2,
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I. Mendy

lim inf
c↘0+,0<tm−t1<c

Vm > 0. (2.2)

This condition means that a small increment of the process is not almost
relatively predictable on the basis of a finite number of observations from
the immediate past. Berman has proved, for Gaussian processes, that the
local nondeterminism as characterized as follows.

Proposition 2.1. X is LND if and only if for every integer m ≥ 2, there
exists positive constants C and δ (both may depend on m) such that

V ar

 m∑
j=1
uj [X(tj)−X(tj−1)]

 ≥ Cm m∑
j=1
u2
jV ar[X(tj)−X(tj−1)], (2.3)

for all ordered points t1 < t2 < · · · < tm in J with tm − t1 < δ, t0 = 0 and
(u1, u2, . . . , um) ∈ Rm.

The proof of this proposition is given in [6], Lemmas 2.1 and 8.1.

3. Local time of sub-fractional Brownian motion

The propose of this section is to present sufficient conditions for the exis-
tence of the local times of sub-fractional Brownian motion. Furthermore,
using the local nondeterminism approach, we show that the local times
have a jointly continuous version.

3.1. Square integrability
Theorem 3.1. Assume 0 < H < 1. On each (time)-interval [a, b] ⊂
[0,+∞[, the Sub-fBm SH admits a local time LH([a, b], x) which satisfies∫

R
LH([a, b], x)2dx <∞.

For the proof of Theorem 3.1, we need the following lemma. This result
on the regularity of the increments of the Sub-fBm will be the key for the
existence and the regularity of local times.

Lemma 3.2. There exists δ > 0 and, for any integer m ≥ 1, there exists
Mm > 0, such that

E[SHt − SHs ]m ≥Mm|t− s|mH
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for all, s, t such that |t− s| < δ.

Proof. We use the decomposition of the Sub-fBm given by Ruiz de Chavez
and Tudor [10] :

SHt
d= C1X

H
t +BHt (3.1)

where C1 =
√

H
2Γ(1−H) , H ∈ (0, 1), XHt =

∫∞
0 (1 − e−θt)θ−

H+1
2 dWθ and

standard Brownian motion W and fractional Brownian motion BH are
independents.

E[SHt − SHs ]2 = E[C1(XHt −XHs ) + (BHt −BHs )]2.
Using the elementary inequality (a+ b)2 ≥ 1

2a
2 − b2, we obtain

E[SHt − SHs ]2 ≥ 1
2

E[BHt −BHs ]2 − C2
1E[XHt −XHs ]2

≥ CH
2
|t− s|2H − C2

1E[XHt −XHs ]2. (3.2)

Moreover, we have

E[XHt −XHs ]2 =
∫ ∞

0
(e−θs − e−θt)2θ−(H+1)dθ.

Making use of the theorem on finite increments for the function v 7→ e−θv,
for v ∈ (s, t), there exists α ∈ (s, t) such that

E[XHt −XHs ]2 = |t− s|2
∫ ∞

0
e−2αθθ1−Hdθ

≤ |t− s|2
∫ ∞

0
e−2sθθ1−Hdθ

≤ K|t− s|2 (3.3)
where K = sups∈[a,b]

∫∞
0 e
−2sθθ1−Hdθ. This last inequality and (3.2) imply

that

E[SHt − SHs ]2 ≥ CH
2
|t− s|2H − C2

1K|t− s|2

= [CH
2
− C2

1K|t− s|2(1−H)]|t− s|2H . (3.4)

Since 0 < H < 1, we can choose δ small enough such that for all s, t ≥ 0
and |t− s| < δ we have

CH
2
− C2

1K|t− s|2(1−H) > 0.
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Indeed, it suffices to choose δ < [( CH2C2
1K

) ∧ 1]
1

2(1−H) and to take M =
CH
2 − C

2
1Kδ

2(1−H). Finally,

E[SHt − SHs ]2 ≥M |t− s|2H ,
for all s, t such that |t − s| < δ. Since SH is a centered Gaussian process
then we obtain the result. �

Proof of Theorem 3.1. Fix T > 0. It is well known (see Berman [4]) that,
for a jointly measure zero-mean Gaussian process X = {Xt, t ∈ [0, T ]}
with bounded variance, the variance condition∫ T

0

∫ T
0

(
E[Xt −Xs]2

)− 1
2 dsdt <∞

is sufficient for the local time L(t, u) of X exists on [0, T ] almost surely
and be square integrable as a function of u. For any [a, b] ⊂ [0,+∞[ and
for I = [a′, b′] ⊂ [a, b] such that |b′ − a′| < δ, according to Lemma 3.2 we
have, ∫ b′

a′

∫ b′
a′

(
E[SHt − SHs ]2

)− 1
2 dsdt <

∫ b′
a′

∫ b′
a′
|t− s|−Hdsdt.

