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From left modules to algebras over an operad:
application to combinatorial Hopf algebras

Muriel Livernet

Abstract

The purpose of this paper is two fold: we study the behaviour of the forgetful
functor from S-modules to graded vector spaces in the context of algebras over an
operad and derive the construction of combinatorial Hopf algebras. As a byproduct
we obtain freeness and cofreeness results for those Hopf algebras.

Let O denote the forgetful functor from S-modules to graded vector spaces. Left
modules over an operad P are treated as P-algebras in the category of S-modules.
We generalize the results obtained by Patras and Reutenauer in the associative
case to any operad P: the functor O sends P-algebras to P-algebras. If P is a Hopf
operad the functor O sends Hopf P-algebras to Hopf P-algebras. If the operad P
is regular one gets two different structures of Hopf P-algebras in the category of
graded vector spaces. We develop the notion of unital infinitesimal P-bialgebras
and prove freeness and cofreeness results for Hopf algebras built from Hopf operads.
Finally, we prove that many combinatorial Hopf algebras arise from our theory, as
it is the case for various Hopf algebras defined on the faces of the permutohedra
and associahedra.

Résumé

Nous étudions en détail le foncteur oubli de la catégorie des S-modules dans
la catégorie des espaces vectoriels gradués. Cela nous permet de généraliser les
résultats de Patras et Reutenauer obtenus dans le cadre associatif à toute opérade
P : les P-algèbres dans la catégorie des S-modules deviennent des P-algèbres dans
la catégorie des espaces vectoriels gradués. Il en est de même pour les P-algèbres
de Hopf lorsque l’opérade P est une opérade de Hopf. De plus, si l’opérade est
régulière, alors on obtient deux structures de P-algèbres (de Hopf) dans la ca-
tégorie des espaces vectoriels gradués. Comme application, nous montrons qu’un
certain nombre d’opérades de Hopf donne lieu à des algèbres de Hopf combina-
toires connues. Le fait que ces algèbres de Hopf soient libres ou colibres est une
conséquence directe de la théorie des opérades.

Keywords: S-module, operad, twisted bialgebra, free associative algebra, combinatorial
Hopf algebra.
Math. classification: 18D50, 16W30, 16A06.
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Introduction

An S-module, also named symmetric sequence, is a graded vector space
(Vn)n≥0 together with a right action of the symmetric group Sn on Vn
for each n. The present paper is concerned with the study, in an operadic
point of view, of the forgetful functor O from S-modules to graded vector
spaces and its applications.

The category S-mod of S-modules is a tensor category. Motivated by
the study of homotopy invariants, Barratt introduced the notion of twisted
Lie algebras in [3], which are Lie algebras in the category of S-modules or –
in the operad context – left modules over the operad Lie. More precisely,
a twisted Lie algebra is an S-module (Ln)n≥0 together with a bilinear
operation [, ] satisfying, for any a ∈ Lp, b ∈ Lq and c ∈ Lr the relations

[b, a] · ζp,q = −[a, b],
[a, [b, c]] + [c, [a, b]] · ζp+q,r + [b, [c, a]] · ζp,q+r = 0,

where ζp,q is the permutation of Sp+q given by ζp,q(i) = q + i if 1 ≤ i ≤ p
and ζp,q(i) = i − p if p + 1 ≤ i ≤ p + q. For instance the S-module
(Lie(n))n≥0 is a twisted Lie algebra for the bracket induced by the operadic
composition

Lie(2)⊗ Lie(n)⊗ Lie(m)→ Lie(n+m).

There exists also a notion of twisted associative algebras– associative al-
gebras in the tensor category S-mod– and a notion of twisted associa-
tive bialgebras – associative bialgebras in the category S-mod. Stover
proved in [24] that a Cartier-Milnor-Moore theorem relates the categories
of twisted associative bialgebras and twisted Lie algebras. Following an
idea lying in [24], Patras and Reutenauer proved in [21] that two as-
sociative bialgebras arise naturally from a twisted associative bialgebra
(A,m,∆): the symmetrized bialgebra Ā = (A, m̂, ∆̄) and the cosym-
metrized bialgebra Â = (A, m̄, ∆̂). In [22] Patras and Schocker derived
from this construction some known combinatorial Hopf algebras. The first
part of this paper is the generalization of these constructions to any op-
erad P. This generalization is performed in two steps: the first step will
focus on the algebra constructions and the second step on the coalgebra
constructions.

