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On the local time of sub-fractional Brownian
motion

IBRAHIMA MENDY

Abstract

SH = {5t > 0} be a sub-fractional Brownian motion with H € (0,1). We
establish the existence, the joint continuity and the Holder regularity of the local
time L of S¥. We will also give Chung’s form of the law of iterated logarithm
for S¥. This results are obtained with the decomposition of the sub-fractional
Brownian motion into the sum of fractional Brownian motion plus a stochastic
process with absolutely continuous trajectories. This decomposition is given by
Ruiz de Chavez and Tudor [10].

1. Introduction

The intuitive idea of a local time L(t,z) for a process X is that L(t¢,x)
measures the amount of time X spends at the level  during the interval
[0,t]. We are concerned in this paper with the existence and regularity of
the local time of the sub-fractional Brownian motion (Sub-fBm). We will
also give Chung’s form of the law of iterated logarithm for S¥.
Sub-fractional Brownian motion S¥ = {SH t > 0} is a centered Gaussian
process with covariance function

1
E[S{'S/") = s + 47 = S{(s + " + s — 1| "]

where H € (0,2). This process was introduced by Bojdecky et al [8] as
an intermediate process between standard Brownian motion and fractional
Brownian motion. Recall that fractional Brownian motion (fBm for short)
B = {B} |t > 0} is a centered Gaussian process with covariance function

1
B[BI B = S(s" + ¢ — |5 — 1))

Keywords: Sub-fractional Brownian motion, local time, local nondeterminism, Chung’s
type law of iterated logarithm.
Math. classification: 60G15, 60G17, 60G18.
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I. MENDY

where H € (0,2). Note that both fBm and Sub-fBm are standard Brow-
nian motion for H = 1. For H # 1, Sub-fBm preserves some of main
properties of fBm, such as long-range dependence, but its increments are
not stationary, they are more weakly correlated on non-overlapping inter-
vals than fBm ones, and their covariance decays polynomially at a higher
rate as the distance between the intervals tends to infinity. For a more
detailed discussion of Sub-fBm and its properties we refer the reader to
Bojdecky et al [8]. Some properties of this process have also been studied
in Tudor [21] and [22].
In [10] the authors obtain the following equality in law

sHLoxF+ BH (1.1)
where Cy = [oretly, H € (0,1), X = [3°(1 - e=0~ "5 dW, and
standard Brownian motion W and fractional Brownian motion B are
independents. The centered Gaussian process X? = {XH t > 0} is in-
troduced by Lei and Nualart [17] in order to obtain a decomposition of
bifractional Brownian motion into the sum of a transformation of X/ and
a fBm. We will establish our results by using an approach based on the con-
cept of local nondeterminism (LND for simplicity), introduced by Berman
[6] to unify and extend his earlier works on the local times of stationnaire
Gaussian processes. The joint continuity as well as Holder conditions in
both the space and the (time) set variable of the local time of locally
nondeterministic (LND) Gaussian process and fields have been studied by
Berman [4] and [6], Pitt [20], K6no [15], Geman and Horowitz [13], and
recently by Csorgo, Lin and Shao [11] and [23]. Recently, Boufoussi, Dozzi
and Guerbaz [9] and Guerbaz [14] have studied respectively the local time
of the multifractional Brownian motion (mBm) and the local time of the
filtered white noises. Th multifractional Brownian motion extend the fBm
in the sens that its Hurst parameter is not more constant, but a Holder
function of time. The paper is organized as follows. Section 2 contains a
brief review on the local times of Gaussian processes and Berman’s concept
of local nondeterminism. In section 3 we prove the existence of a square
integrable version of the local time, the joint continuity and Holder regu-
larity in time and in space. Chung’s form of the law of iterated logarithm
for Sub-fBm is obtained in section 4, which is applied to derive a lower
bound for local moduli of continuity of local times of Sub-fBm. Will use
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ON THE LOCAL TIME OF SUB-FRACTIONAL BROWNIAN MOTION

C,C1,... to denote unspecified positive finite constants which may not
necessary be the same at each occurrence.