The last integral is finite because 0 < H < 1. Then according to Geman
and Horowitz [13, Theorem 22.1], the conclusion of the theorem holds for
any interval I ⊂ [a, b] with length |I| < δ. Finally, since [a, b] is finite
interval, we can obtain the local time on [a, b] by a standard patch-up
procedure i.e. we partition [a, b] into ∪ni=1[ai−1, ai] such that |ai−ai−1| < δ
and define LH([a, b], x) =

∑n
i=1 L

H([ai−1, ai], x) where a0 = a and an = b.
�

3.2. LND Property of Sub-fBm
In order to study joint continuity of local time we prove the LND of Sub-
fBm.

Theorem 3.3. Assume 0 < H < 1. Then the Sub-fBm SH is LND on
[0, T ].

Proof. It is sufficient to prove that the sub-fBm SH satisfies Proposition
2.1.

SH(t) d= C1X
H(t) +BH(t)
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then

SH(t)− SH(s) = BH(t)−BH(s) + C1(XH(t)−XH(s)).

By using the elementary inequality (a+ b)2 ≥ 1
2a

2 − b2, we obtain

Var

 m∑
j=1
uj [SH(tj)− SH(tj−1)]


≥ 1

2
V ar

 m∑
j=1
uj [BH(tj)−BH(tj−1)]


− C2

1V ar

 m∑
j=1
uj [XH(tj)−XH(tj−1)]

 . (3.5)

According to Kôno et al.[16], the fBm BH is local nondeterministic on
[0, T ], then by Proposition 2.1, there exists two constants δm > 0 and
Cm > 0 such that for any t0 = 0 < t1 < t2 < · · · < tm < T, with
tm − t1 < δm, we have

Var

 m∑
j=1
uj [SH(tj)− SH(tj−1)]

 ≥
Cm
2

m∑
j=1
u2
jV ar

(
BH(tj)−BH(tj−1)

)

−mC2
1

m∑
j=1
u2
jV ar

(
XH(tj)−XH(tj−1)

)
. (3.6)

Moreover, we have

E[XH(t)−XH(s)]2 ≤ K|t− s|2. (3.7)
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This last inequality imply that (3.6) becomes

Var

 m∑
j=1
uj [SH(tj)− SH(tj−1)]


≥Cm

2

m∑
j=1
u2
j |tj − tj−1|2H −mC2

1

m∑
j=1
u2
j |tj − tj−1|2

≥[Cm
2
−mC2

1δ
2(1−H)
m K]

m∑
j=1
u2
j |tj − tj−1|2H . (3.8)

In addition we have

E[SH(t)− SH(s)]2 ≤ 2(E[BH(t)−BH(s)]2 + C2
1E[XH(t)−XH(s)]2)

≤ K|t− s|2 + |t− s|2H

≤ (Kδ2(1−H)
m + 1)|t− s|2H

≤ C(δm,H)|t− s|2H . (3.9)

Therefore it suffices now to choose

δ̃m <

(
Cm

2mC2
1K

) 1
2(1−H)

∧ δm

and to consider

C̃m = 1
C(δm,H)

(
Cm
2
−mC2

1 δ̃
2(1−H)
m K

)
and the theorem is proved. �

3.3. Joint continuity and Hölder regularity

Let T > 0 and H([0, T ]) be the family of interval I ⊂ [0, T ] of length at
most δ (the constant appearing in Lemma 3.2). In this paragraph we will
apply some results of Berman on LND process to prove the joint continuity
of local times of the Sub-fBm. The main result is the following.

Theorem 3.4. Assume 0 < H < 1. Then the Sub-fBm SH has, almost
surely, a jointly continuous local time {L(t, x), t ∈ [0, T ], x ∈ R}. It satis-
fies for any compact U ⊂ R
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(i)

sup
x∈U

L(t+ h, x)− L(t, x)
|h|λ

< +∞ a.s., (3.10)

where λ < 1 − H and |h| < η, η being a small random variable
almost surely positive and finite,

(ii) for any I ∈ H([0, T ]),

sup
x,y∈U,x 6=y

L(I, x)− L(I, y)
|x− y|α

< +∞ a.s., (3.11)

where α < 1 ∧ 1−H
2H .