Given an operad P, the following notions are the same
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From left modules to algebras

Twisted P-algebras (see e.g. [12]),

Left modules over P (see e.g. [11]) and

P-algebras in the category of S-modules.

Our first question is the following one: given a P-algebra M in S-mod
can one endow the graded vector space O(M) with a P-algebra structure?
This question comes from the observation that ⊕nP(n) is a P-algebra in
S-mod but is not a priori a P-algebra in the category of graded vector
spaces. To convice the reader, one can look at the Lie case: if P = Lie then
⊕n Lie(n) is a twisted Lie algebra, and the bracket is not anti-symmetric
since the action of the symmetric group is not trivial. Our first theorem
2.3.1 states that if we apply a symmetrization to the twisted P-algebra
structure on M then O(M) is a P-algebra. If P = As we recover the
definition of the symmetrized product m̂ of Patras and Reutenauer. Our
second theorem 2.4.3 states that another product can be defined if the
operad P is regular, that is, P is obtained from a non-symmetric operad
tensored by the regular representation of the symmetric group. Then in
case P = As we recover the product m̄ defined by Patras and Reutenauer.

The second step of the construction involves Hopf operads. We define
the notion of Hopf P-algebras in the category S-mod, so that in case
P = As we recover the notion of twisted associative bialgebras. We develop
the analogues of the constructions of Patras and Reutenauer. In theorem
3.1.3 we prove that a Hopf P-algebra (M,µM ,∆M ) in S-mod gives rise
to a Hopf P-algebra in grVect, denoted M̄ = (O(M), µ̂O(M), ∆̄O(M)),
analogous to the symmetrized bialgebra construction. This is the sym-
metrized Hopf P-algebra associated to M . If P is regular then there is
another Hopf P-algebra structure M̂ = (O(M), µ̄O(M), ∆̂O(M)), analo-
gous to the cosymmetrized bialgebra construction (see theorem 3.2.1):
this is the cosymmetrized Hopf P-algebra associated to M . Thus the the-
ory developed by Patras and Reutenauer is a consequence of the regularity
of the operad As. The example of a Hopf P-algebra in S-mod that we
should have in mind throughout the text is the S-module P itself, if P is
a connected Hopf operad (see section 3.1.4).

The case P regular has another advantage: we define unital infinitesimal
P-bialgebras, which when restricted to P = As, are unital infinitesimal
bialgebras as defined by Loday and Ronco in [16]. The theorem 4.1.2
asserts that (O(M), µ̄O(M), ∆̄O(M)) is a unital infinitesimal P-bialgebra if
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M is a Hopf P-algebra. It is shown in theorem 4.1.3 that the graded vector
space ⊕nP(n)/Sn has also a structure of unital infinitesimal P-bialgebra.
These results combined with the theorem of Loday and Ronco (see 4.2.1)
yield the main theorems of our paper, which have some importance in the
study of combinatorial Hopf algebras. First of all if P = As and (A,m,∆)
is a twisted associative bialgebra, then the algebra (A, m̄, ∆̄) is a unital
infinitesimal bialgebra and consequently is free and cofree (see theorem
4.2.2).

Before going through the applications to combinatorial Hopf algebras,
let us summarize the results in a table.

Operad P S-module M graded vector space O(M) Thm
any P-alg (M,µ) P-alg (O(M), µ̂) 2.3.1
regular P-alg (M,µ) P-alg (O(M), µ̂)

P-alg (O(M), µ̄) 2.4.3

Hopf Hopf P-alg (M,µ,∆) Hopf P-alg (O(M), µ̂, ∆̄) 3.1.3

Hopf regu-
lar

Hopf P-alg (M,µ,∆) Hopf P-alg (O(M), µ̂, ∆̄)

Hopf P-alg (O(M), µ̄, ∆̂) 3.2.1
u.i. P-bialg (O(M), µ̄, ∆̄) 4.1.2

Given a graded vector space H, the question is: how does a Hopf algebra
structure arise on H? In the last section, we illustrate with examples that
many combinatorial Hopf algebras arise from our theory. We distinguish
two cases.

