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Huygens’ principle and a Paley–Wiener type
theorem on Damek–Ricci spaces

Francesca Astengo
Bianca Di Blasio

Abstract

We prove that Huygens’ principle and the principle of equipartition of energy
hold for the modified wave equation on odd dimensional Damek–Ricci spaces. We
also prove a Paley–Wiener type theorem for the inverse of the Helgason Fourier
transform on Damek–Ricci spaces.

1. Introduction

On a Riemannian manifold X, consider the Cauchy problem for the mod-
ified wave equation

(
L+ c

)
u = utt

u(·, 0) = f

ut(·, 0) = g

f, g ∈ C∞c (X), (1.1)

where L is the Laplace–Beltrami operator on X and c is a suitable con-
stant. Huygens’ principle is said to hold for (1.1) if the support of the
solution (x, t) 7−→ u(x, t) is contained in the set

{(x, t) ∈ X × (0,+∞) : t−R < d(x, x0) < t+R}
whenever f and g are supported in the geodesic ball of radius R cen-
tered in x0. Hadamard [15] raised the question of finding all Riemann-
ian manifolds X for which the Cauchy problem (1.1) satisfies Huygens’
principle. He proved that the fact that the dimension of X is odd is a
necessary condition. In this paper we give a simple proof of the converse
for Damek–Ricci spaces and we show the exponential and strict version
of the principle of equipartition of energy. We also generalize to the class

Keywords: Wave equation, Damek–Ricci space.
Math. classification: 43A80, 22E25 .
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of Damek–Ricci spaces a Paley–Wiener type theorem for the inverse Hel-
gason Fourier transform proved by N. Andersen [1] for noncompact sym-
metric spaces.

We recall that Damek–Ricci spaces form a large class of harmonic Rie-
mannian manifolds which includes all real rank one symmetric spaces of
the noncompact type; except from these, Damek–Ricci spaces are nonsym-
metric harmonic manifolds [13]. Although radial analysis is essentially the
same for symmetric and nonsymmetric Damek–Ricci spaces (see [2] and
the references therein), the study of nonradial analysis is often much more
complicated in the nonsymmetric case. This is due to the lack of a group
acting transitively by isometries on geodesic spheres [11].

T. Branson, G. Ólafsson, and H. Schlichtkrull [9] studied Huygens’ prin-
ciple and principle of equipartition of energy for the modified wave equa-
tion on noncompact symmetric spaces. We follow their approach applying
the following result proved in [5, 4] (see Theorem 2.2 below): the Helga-
son Fourier transform of a smooth function with compact support on a
Damek–Ricci space S is an entire function of exponential type. Until now
the converse of this statement for nonsymmetric Damek–Ricci spaces is an
open problem (see [16] for the proof of the Paley–Wiener theorem in the
symmetric case and [3, 20] for partial results in the nonsymmetric case).
We recall that the Helgason Fourier transform Ff of an integrable func-
tion f on a Damek–Ricci space S is a scalar function defined on R× ∂S,
where ∂S is the boundary of S. The Helgason Fourier transform reduces
to the spherical transform for radial functions. In this paper we character-
ize the space of square integrable functions on S whose Helgason Fourier
transform has bounded support in the real variable.

We also would like to mention that Huygens’ principle for the radial
part of the Laplace–Beltrami operator on Damek–Ricci spaces has been
studied by J. El Kamel and C. Yacoub [14] and by Branson, Ólafsson and
A. Pasquale [8] in the general context of Jacobi operators. Moreover, the
case of the Dunkl-Cherednik Laplacian has been studied by F. Ayadi [6]
and S. Ben Saïd [7].

In [18] M. Noguchi describes the solution of the modified wave equation
on Damek–Ricci spaces in terms of means over geodesic spheres and the
heat kernel. As an application, he shows that Huygens’ principle holds
on odd dimensional Damek–Ricci spaces. However, this approach requires
the use of lengthy computations.
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The paper is organized as follows. In Section 2 we introduce the basic
notions on Damek–Ricci spaces and recall the most relevant facts about
the Helgason Fourier transform. In Section 3 and 4 we deal respectively
with Huygens’ principle and the principle of equipartition of energy. In
the last section we prove our Paley–Wiener type theorem for the inverse
Fourier transform.