The proof of Theorem 3.4 relies on the following upper bounds for the
moments of the local times.

Lemma 3.5. Assume 0 < H < 1 and let δ be the constant appearing in
Lemma 3.2. For any even integer m ≥ 2 there exists a positive and finite
constant Cm such that, for any t ∈ [0,+∞[, any h ∈ (0, δ), any x, y ∈ R
and any ξ < 1 ∧ 1−H

2H

E[L(t+ h, x)− L(t, x)]m ≤ Cm
hm(1−H)

Γ(1 +m(1−H))
, (3.12)

E[L(t+ h, y)− L(t, y)− L(t+ h, x) + L(t, x)]m ≤ Cm|y − x|mξ

× hm(1−H(1+ξ))

Γ(1 +m(1−H(1 + ξ)))
. (3.13)

Proof. We will proof only (3.13), the proof of (3.12) is similar. It follows
from (25.7) in Geman and Horowitz [13](see also Boufoussi et al. [9]) that
for any x, y ∈ R, t, t+ h ∈ [0,+∞[ and for every even integer m ≥ 2,

E[L(t+ h, y)− L(t, y)− L(t+ h, x) + L(t, x)]m

= (2π)−m
∫

[t,t+h]m

∫
Rm

m∏
j=1

[e−iyuj − e−ixuj ]

×E
(
e
i
∑m

j=1 ujS
H
sj

) m∏
j=1
duj

m∏
j=1
dsj .
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Using the elementary inequality |1− eiθ| ≤ 21−ξ|θ|ξ for all 0 < ξ < 1 and
any θ ∈ R, we obtain

E[L(t+ h, y)− L(t, y)− L(t+ h, x) + L(t, x)]m ≤ (2ξπ)−mm!|y − x|mξ

×
∫
t<t1<···<tm<t+h

∫
Rm

m∏
j=1
|uj |ξE[exp (i

m∑
j=1
ujS
H
tj )]

m∏
j=1
duj

m∏
j=1
dtj , (3.14)

where in order to apply the LND property of SH , we replaced the integra-
tion over the domain [t, t+h] by over the subset t < t1 < · · · < tm < t+h.
We deal now with the inner multiple integral over the u’s. Change the
variable of integration by mean of the transformation

uj = vj − vj+1, j = 1, 2, . . . ,m− 1;um = vm.

Then the linear combination in the exponent in (3.14) is transformed
according to

m∑
j=1
ujS
H
tj =

m∑
j=1
vj(SHtj − S

H
tj−1),

where t0 = 0. Since SH is a Gaussian process, the characteristic function
in (3.14) has the form

exp

−1
2
V ar

 m∑
j=1
vj(SHtj − S

H
tj−1)

. (3.15)

Since |x− y|ξ ≤ |x|ξ + |y|ξ for all 0 < ξ < 1, it follows that
m∏
j=1
|uj |ξ =

m−1∏
j=1
|vj − vj+1|ξ|vm|ξ

≤
m−1∏
j=1

(|vj |ξ + |vj+1|ξ)|vm|ξ. (3.16)

Moreover, the last product is at most equal to a finite sum of 2m−1 terms
of the form

∏m
j=1 |xj |ξεj , where εj = 0, 1 or 2 and

∑m
j=1 εj = m.

Let us write for simply σ2
j = E

(
SHtj − S

H
tj−1

)2
. Combining the result of

Proposition 2.1, (3.15) and (3.16), we get that the integral in (3.14) is
dominated by the sum over all possible of (ε1, . . . , εm) ∈ {0, 1, 2}m of the
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following∫
t<t1<...<tm<t+h

∫
Rm

m∏
j=1
|vj |ξεj exp

−Cm
2

m∑
j=1
v2jσ

2
j

 m∏
j=1
dtjdvj ,

where Cm is the constant given in Proposition 2.1. The change of variable
xj = vjσj converts the last integral to∫
t<t1<···<tm<t+h

m∏
j=1
σ
−1−ξεj
j dt1 · · · dtm

×
∫

Rm

m∏
j=1
|xj |ξεj exp

−Cm
2

m∑
j=1
x2
j

 m∏
j=1
dxj .

Let us denote

J(m, ξ) =
∫

Rm

m∏
j=1
|xj |ξεj exp

−Cm
2

m∑
j=1
x2
j

 m∏
j=1
dxj .