If P is a Hopf multiplicative operad then H = ⊕nP(n) has two struc-
tures of Hopf algebras: the symmetrized Hopf algebra H̄ is cofree and the
cosymmetrized algebra Ĥ is free. For instance, we prove that the Mal-
venuto Reutenauer Hopf algebra arises as the symmetrized Hopf algebra
associated to the operad As and also as the cosymmetrized Hopf algebra
associated to the operad Zin defining Zinbiel algebras. It gives yet an-
other proof for the Hopf algebra of Malvenuto and Reutenauer to be free
and cofree independent from its self-duality. We prove that Hopf algebra
structures on the faces of the permutohedra given e.g. by Chapoton in [5],
Bergeron and Zabrocky in [4] and Patras and Schocker in [22], arise from
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From left modules to algebras

the operad CTD of commutative tridendriform algebras defined by Loday
in [14]. We deduce also some freeness results from our theory.

In the second case, we assume that there exists a Hopf multiplicative
regular operad P such that H = ⊕nP(n)/Sn. Our theory implies that H
is a Hopf P-algebra hence a Hopf algebra and is also a unital infinitesimal
P-bialgebra. We prove that the Hopf algebra of planar trees described by
Chapoton in [5], and the one of planar binary trees described by Loday
and Ronco in [15] arise this way. As a byproduct we obtain freeness results
for these Hopf algebras.

The organization of the present paper is as follows. After some pre-
liminaries in section 1 we define in section 2 the notion of algebras over
an operad P in the category of S-modules and in the category of graded
vector spaces. We explore the structures of P-algebras on the underly-
ing graded vector space of a P-algebra in S-mod. We prove that such a
structure always exists and when the operad is regular one has an addi-
tional structure. We compare this result to the one obtained by Patras
and Reutenauer [21] in the case of twisted associative algebras. In section
3 we study Hopf operads and the consequences on the underlying graded
vector space of a Hopf P-algebra in S-mod. The section 4 is the study
of unital infinitesimal P-bialgebras and states the freeness theorems. We
develop in section 5 the application to combinatorial Hopf algebras by
means of examples.

Throughout the paper, the ground field is denoted by k and all vector
spaces are k-vector spaces.
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1. S-modules and related functors

1.1. The symmetric group

In this section we develop some material on the symmetric group needed
in the paper. The set {1, . . . , n} is written [n]. For any set of integers S,
the set {p+ s, s ∈ S} is denoted p+ S. For sets S ⊂ [n] and T ⊂ [m], the
set S × T is the subset S ∪ (T + n) of [n+m].

Any permutation σ ∈ Sn is written (σ1, . . . , σn) with σi = σ(i). There
is a natural injection

Sn × Sm → Sn+m
(σ, τ) 7→ σ × τ = (σ1, . . . , σn, τ1 + n, . . . , τm + n).

The standardisation of a sequence of distinct integers (a1, . . . , ap) is the
unique permutation σ ∈ Sp following the conditions

σ(i) < σ(j)⇔ ai < aj , ∀i, j.

For instance
st(2, 13, 9, 4) = (1, 4, 3, 2).
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From left modules to algebras

Any subset A = {a1 < . . . < ap} ⊂ [n] induces a map

Sn → Sp
σ 7→ σ|A = st(σ(a1), . . . , σ(ap)).

For instance
(2, 6, 1, 3, 5, 4)|{1,2,4} = st(2, 6, 3) = (1, 3, 2).