Acknowledgement. This work was partially supported by Progetto Co-
finanziato M.I.U.R. “Analisi armonica".

2. Notation and preliminaries

Let n be a two-step real nilpotent Lie algebra, with an inner product 〈·, ·〉.
Write n as an orthogonal sum n = v ⊕ z, where z is the centre of n. For
each Z in z, define the map JZ : v −→ v by the formula

〈JZX,Y 〉 = 〈[X,Y ], Z〉 ∀X,Y ∈ v.

Following Kaplan [17], we say that the Lie algebra n is of Heisenberg type,
or H–type for short, if

J2
Z = −|Z|2Iv ∀Z ∈ z, (2.1)

where Iv is the identity on v. A connected and simply connected Lie group
N whose Lie algebra is an H–type algebra is said to be a Heisenberg type
group, or H–type for short. The Iwasawa N -groups associated to all real
rank one simple groups are H–type. Note that from property (2.1), it
follows that z = [v, v], and moreover the dimension of v is even, 2m say.
We denote by Q the number m+k, where k is the dimension of the centre z.
Since N is a nilpotent Lie group, the exponential mapping is surjective.
We denote by (X,Z), with X in v and Z in z, the element exp(X +Z) of
the group N . By the Baker–Campbell–Hausdorff formula the group law
in N is given by

(X,Z) (X ′, Z ′) =
(
X +X ′ , Z + Z ′ + 1

2 [X,X ′]
)

for every X,X ′ in v and Z,Z ′ in z.
The Iwasawa N -groups are characterized, among all H–type groups, by

an algebraic condition, called the J2-condition [10].
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Let n be an H–type algebra, and a be a one-dimensional real Lie algebra
with an inner product, spanned by the unit vector H. We extend the Lie
bracket to n⊕ a by linearity and the requirement that

[H,X] = 1
2X ∀X ∈ v

[H,Z] = Z ∀Z ∈ z

We extend the inner products on n and a to an inner product on n⊕ a by
requiring that n and a be orthogonal. Note that n is an ideal in n⊕ a.

Let S denote the connected, simply connected Lie group with Lie alge-
bra n⊕a. The subgroups exp(a) and exp(n) are closed, connected and sim-
ply connected, and will be denoted by A ' R+ and N respectively. Then
S may and will be identified with the semidirect product S = NA of N
and A. As customary, we write (X,Z, a) for the element na = exp(X+Z) a
of S. The product law in S is given by

(X,Z, a) (X ′, Z ′, a′) = n(an′a−1) aa′

=
(
X + a

1
2X ′ , Z + Z ′ + 1

2a
1
2 [X,X ′], aa′

)
for every na = (X,Z, a) and n′a′ = (X ′, Z ′, a′) in S.

We equip S with the left-invariant Riemannian metric which coincides
with the inner product on n ⊕ a defined above when n ⊕ a is viewed as
the tangent space to S at the identity o. The boundary ∂S of S, i.e., the
set of endpoints of all geodesics, may be identified with (the one-point
compactification of) N , see [4].

The geodesic distance of the point x = (X,Z, a) from the identity o =
(0, 0, 1) of S is (see [13])

d(x, o) = log 1 + r(x)
1− r(x)

, (2.2)

where 0 ≤ r(x) < 1 and r(X,Z, a)2 = 1− 4a
[(

1 + a+ |X|2
4

)2
+ |Z|2

]−1
.

A function f on S is said to be radial if, for all x in S, f(x) depends
only on the geodesic distance d(x, o) from the identity o. We recall that a
spherical function on S is a radial eigenfunction of the Laplace–Beltrami
operator L normalized to take value 1 at the identity o. For λ in C we
denote by Φλ the spherical function such that LΦλ = −

(
λ2 + Q2

4

)
Φλ.

The expression of Poisson kernel P (see [12]) is given by the formula
P(na, n′) = Pa(n−1n′), ∀na ∈ S, n′ ∈ N,
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where, for any a > 0, Pa is the function on N defined by the rule

Pa(n) = Pa(X,Z) = aQ
((
a+ |X|2

4

)2
+ |Z|2

)−Q
∀n = (X,Z) ∈ N.