2. Preliminaries

We recall some aspects of local times and we refer to the paper of Geman
and Horowitz [13] for an insightful survey local times. Let X = {X (¢),t >
0} be a real valued separable random process with Borel sample functions.
For any Borel set B of the real line, the occupation measure of X is defined
as follows

w(A,B)=Mse€ A: X(s) € B} V A€ BR"),

and \ is the Lebesgue measure on R, If (A, .) is absolutely continuous
with respect to the Lebesgue measure on R, we say that X has local times
on A and define its local time, L(A,.), as the Radon-Nikodym derivative
of u(A,.). Here x is the so-called space variable, and A is the time vari-
able. The existence of jointly continuous local time reveals information on
the fluctuation of the sample paths of process itself [1, Chap 8]. There are
several approach for proving the joint continuity of the local times, one
of them is the Fourier analytic method developed by Berman to extend
his early works on the local times of stationary Gaussian processes. The
main tool used in Berman’s approach (see Berman [6]) is the local nonde-
terminism. We give a brief review of the concept of local nondeterminism,
more informations on the subject can be found in [6]. Let J be an open
interval on t axis. Assume that {X(¢),t > 0} is a zero mean Gaussian
process without singularities in any interval of length §, for some § > 0,
and without fixed zeros; i.e. there exists § > 0 such that

E(X(t) — X(s))> > 0,whenever 0<|t—s|<§
(P){ E(X ()% >0,for teJ

To introduce the concept of local nondeterminism, Berman defined the
relative conditioning error,

_ Var{X(tm) — X(tm-1)/X(t1), ..., X(tm-1)}
Var{X (tm) — X (tm-1)} ’
where, for m > 2,t1,...,t,, are arbitrary points in J ordered according to

their indices, i.e. t; <ty < --- < t,,. We say that the process X is locally
nondeterministic (LND) on J if for every m > 2,

Vin

(2.1)
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I. MENDY

lim inf Vin > 0. (2.2)
N\ 0T,0<tm—t1<c

This condition means that a small increment of the process is not almost
relatively predictable on the basis of a finite number of observations from
the immediate past. Berman has proved, for Gaussian processes, that the
local nondeterminism as characterized as follows.

Proposition 2.1. X is LND if and only if for every integer m > 2, there
exists positive constants C and 6 (both may depend on m) such that

j=1

Var (Z Uj [X(tj) — X(t]‘_l)]) > Cm Z u?Var[X(tj) — X(tj_l)], (2.3)
j=1
for all ordered points t1 < to < -+ <ty in J with t,, —t1 < 6,190 =0 and
(ug,ug, ..., upy) € R™.

The proof of this proposition is given in [6], Lemmas 2.1 and 8.1.

3. Local time of sub-fractional Brownian motion

The propose of this section is to present sufficient conditions for the exis-
tence of the local times of sub-fractional Brownian motion. Furthermore,
using the local nondeterminism approach, we show that the local times
have a jointly continuous version.

3.1. Square integrability

Theorem 3.1. Assume 0 < H < 1. On each (time)-interval [a,b] C
[0, +-00[, the Sub-fBm S™ admits a local time L ([a,b], ) which satisfies

/ L ([a,b], 2)%dx < .
R

For the proof of Theorem 3.1, we need the following lemma. This result
on the regularity of the increments of the Sub-fBm will be the key for the
existence and the regularity of local times.

Lemma 3.2. There exists § > 0 and, for any integer m > 1, there exists
M,, > 0, such that

E[S{' — S™ 2> Myt — 5™
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ON THE LOCAL TIME OF SUB-FRACTIONAL BROWNIAN MOTION

for all, s,t such that |t — s| < 6.

Proof. We use the decomposition of the Sub-fBm given by Ruiz de Chavez
and Tudor [10] :

stLoyxH+ BH (3.1)
where Oy = [oretly, H € (0,1), X = [3°(1 - e~ AW, and

standard Brownian motion W and fractional Brownian motion BH are
independents.