If A is the empty set then σ|∅ = 10 ∈ S0.
A (p1, . . . , pr)-shuffle is a permutation of Sp1+...+pr of type

(τ1
1 , . . . , τ

1
p1 , . . . , τ

r
1 , . . . , τ

r
pr)
−1

with τk1 < . . . < τkpk for all 1 ≤ k ≤ r. The set of all (p1, . . . , pr)-shuffles is
denoted by Shp1,...,pr . For simplicity, a (p1, . . . , pr)-shuffle is written as a
r-uple (A1, . . . , Ar) where A1 t . . . t Ar is an ordered partition of the set
[p1 + . . .+ pr]. Some of the Ai’s may be empty.

For instance ({2, 5}, {1, 3, 4}) denotes the (2, 3)-shuffle (3, 1, 4, 5, 2). Re-
call that Shp1,...,pr constitutes a set of right coset representatives for Sp1 ×
. . .× Spr ⊂ Sp1+...+pr , i.e. any σ ∈ Sp1+...+pr has a unique factorization

σ = (σ1 × . . .× σr)α,
where σi ∈ Spi and where α is a (p1, . . . , pr)-shuffle. More precisely, if
r = 2

σ = (σ|σ−1([p]) × σ|σ−1(p+[q]))(σ−1([p]), σ−1(p+ [q])).

1.2. Graded vector spaces and S-modules
1.2.1. Definition

A graded vector space A is a collection {An}n≥0 of k-vector spaces An
indexed by the non-negative integers. One can define also A as A = ⊕nAn.
A map A→ B of graded vector spaces is a collection of linear morphisms
An → Bn. The category of graded vector spaces is denoted grVect.

An S-module M is a graded vector space together with a right Sn-
action Mn ⊗ k[Sn] → Mn for each n ≥ 0. A map M → N of S-modules
is a collection Mn → Nn of morphisms of right Sn-modules. The category
of S-modules is denoted S-mod.

There is a forgetful functor
O : S-mod→ grVect
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which forgets the action of the symmetric group.

1.2.2. Tensor product

The category grVect is a linear symmetric monoidal category with the
following tensor product:

(A⊗B)n =
⊕

p+q=n
Ap ⊗Bq.

The symmetry isomorphism τ : A⊗B → B ⊗A is given by

τ : Ap ⊗Bq → Bq ⊗Ap
a⊗ b 7→ b⊗ a

The symmetry isomorphism τ induces a left action of the symmetric group
Sk on A⊗k, for A ∈ grVect.

The category S-mod is a linear symmetric monoidal category with the
following tensor product:

(M ⊗N)(n) =
⊕

p+q=n
(M(p)⊗N(q))⊗k[Sp×Sq ] k[Sn]

=
⊕

p+q=n
(M(p)⊗M(q))⊗ k[Shp,q].

Since a (p, q)-shuffle is uniquely determined by an ordered partition I t J
of [p+ q], an element in (M ⊗N)(p+ q) can be written m⊗n⊗ (I, J). For
the sequel m⊗n denotes the element m⊗n⊗([p], p+[q]) of (M⊗N)(p+q).
The right action of the symmetric group is given by

(m⊗ n⊗ (I, J)) · σ = m · σ|σ−1(I) ⊗ n · σ|σ−1(J) ⊗ (σ−1(I), σ−1(J)) (1.1)

The unit for the tensor product is the S-module 1 given by

1(n) =
{

k, if n = 0,
0, otherwise.

The symmetry isomorphism τ : M ⊗N → N ⊗M is given by

τ(m⊗ n⊗ (I, J)) = n⊗m⊗ (J, I).
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From left modules to algebras

For any σ ∈ Sk, the symmetry isomorphism induces an isomorphism τσ
of S-modules from M1 ⊗ . . .⊗Mk to Mσ−1(1) ⊗ . . .⊗Mσ−1(k) given by

τσ(m1 ⊗ . . .⊗mk ⊗ (I1, . . . , Ik)) =
mσ−1(1) ⊗ . . .⊗mσ−1(k) ⊗ (Iσ−1(1), . . . , Iσ−1(k)). (1.2)

As a consequence τσ induces a left Sk-action on M⊗k, for any S-module
M.

When it is necessary to distinguish the tensor products, we write ⊗g
for the tensor product in grVect and ⊗S for the one in S-mod.