We define the normalized Poisson kernel via the formula

Q(x, n) = P(x, n)
P(o, n)

∀x ∈ S ∀n ∈ N,

and we use the notation
Qλ = Q1/2−iλ/Q λ ∈ C.

Denote by L the Laplace–Beltrami operator on S. One can verify that

LQλ(x, ·) = −
(
λ2 + Q2

4

)
Qλ(x, ·) ∀λ ∈ C ∀x ∈ S. (2.3)

We shall use the following relation, proved in [5], between Qλ and the
spherical function Φλ

Φλ(y−1x) =
∫
N
Qλ(x, n)Q−λ(y, n)P1(n) dn ∀x, y ∈ S, ∀λ ∈ C.

(2.4)
We define the Fourier transform of a Schwartz function f on S by the

rule
Ff(λ, n) =

∫
S
f(x)Qλ(x, n) dx ∀λ ∈ C, ∀n ∈ N.

By (2.4) and by Φλ = Φ−λ one derives the following parity condition∫
N
Qλ(x, n)Ff(−λ, n)P1(n) dn =

∫
N
Q−λ(x, n)Ff(λ, n)P1(n) dn,

(2.5)
for every x in S and λ in C. Let c(λ) be the analogous of Harish-Chandra’s
function, i.e., the meromorphic function given by

c(λ) =
2Q−2iλ Γ(2iλ) Γ

(
2m+k+1

2

)
Γ
(
Q
2 + iλ

)
Γ
(
m+1

2 + iλ
)

The inversion and the Plancherel formulas for the Fourier transform are
(see [5]):

f(x) = 1
2

∫
R

∫
N
Ff(λ, n)Q−λ(x, n) dν(λ, n)∫

S
|f(x)|2 dx = 1

2

∫
R

∫
N
|Ff(λ, n)|2 dν(λ, n),

(2.6)
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where the Plancherel measure dν on R×N is given by

dν(λ, n) = 1
2π
P1(n) |c(λ)|−2dndλ.

We recall the easy part of the Paley–Wiener Theorem for Damek–Ricci
spaces proved in [5, 3]. Denote by BR = {x ∈ S : d(x, o) ≤ R} the closed
geodesic ball of radius R.

Definition 2.1. We say that a function ψ : C×N → C satisfying the par-
ity condition (2.5) is an entire function of exponential type corresponding
to R if for every nonnegative integer j there exists a positive constant Cj
such that

|ψ(λ, n)| ≤ Cj (1 + |λ|)−j eR |Im(λ)| ∀λ ∈ C, n ∈ N.

Theorem 2.2. [5] Let f be a C∞ function on S supported in BR. Then
Ff is an entire function of exponential type corresponding to R.

3. Huygens’ principle

By left-invariance, we can reduce the study of Huygens’ principle for (1.1)
to the case where x0 = o. Let u be the solution of the Cauchy problem for
the modified wave equation:

(
L+ Q2

4
)
u = utt

u(·, 0) = f

ut(·, 0) = g

t > 0, (3.1)

where the initial data f and g are in C∞c (S). By the principle of finite
propagation speed [19] the function u(·, t) is compactly supported for each
fixed t; moreover the support of the solution (x, t) 7−→ u(x, t) is contained
in the set

{(x, t) ∈ S × (0,+∞) : d(x, o) < t+R} ,
whenever f and g are supported in the geodesic ball BR. Thus in order
to show that Huygens’ principle holds for the Cauchy problem (3.1) we
need to prove that u(x, t) vanishes for d(x, o) > t − R whenever f and g
are supported in the geodesic ball BR.

Theorem 3.1. Let u be the solution of the Cauchy problem (3.1). If the
initial data f and g are supported in the closed geodesic ball BR, then for
all x in S and t > 0,
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i) if dimS is odd

|u(x, t)| ≤ C Φ0(x) e−α(t−d(x,o)−R) ∀α > 0;

ii) if dimS is even

|u(x, t)| ≤ C Φ0(x)
(
Q
2 − α

)−1
e−α(t−d(x,o)−R) ∀α ∈

(
0, Q2
)
.