B[S/ - SJ1? =E[C1 (X" — X{) + (B - B

2

Using the elementary inequality (a + b)? > %aQ — b%, we obtain

1
BlSf ST > LE(BI - BUJ - CRELX/T - X1

Cy

>
-2

it — s — CPE[XH — XH]2, (3.2)
Moreover, we have

E[XA - xH)? = / (e705 — e70ty29~(H+ 1) gp
0

Making use of the theorem on finite increments for the function v — e=%,
for v € (s,t), there exists a € (s,t) such that
o0
ExH - x1? = \t—s|2/ e 29991=H g9
0
oo
< ‘t _ 8‘2/ 6_28991_Hd9
0
< K|t —s| (3.3)

where K = supge(ap) Jo - e~25091=H 49, This last inequality and (3.2) imply
that
Ch

E[S' — S > =l — s = CIK |t — s
C _
= [TH—C%K\t—sF(l Mt —s?. (3.4)

Since 0 < H < 1, we can choose ¢ small enough such that for all s,¢ > 0
and |t — s| < 6 we have

C;—H — C?K |t — s?07H) > 0.
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I. MENDY

1
Indeed, it suffices to choose § < [(ngK) A 1]20-1) and to take M =
1
G — C}K 62 -1, Finally,
E[S{ — S = M|t — s,

for all s,t such that |t — s| < d. Since S¥ is a centered Gaussian process
then we obtain the result. g

Proof of Theorem 3.1. Fix T' > 0. It is well known (see Berman [4]) that,
for a jointly measure zero-mean Gaussian process X = {X;,t € [0,7]}
with bounded variance, the variance condition

T T _1
/ / (B[ — XJJ?) ? dsdt < oo
0 0

is sufficient for the local time L(t,u) of X exists on [0,7] almost surely
and be square integrable as a function of w. For any [a,b] C [0, 400 and
for I = [d/,V] C [a,b] such that |’ — a/| < §, according to Lemma 3.2 we
have,

I _1 oY
// (E[S{f—sﬁ]?) 2dsdt</ / it — s| " Hdsdt.

The last integral is finite because 0 < H < 1. Then according to Geman
and Horowitz [13, Theorem 22.1], the conclusion of the theorem holds for
any interval I C [a,b] with length |I| < ¢. Finally, since [a,b] is finite
interval, we can obtain the local time on [a,b] by a standard patch-up
procedure i.e. we partition [a, b] into U}, [a;—1, a;] such that |a;—a;—1| < &
and define L ([a,b], z) = -7 L ([a;_1, a;], ) where ag = a and a,, = b.
O

3.2. LND Property of Sub-fBm

In order to study joint continuity of local time we prove the LND of Sub-
fBm.

Theorem 3.3. Assume 0 < H < 1. Then the Sub-fBm SH is LND on
[0,T7].

Proof. Tt is sufficient to prove that the sub-fBm S satisfies Proposition
2.1.

SH#) L oy XH (1) + BH (1)
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ON THE LOCAL TIME OF SUB-FRACTIONAL BROWNIAN MOTION
then
SH(t) - SH(S) = BH(t) - BH(s) + C’l(XH(t) — XH(s)).

— b2, we obtain

By using the elementary inequality (a + b)% > %

Var (i Uj[SH(tj) — SH(tjl)])

J=1

AV
l\D\»—t

(i (B (t)) BH(tj—l)])
— C%Va?” (i Uj[XH(tj) — XH(tj_l)]) . (3.5)
j=1

According to Koéno et al.[16], the fBm B is local nondeterministic on
[0,T7], then by Proposition 2.1, there exists two constants d,, > 0 and
Cy, > 0 such that for any tp = 0 < t1 < to < -+ < t, < T, with
tm — t1 < 0, we have

j=1
—mCE Y wVar (XH (1) - XM (t;1)) . (3.6)
7j=1
Moreover, we have
EX7(t) — X7 (s)? < K|t — s> (3.7)



I. MENDY

This last inequality imply that (3.6) becomes

(i [S7(t) — (tj—l)])

C m m
> Z wilt; — tia P —mCT Y udlt; — ;|

J=1

2
Cm
=R

—mCPSEIT RS wdlty — ty4 2. (3.8)

In addition we have

E[S7(t) — 5™ (s))? 2(E[BY (t) — B (s)]* + CTE[X " (t) — X" (5)]%)
K|t —s)? + |t — s|*#
(K620=H) L 1))t — s2H

C (0, H)|t — s)?H. (3.9)

VAN VAN VAN VAN

Therefore it suffices now to choose

- Cn 20
%<(%mm) M Om

) 1 Cn 9 72(1—H) )
m
C, C(5m,H)< mCT o5, K

and to consider

and the theorem is proved. ([l

3.3. Joint continuity and Holder regularity

Let T' > 0 and H([0,7]) be the family of interval I C [0,7] of length at
most 0 (the constant appearing in Lemma 3.2). In this paragraph we will
apply some results of Berman on LND process to prove the joint continuity
of local times of the Sub-fBm. The main result is the following.