Consequently

E[L(t+ h, y)− L(t, y)− L(t+ h, x) + L(t, x)]m

≤ CmJ(m, ξ)|y − x|mξ
∫
t<t1<···<tm<t+h

m∏
j=1
σ
−1−ξεj
j dt1 · · · dtm. (3.17)

According to Lemma 3.2, for h sufficient small, namely 0 < h < inf(δ, 1),
we have

E
(
SHti − S

H
tj

)2
≥ C|ti − tj |2H for all ti, tj ∈ [t, t+ h]. (3.18)

It follows that the integral on the right hand side of (3.17) is bounded, up
to a constant, by∫

t<t1<···<tm<t+h

m∏
j=1

(tj − tj−1)−H(1+ξεj)dt1 · · · dtm. (3.19)

Since, (tj − tj−1) < 1, for all j ∈ {2, . . . ,m}, we have

(tj − tj−1)−H(1+ξεj) < (tj − tj−1)−H(1+2ξ) ∀εj ∈ {0, 1, 2}.

Since by hypothesis ξ < 1
2H−

1
2 , the integral in (3.19) is finite. Moreover,

by an elementary calculation( cf. Ehm [12]), for all m ≥ 1, h > 0 and
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bj < 1,∫
t<s1<···<sm<t+h

m∏
j=1

(sj − sj−1)−bjds1 · · · dsm =

h
m−
∑m

j=1 bj

∏m
j=1 Γ(1− bj)

Γ(1 + h−
∑m
j=1 bj)

,

where s0 = t. It follows that (3.19) is dominated by

Cm
hm(1−H(1+ξ))

Γ(1 +m(1−H(1 + ξ))
,

where
∑m
j= εj = m. Consequently

E[L(t+ k, y)− L(t, y)− L(t+ k, x) + L(t, x)]m

≤ Cm
|y − x|mξhm(1−H(1+ξ))

Γ(1 +m(1−H(1 + ξ))
.

�

Proof of Theorem 3.4. Since L(0, x) = 0 for all x ∈ R, hence if we replace
t and t+ h by 0 and t respectively in 3.13, we obtain

E[L(t, y)− L(t, x)]m ≤ C̃m|y − x|mξ. (3.20)
The jointly continuity of the local time straightforward from (3.12), (3.13)
and (3.20) and classical parameter Kolmogorov’s theorem (c.f. Berman [5],
Theorem 5.1).
The Hölder condition (i) of Theorem 3.1 follows of (3.13) and one param-
eter Kolmogorov’s theorem (see also the proof Theorem 2 in Pitt [20]).
We turn out to the proof of (ii). According to Theorem 3.1 in Berman
[7], the inequalities (3.12), (3.13) and (3.20) imply that (ii) holds for any
δ < 1 − H(1 + ξ), for all 0 < ξ < 1 ∧ 1−H

2H ,. Letting ξ tends to zero, we
obtain the desired result. �

As a classical consequence, we have the following result on the Hausdorff
dimension of the level set. We refer to Adler [1] and Baraka et al.[3] for
definition and results for the fractional Brownian motion.

Proposition 3.6. With probability one, for any interval I ⊂ [0, T ], we
have

dim{t ∈ I/SHt = x} = 1−H, (3.21)
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for all x such that L(t, x) > 0.

Proof. According to (3.9) and Kolmogorov’s theorem, the Sub-fBm is β-
Hölder for every β < H. Moreover, the Sub-fBm has a jointly continuous
local time, then Theorem 8.7.3 in Adler [1] completes the proof of the
upper bound, i.e dim{t ∈ I/SHt = x} ≤ 1−H, a.s. Now by (i) of Theorem
3.4, the jointly continuous local time of the Sub-fBm satisfies an uniform
Hölder of any order smaller than of 1 − H. Then the Theorem 8.7.4 of
Adler [1] implies that dim{t ∈ I/SHt = x} ≥ 1−H, a.s. for all x such that
L(t, x) > 0. This completes the proof. �

4. Chung’s law for the Sub-fBm and pointwise Hölder expo-
nent of local time

The main result of this section is that the Sub-fBm satisfies the same form
of Chung’s law of iterated logarithm (LIL) as the fBm. For an excellent
summary on LIL, we refer to the survey paper of Li and Shao [18].

Theorem 4.1. Assume 0 < H < 1. Then the following Chung’s law of
iterated logarithm hold for the sub-fBm:

lim inf
δ→0

sup
s∈[t,t+δ]

|SH(t)− SH(s)|
(δ/ log | log(δ)|)H

= C(H), a.s. (4.1)

where C(H) is the constant appearing in the Chung’s law of fBm.