Proof. Let u be the solution of the Cauchy problem (3.1). Since u(·, t) is
compactly supported, by (2.3) the Cauchy problem (3.1) is equivalent to
the following


Futt((λ, n); t) = −λ2u((λ, n); t)
Fu((λ, n); 0) = Ff(λ, n)
Fut((λ, n); 0) = Fg(λ, n)

∀(λ, n) ∈ R×N, ∀t > 0, (3.2)

where we use the notation Fu((λ, n); t) = F(u(·, t))(λ, n). Then

Fu((λ, n); t) = Ff(λ, n) cosλt+ Fg(λ, n) sinλt
λ

.

Applying the inversion formula we obtain

u(x, t) = 1
4π

∫
R

[
F (λ, x) cosλt+G(λ, x)sinλt

λ

]
dλ, (3.3)

where for λ in C and x in S

F (λ, x) = |c(λ)|−2
∫
N
Ff(λ, n)Q−λ(x, n)P1(n)dn = F (−λ, x)

and

G(λ, x) = |c(λ)|−2
∫
N
Fg(λ, n)Q−λ(x, n)P1(n)dn = G(−λ, x).

The function λ 7−→ |c(λ)|−2 has a zero of the second order in λ = 0,
moreover it is a polynomial when k is even (i.e., dimS = 2m + k + 1 is
odd) and it is meromorphic with simple poles in λ ∈ ±i

(
Q
2 + N

)
when k

is odd. Therefore for every x in S the even function

λ 7−→ F (λ, x) cosλt+G(λ, x)sinλt
λ
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is entire when dimS is odd and is holomorphic in
{
λ ∈ C : |Im(λ)| < Q2

}
when dimS is even. This allows us to shift the integration from R to R+iα
in (3.3) with α > 0 if dimS is odd and 0 < α < Q/2 if dimS is even:

u(x, t) = 1
4π

∫
R

(
F (λ, x) + G(λ, x)

iλ

)
eiλtdλ

= 1
4π
e−αt
∫

R

(
F (λ+ iα, x) + G(λ+ iα, x)

iλ− α

)
eiλtdλ

for all x in S and t > 0.
By Theorem 2.2 and by formula (2.4), for every nonnegative integer

j there exists a positive constant Cj such that, whenever the function
|c(λ)|−2 is well defined,∣∣F (λ, x)

∣∣ ≤ Cj |c(λ)|−2(1 + |λ|)−jeR |Im(λ)|
∫
N
QiIm(λ)(x, n)P1(n) dn

= Cj |c(λ)|−2(1 + |λ|)−jeR |Im(λ)|ΦiIm(λ)(x).
for any x in S. The same inequality holds for the function G.

Notice that when dimS is even

|c(λ)|−2 ≤ C
(
Q
2 − |Im(λ)|

)−1
|λ|2(1 + |λ|)2m+k−2 |Im(λ)| < Q/2

while when dimS is odd
|c(λ)|−2 ≤ C |λ|2 (1 + |λ|)2m+k−2 ∀λ ∈ C.

Therefore there exists a positive constant C, independent of α, such that
if dimS is even∣∣∣∣F (λ+ iα, x) + G(λ+ iα, x)

iλ− α

∣∣∣∣ ≤ C eαR Φiα(x)
(Q/2− α) (1 + λ2)

∀α ∈ (0, Q/2)

and if dimS is odd∣∣∣∣F (λ+ iα, x) + G(λ+ iα, x)
iλ− α

∣∣∣∣ ≤ C eαR Φiα(x)
(1 + λ2)

∀α > 0,

for every λ in R.
We claim that∣∣Φλ(x)

∣∣ ≤ e|Im(λ)|d(x,o) Φ0(x) ∀λ ∈ C, ∀x ∈ S .
From this the thesis follows easily, so we now prove the claim. It was noted
in [4] that