Theorem 3.4. Assume 0 < H < 1. Then the Sub-fBm SH has, almost
surely, a jointly continuous local time {L(t,z),t € [0,T),x € R}. It satis-
fies for any compact U C R
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ON THE LOCAL TIME OF SUB-FRACTIONAL BROWNIAN MOTION

(i)
L(t+h,z) — L(t, z)
su
et R

where A < 1 — H and |h| < n, n being a small random variable
almost surely positive and finite,

< 400 a.s., (3.10)

(ii) for any I € H([0,T]),

L(I,ZU) B L(I’y)
Sup |:E — |Oz
zyeUay )

< 400 a.s., (3.11)

1-H
where o < 1 A S

The proof of Theorem 3.4 relies on the following upper bounds for the
moments of the local times.

Lemma 3.5. Assume 0 < H < 1 and let § be the constant appearing in

Lemma 3.2. For any even integer m > 2 there exists a positive and finite

constant Cy, such that, for any t € [0,+oo[, any h € (0,9), any x,y € R
and any £ < 1A %

hm(l—H)
T1+m(1—H))’
E[L(t + h,y) — L(t,y) — L(t + h, ) + L(t, 2)]™ < Cp|y — x|™
pm(1—H(1+€))

X .

F(1+m(l—H(1+Y¢)))

Proof. We will proof only (3.13), the proof of (3.12) is similar. It follows

from (25.7) in Geman and Horowitz [13](see also Boufoussi et al. [9]) that
for any z,y € R,t,t + h € [0, +oo[ and for every even integer m > 2,

E[L(t + h,z) — L(t,2)]™ < C, (3.12)

(3.13)

E[L(t + h,y) — L(t,y) — L(t + h,x) + L(t, z)|™
= (21 7m/ / efiyuj . ef'i:tuj

@ e Jo 1T ]
xE (612?_1%'5;‘;) H du; H ds;.

=1 j=1
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I. MENDY
Using the elementary inequality |1 — | < 217¢|6|¢ for all 0 < £ < 1 and
any 6 € R, we obtain

E(L(t + h,y) — L{t,y) — L(t + b, ) + L(t, )] < (26m) " Tmlly — 2|
/ TT lusl€Elexp (0> up I [T dus [ dtys (3.14)
=1 j=1 j=1 j=1

where in order to apply the LND property of S¥, we replaced the integra-
tion over the domain [t, ¢+ h] by over the subset t < t; < -+ < t,,, < t+h.
We deal now with the inner multiple integral over the u’s. Change the
variable of integration by mean of the transformation

X /
1<ty <--<tm<t+h

uj:vj—vj+1,j:1,2,...,m—1;um:1}m.

Then the linear combination in the exponent in (3.14) is transformed
according to

m m
§ H E H H
ujStj = /Uj(Stj - Stj—1)7
7=1 7j=1

where tg = 0. Since S¥ is a Gaussian process, the characteristic function
in (3.14) has the form

exp (—;Var [i v (S — Sfjll)] ) . (3.15)
j=1

Since |z — y|¢ < |z|S + |y|¢ for all 0 < & < 1, it follows that

m m—1
IT1ult =TI lvj = viealfloml
j=1 i=1
m—1
< T (vsl + lojaa [ vml®. (3.16)
j=1

Moreover, the last product is at most equal to a finite sum of 2! terms
of the form J[7*, |zj|%61, where €; = 0,1 or 2 and Yot ej =m.