Proof. Conserving the same notations as above, we can write

SH(t)− SH(s) = BH(t)−BH(s) + C1(XH(t)−XH(s))

According to Monrad and Rootzen [19], the fBm BH satisfies (4.1). Then
(4.1) will be proved if we show that

lim
δ→0

sup
s∈[t,t+δ]

|XH(t)−XH(s)|
(δ/ log | log(δ)|)H

= 0, a.s. (4.2)

According to (3.3) there exists a positive constant K such that

sup
s∈[t,t+δ]

E[XH(t)−XH(s)]2 ≤ Kδ2. (4.3)
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Hence, according to Theorem 2.1 in Adler [2, page 43], and a symmetry
argument, we obtain

P
(

sup
s∈[t,t+δ]

|XH(t)−XH(s)| ≥ u
)

≤ 2P
(

sup
s∈[t,t+δ]

(XH(t)−XH(s)) ≥ u
)

≤ 4 exp

−
(
u− E(sups∈[t,t+δ](XH(t)−XH(s)))

)2

Kδ2

 . (4.4)

For the sake of simplicity, let Λ = sups∈[t,t+δ](XH(t)−XH(s)). By (4.4),
we obtain

E(Λ) ≤
∫ +∞

0
P
(

sup
s∈[t,t+δ]

|XH(t)−XH(s)| > x
)
dx

≤ 4
∫ +∞

0
exp

(
− [x− E(Λ)]2

Kδ2

)
dx

= 4
√
Kδ√
2

∫ +∞

−
√

2E(Λ)√
Kδ

e−
y2
2 dy

≤ 4
√
Kπδ.

It follows that

(u− E(Λ))2 ≥ 1
2
u2 − (E(Λ))2 ≥ 1

2
u2 − 16Kπδ.

Consequently, (4.4) becomes

P
(

sup
s∈[t,t+δ]

|XH(t)−XH(s)| ≥ u
)
≤ C exp

(
− u

2

2Kδ2

)
. (4.5)

Since H < 1, there exists 0 < ξ < 1−H. Consider δn = n1/(2(ξ+H−1)) and
un = δH+ξ

n . Therefore, according to (4.5), we have
∞∑
n=1

P
(

sup
s∈[t,t+δn]

|XH(t)−XH(s)| ≥ un

)
≤ C

∞∑
n=1

exp
(
− 1
K
n

)
<∞.

It follows from the Borel-Cantelli lemma that there exists n0 = n(ω)
such that for all n ≥ n0, sups∈[t,t+δn] |XH(t) − XH(s)| ≤ δH+ξ

n almost
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surely. Furthermore, for δn+1 ≤ δ ≤ δn, we have almost surely

sup
s∈[t,t+δ]

|XH(t)−XH(s)| ≤ sup
s∈[t,t+δn]

|XH(t)−XH(s)|

≤ δH+ξ
n

≤ δH+ξ
(
δn
δn+1

)H+ξ

≤ 2θδH+ξ, a.s.,

where θ = H + ξ
2(1−H − ξ)

.

Hence,

lim
δ→0

sup
s∈[t,t+δ]

|XH(t)−XH(s)|
(δ/ log | log(δ)|)H

≤ 2θ lim
δ→0
δξ(log | log(δ)|)H = 0 a.s.

Consequently (4.2) is proved. This completes the proof of the Theorem.
�

Remark 4.2. The main interest of the previous proof is that it can be used
to generalized many other LIL known for the fBm to the Sub-fBm. For
example, we have the LIL given in Li and Shao [18, equation (7.5)], for
the fBm to the Sub-fBm as follows

lim sup
δ→0

sup
s∈[t,t+δ]

|SH(t)− SH(s)|
δH(log | log(δ)|)

1
2

= C(H), a.s.

where C(H) =
√

2π
HΓ(2H) sin(πH)

.

The Chung laws are known to be linked to the optimality of the moduli
of continuity of local times of stochastic processes. More precisely:

Lemma 4.3. The following lower bounds for the moduli of continuity of
local times holds

1
2C(H)

≤ lim sup
δ→0

sup
x∈R

L(t+ δ, x)− L(t, x)
δ1−H(log log(δ−1))H

, a.s. (4.6)
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Proof. Combining (4.1) and the following elementary computation

δ =
∫

R
L([t, t+ δ], x)dx

≤ sup
x∈R
L([t, t+ δ], x) sup

s,s′∈[t,t+δ]
|SH(s)− SH(s′)|

≤ 2 sup
x∈R
L([t, t+ δ], x) sup

s∈[t,t+δ]
|SH(t)− SH(s)|

we obtain the lemma. �
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