Q(x, n) ≤ eQd(x,o) ∀x ∈ S, n ∈ N,
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from which we obtain that, when Im(λ) > 0,

|Qλ(x, n)| ≤ Q0(x, n) eIm(λ) d(x,o) ∀x ∈ S, n ∈ N. (3.4)
Since Qλ(·, n) is an eigenfunction of the Laplace–Beltrami operator (see
formula (2.3)) and Q(o, n) = 1 for every n in N , we conclude that Φλ =
RQλ(·, n) for every n in N and λ in C, where R is the “averaging projec-
tor" over the geodesic spheres introduced in [13]. The claim now follows
from (3.4) and the parity relation Φλ = Φ−λ. �

Since 0 ≤ Φ0(x) ≤ 1 for every x in S, Theorem 3.1 implies that
if dimS is odd

|u(x, t)| ≤ C e−α(t−d(x,o)−R) ∀α > 0

if dimS is even

|u(x, t)| ≤ C
(
Q
2 − α

)−1
e−α(t−d(x,o)−R) ∀α ∈

(
0, Q2
)
.

Corollary 3.2. Let dimS be odd and let u be the solution of the Cauchy
problem (3.1). If the initial data f and g are supported in the closed geo-
desic ball BR, then

|u(x, t)| = 0 if d(x, o) > t−R.
Proof. We let α tend to infinity in |u(x, t)| ≤ C Φ0(x) eα(t−d(x,o)−R). �

As already remarked, if the initial data f and g are supported in the
closed geodesic ball BR, the support of the solution (x, t) 7−→ u(x, t) is
contained in the set {(x, t) ∈ S × (0,+∞) : d(x, o) < t+R}. So Corol-
lary 3.2 shows that Huygens’ principle holds for the Cauchy problem (3.1)
on odd dimensional Damek–Ricci spaces.

4. Equipartition of energy

In this section we show that the difference between the kinetic K[u] and
the potential energy P[u] of the solution u of the Cauchy problem (3.1)
decays exponentially when the time grows. The kinetic and the potential
energies are defined as follows

K[u](t) = 1
2

∫
S
|ut(x, t)|2 dx

P[u](t) = −1
2

∫
S

[(
L+ Q2

4

)
u
]

(x, t) u(x, t) dx.
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By formula (3.3) and by Parseval’s formula we obtain

K[u](t) = 1
4

∫
R×N
|−λFf(λ, n) sinλt+ Fg(λ, n) cosλt|2 dν(λ, n)

P[u](t) = 1
4

∫
R×N
|λFf(λ, n) cosλt+ Fg(λ, n) sinλt|2 dν(λ, n).

(4.1)

Observe that the total energy K[u](t) + P[u](t) is independent of the
time t, is non negative and vanishes if and only if u vanishes identically.

Theorem 4.1. Let u be the solution of the Cauchy problem (3.1). If the
initial data f and g are supported in the closed geodesic ball BR, then

i) if dimS is odd

|K[u](t)−P[u](t)| ≤ C e−2α(t−R) ∀t > 0 ∀α > 0;

ii) if dimS is even

|K[u](t)−P[u](t)| ≤ C
(
Q
2 − α

)−1
e−2α(t−R) ∀t > 0 ∀α ∈

(
0, Q2
)
.

Proof. By (4.1) an easy computation gives

|K[u](t)−P[u](t)| =
∫

R
(Θ(λ) + iλΨ(λ)) ei2λtdλ ∀t > 0,

where

Θ(λ) = 1
8π
|c(λ)|−2

∫
N

(
−|λFf(λ, n)|2 + |Fg(λ, n)|2

)
P1(n)dn

Ψ(λ) = 1
8π
|c(λ)|−2

∫
N

Re
(
Ff(λ, n)Fg(λ, n)

)
P1(n)dn.

The thesis follows using the same arguments as in Theorem 3.1. �

Corollary 4.2. Let dimS be odd and let u be the solution of the Cauchy
problem (3.1). If the initial data f and g are supported in the closed geo-
desic ball BR, then

|K[u](t)−P[u](t)| = 0 ∀t > R.
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5. Paley–Wiener type Theorem

In [5] with R. Camporesi we proved that the Fourier transform F extends
to an isometry from L2(S) onto the space L2(R+ ×N, dν), therefore the
inverse Fourier transform F−1 is well defined from L2(R+ ×N, dν) onto
L2(S). In this section we determine the image under F−1 of the space of
functions in L2(R+ ×N, dν) with bounded support in the real variable.