2
Let us write for simply UJZ =E (S’ff — Stlj_ 1) . Combining the result of
Proposition 2.1, (3.15) and (3.16), we get that the integral in (3.14) is
dominated by the sum over all possible of (e1,...,&y) € {0,1,2}™ of the
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ON THE LOCAL TIME OF SUB-FRACTIONAL BROWNIAN MOTION

following

m C m m
1685 _zm 252 dt -dv:
v exp vio Vg,
/t<t1<...<tm<t+h/mj1—[1| i 2 ]221 o jl—[l Y

where C), is the constant given in Proposition 2.1. The change of variable
xj = v;o; converts the last integral to

m

o Aty dt,

/t<t1<---<tm<t+h i

Consequently

E[L(t + h,y) — L(t,y) — L(t + h,x) + L(t,z)|™

o At dty,. (3.17)

< Cod (m.©)ly =™ | :

<t <<tm<t+h ;4

According to Lemma 3.2, for h sufficient small, namely 0 < h < inf(4, 1),
we have

2
E (S = S{1)" > Clti — ;[ for all ti,t; € [t,t + 1], (3.18)

It follows that the integral on the right hand side of (3.17) is bounded, up
to a constant, by

m
/ [Tt —tj—0)HHDary - dtyy,. (3.19)
t<ty <<t <t+h ;5
Since, (t; —tj—1) <1, for all j € {2,...,m}, we have
(t; —tj—1) D < (4 — ;1) "HOF2) ve, € {0, 1,2},
Since by hypothesis £ < ﬁ —%, the integral in (3.19) is finite. Moreover,
by an elementary calculation( cf. Ehm [12]), for all m > 1,h > 0 and
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I. MENDY

bj <1,
/ (Sj — Sj_l)ibjdsl R K e
t<s1<-<sm<t+h j=1
-y = I —mbj) ’
where sy = t. It follows that (3.19) is dominated by
hm(l—H(l—i—E))
T(1+m(l—H1+¢)

where > e; = m. Consequently

Cn

E[L(t+ k,y) — L(t,y) — L(t + k,z) + L(t,z)]™

ly — J,;|m£hm(lfH(1+£))

T(1+m(l—H1+9)
0

<c,

Proof of Theorem 3.4. Since L(0,x) = 0 for all z € R, hence if we replace
t and t + h by 0 and ¢ respectively in 3.13, we obtain

E[L(t,y) — L(t,z)]™ < Cp|y — |™. (3.20

)
The jointly continuity of the local time straightforward from (3.12), (3.13)
and (3.20) and classical parameter Kolmogorov’s theorem (c.f. Berman [5],
Theorem 5.1).

The Hélder condition (i) of Theorem 3.1 follows of (3.13) and one param-
eter Kolmogorov’s theorem (see also the proof Theorem 2 in Pitt [20]).
We turn out to the proof of (i7). According to Theorem 3.1 in Berman
[7], the inequalities (3.12), (3.13) and (3.20) imply that (¢7) holds for any
0<1—H(1+¢,foral0<&<1A %,. Letting & tends to zero, we
obtain the desired result. O

As a classical consequence, we have the following result on the Hausdorff
dimension of the level set. We refer to Adler [1] and Baraka et al.[3] for
definition and results for the fractional Brownian motion.

Proposition 3.6. With probability one, for any interval I C [0,T], we
have

dim{t € I/SF =2} =1—H, (3.21)
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ON THE LOCAL TIME OF SUB-FRACTIONAL BROWNIAN MOTION

for all x such that L(t,z) > 0.

Proof. According to (3.9) and Kolmogorov’s theorem, the Sub-fBm is -
Holder for every 8 < H. Moreover, the Sub-fBm has a jointly continuous
local time, then Theorem 8.7.3 in Adler [1] completes the proof of the
upper bound, i.e dim{t € I/SH =z} <1— H, a.s. Now by (i) of Theorem
3.4, the jointly continuous local time of the Sub-fBm satisfies an uniform
Holder of any order smaller than of 1 — H. Then the Theorem 8.7.4 of
Adler [1] implies that dim{t € I/SH = x} > 1— H, a.s. for all z such that
L(t,x) > 0. This completes the proof. [l

4. Chung’s law for the Sub-fBm and pointwise Holder expo-
nent of local time

The main result of this section is that the Sub-fBm satisfies the same form
of Chung’s law of iterated logarithm (LIL) as the fBm. For an excellent
summary on LIL, we refer to the survey paper of Li and Shao [18].