We define the support, supp g, of a ν–measurable function g on R+×N
to be the smallest closed set in R+ × N , outside which the function g
vanishes almost everywhere and we write

Rg = sup
(λ,n)∈supp g

|λ|.

Note that we may have Rg = +∞.

Lemma 5.1. Let g be a function on R+×N such that (λ, n) 7−→ λj g(λ, n)
belongs to L2(R+ ×N, dν), for every nonnegative integer j. Then

Rg = lim
j→+∞

{∫ +∞

0

∫
N
λ2j |g(λ, n)|2 dν(λ, n)

}1/2j
.

Proof. First suppose that Rg is finite and let 0 < ε < Rg. Then

lim inf
j→+∞

{∫ +∞

0

∫
N
λ2j |g(λ, n)|2 dν(λ, n)

}1/2j

≥ lim inf
j→+∞

{∫ Rg
Rg−ε

∫
N
λ2j |g(λ, n)|2 dν(λ, n)

}1/2j

≥ Rg − ε.

Moreover

lim sup
j→+∞

{∫ +∞

0

∫
N
λ2j |g(λ, n)|2 dν(λ, n)

}1/2j
≤ Rg lim sup

j→+∞
‖g‖1/jL2(R+×N,dν)

= Rg.

Thus the thesis follows in the case where Rg is finite.
Suppose now that Rg = +∞. Then for every M > 0 we have∫ ∞

M

∫
N
λ2j |g(λ, n)|2 dν(λ, n) > 0
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and

lim inf
j→+∞

{∫ +∞

0

∫
N
λ2j |g(λ, n)|2 dν(λ, n)

}1/2j

≥ lim inf
j→+∞

{∫ ∞
M

∫
N
λ2j |g(λ, n)|2 dν(λ, n)

}1/2j

≥M.

The thesis follows in the case where Rg = +∞. �

Definition 5.2. Let R be a positive real number. We say that a C∞

function f on S is in the space PW 2
R(S) if the following two conditions

are satisfied

(1) Ljf belongs to L2(S) for every nonnegative integer j;

(2) lim
j→+∞

∥∥∥∥(L+ Q2

4

)j
f

∥∥∥∥1/2j
2

= R.

Definition 5.3. Let R be a positive real number. We say that a function
g in L2(R+ ×N, dν) belongs to L2

R(R+ ×N, dν) if Rg = R.

Theorem 5.4. Let R be a positive real number. The inverse Fourier trans-
form F−1 is a bĳection of L2

R(R+ ×N, dν) onto PW 2
R(S).

Proof. Let g be in L2
R(R+ × N, dν). Then f = F−1g is smooth by the

Lebesgue dominated convergence theorem. In order to prove that f be-
longs to PW 2

R(S) we need to verify that the two conditions in Definition 5.2
are satisfied.

By the inversion formula (2.6) and by (2.3)

Ljf(x) = (−1)j
∫ +∞

0

∫
N

(
λ2 + Q2

4

)j
g(λ, n)Q−λ(x, n) dν(λ, n).

Since (λ, n) 7−→
(
λ2 + Q2

4

)j
g(λ, n) is in L2

R(R+ × N, dν), the function
Ljf belongs to L2(S) for every non negative integer j. Moreover by the
Plancherel Theorem and by Lemma 5.1 we have

lim
j→+∞

∥∥∥(L+ Q2

4
)j
f
∥∥∥1/2j

2
= lim
j→+∞

{∫ +∞

0

∫
N
|(−λ2)jg(λ, n)|2 dν(λ, n)

}1/4j

= R.

This shows that f belongs to PW 2
R(S).
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Huygens’ principle

Viceversa, let f be in PW 2
R(S) and g = Ff . From the Plancherel The-

orem it follows that the function (λ, n) ∈ R+ × N 7−→ λ2j g(λ, n) is
in L2(R+ × N, dν) for every nonnegative integer j, so that Rg = R by
Lemma 5.1. This shows that g belongs to L2

R(R+ ×N, dν). �
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