Theorem 4.1. Assume 0 < H < 1. Then the following Chung’s law of
iterated logarithm hold for the sub-fBm:

o ST (t) — 8™ (s)|
liminf sup
00 selttrs) (0/1og |log(d)[)H

=C(H),a.s. (4.1)

where C'(H) is the constant appearing in the Chung’s law of fBm.
Proof. Conserving the same notations as above, we can write
SH(t) = 8M(s) = B (1) = B (s) + C1 (X (1) = X"(s))

According to Monrad and Rootzen [19], the fBm B¥ satisfies (4.1). Then
(4.1) will be proved if we show that

. (X7 (t) — X(s)]
lim sup T
0=0 et t+4] (6/log [log(0)])

According to (3.3) there exists a positive constant K such that

=0,a.s. (4.2)

sup E[XT(t) — X (s5)]? < K62 (4.3)
SE[t,t+4]
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I. MENDY

Hence, according to Theorem 2.1 in Adler [2, page 43|, and a symmetry
argument, we obtain

]P( sup | X (t) — XH(s)| > u)

SE[t,t+46]

< 2]P’< sup (XH(t) — XH(s)) > u)

SE[t,t+4]

u — su H — HS 2
o (g pse[tm][gi (- x"6))") w

For the sake of simplicity, let A = supycp ;14 (XH(t) — XH(s)). By (4.4),
we obtain

+oo
E(A) < / IP( sup | XH (1) = XH(s)| > :c) dz
SE[t,t+4]
+o0o _
< 4/ exp( Ii(A)] >daf
AVEKS [t 2

- \/§ V2E(A) e 2 dy
T VK

< 4v K.

It follows that
1 1
(u— IE(A)) > 5 — (IE(A))2 > §u2 — 16 Kmd.

Consequently, (4.4) becomes
u?
Pl sup |XH@t)—XH(s)|>u|<Cexp|——=]. 4.5
(Sew]r (1)~ X" (s)] ) ol (4.5)

Since H < 1, there exists 0 < £ < 1 — H. Consider 8, = n'/CE+H-1)) and
u, = 0HFE. Therefore, according to (4.5), we have

iP( sup |XH(t)—XH(s)\Zun> SCiexp (__;1(”) < 0.

SE[t,t+0n] n=1

It follows from the Borel-Cantelli lemma that there exists ng = n(w)
such that for all n > no, Supsep iys,) | XH(t) — XH(s)] < 67+ almost
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ON THE LOCAL TIME OF SUB-FRACTIONAL BROWNIAN MOTION

surely. Furthermore, for §,+1 < 9 < 6, we have almost surely

sup [XF(t)— XF(s)] < sup  [XF(t) = XF(s)

s€[t,t49] s€[t,t46n]
< 571;1—&-5
6y \HTE
< gl (n>
B 5n+1
< 206H%¢ s,
H+¢
here = — 1 T8
where —H 5
Hence,
: | XA (1) — XH(s)| 01 H
lim sup < 2% 1im 6* (log | log (6 =0 a.s.
P (57 Tog [og@) )7 = 2 a0 los [ le(d)])

Consequently (4.2) is proved. This completes the proof of the Theorem.
[l

Remark 4.2. The main interest of the previous proof is that it can be used
to generalized many other LIL known for the fBm to the Sub-fBm. For
example, we have the LIL given in Li and Shao [18, equation (7.5)], for
the fBm to the Sub-fBm as follows

H(y\ _ oH
limsup sup [57(@) = 5 (S)l =C(H), as.
§—0  set,t+8] T (log | log(d)])2

2
where C(H) = \/ HT(2H) sin(rH) -

The Chung laws are known to be linked to the optimality of the moduli
of continuity of local times of stochastic processes. More precisely:

Lemma 4.3. The following lower bounds for the moduli of continuity of
local times holds
L(t+6,x) — L(t,x)

< li .S. 4.
20 = RSP SR S e Tog (o 1)) 0 (4.6)
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Proof. Combining (4.1) and the following elementary computation

5 = /L([t,t+5],x)da:
R
< supL([t,t+],z) sup |ST(s)— SH(s)]

z€R s,s' €[t t+4]
< 2supL(ltt+0),2) sup |ST()— S (s)
z€R SE[t,t+6]
we obtain the lemma. O
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