The forgetful functor O does not preserve the tensor product. There
are two natural transformations, πO and ιO

πOM,N , ι
O
M,N : O(M ⊗S N)→ O(M)⊗g O(N)

defined by, for any m ∈M(p), n ∈ N(q)

πOM,N (m⊗ n⊗ (I, J)) =
{
m⊗ n, if (I, J) = ([p], p+ [q]),
0, otherwise;

ιOM,N (m⊗ n⊗ (I, J)) = m⊗ n.

When restricted to the full subcategory of vector spaces (the S-modules
concentrated in degree 0), these two natural transformations restrict to
the identity.

1.3. Endofunctors induced by an S-module
1.3.1. Endofunctors in S-mod

The category of S-modules is endowed with another monoidal structure
(which is not symmetric): the plethysm ◦.

(M ◦N)(n) :=
⊕
k≥0

M(k)⊗Sk (N⊗k)(n),

where Sk acts on the left on (N⊗k) by formula (1.2). The left and right
unit for the plethysm is the S-module I given by

I(n) =
{

k, if n = 1,
0, otherwise.
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Hence any S-module M defines a functor

FM : S-mod → S-mod
N 7→ M ◦N

satisfying {
FI = Id
FM◦M ′ = FMFM ′

1.3.2. Endofunctors in grVect

For M ∈ S-mod and A ∈ grVect, one can use the same definition for the
plethysm:

(M ◦A)(n) :=
⊕
k≥0

M(k)⊗Sk (A⊗k)(n).

where the tensor product A⊗k is taken in grVect. Similarly any S-module
M defines a functor

F gM : grVect → grVect
A 7→ M ◦A

satisfying {
F gI = Id
F gM◦M ′ = F gMF

g
M ′

1.3.3. Example

Here is an example that emphasizes the fact that the two functors are
different even if evaluated at the same underlying vector space. Consider
the S-module Com(n) = k with the trivial Sn-action. A vector space V is
considered either as a graded vector space concentrated in degree 1 or as
an S-module concentrated in degree 1. This gives

F gCom(V ) =⊕n≥0 k⊗SnV ⊗gn = S(V ),
FCom(V ) =⊕n≥0 k⊗SnV ⊗Sn = T (V ).
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1.4. Proposition

Let M,N be two S-modules. The map

M ◦ O(N) → O(M ◦N)
m⊗ n1 ⊗ . . .⊗ nk 7→

∑
(T1,...,Tk)m⊗ n1 ⊗ . . .⊗ nk ⊗ (T1, . . . , Tk),

where ni ∈ N(li) and (T1, . . . , Tk) is an ordered partition of [l1 + . . .+ lk]
with |Ti| = li, defines a natural transformation

ψM : F gM O → O FM

functorial in M ∈ S-mod. Furthermore the following diagram commutes

F gM◦N O

F gMψN &&LLLLLLLLLL

ψM◦N // O FM◦N

F gM O FN
ψMFN

88rrrrrrrrrrr

Proof. Relation (1.2) implies that

m · σ ⊗ n1 ⊗ . . .⊗ nk ⊗ (T1, . . . , Tk) =
m⊗ nσ−1(1) ⊗ . . .⊗ nσ−1(k) ⊗ (Tσ−1(1), . . . , Tσ−1(k)).

Since the sum is taken over all ordered partitions (T1, . . . , Tk), the image
of m · σ ⊗ n1 ⊗ . . .⊗ nk is∑

(U1,...,Uk)
m⊗ nσ−1(1) ⊗ . . .⊗ nσ−1(k) ⊗ (U1, . . . , Uk)

with |Ui| = lσ−1(i), which is the image of m⊗ nσ−1(1)⊗ . . .⊗ nσ−1(k). As a
consequence the map is well defined.

The known formula

Sh
p1

1,...,p
l1
1 ,...,p

1
k
,...,p

lk
k

=

(Sh
p1

1,...,p
l1
1
× . . .× Sh

p1
k
,...,p

lk
k

) Sh
p1

1+...+pl11 ,...,p
1
k

+...+plk
k

(1.3)

yields the commutativity of the diagram. �

57



M. Livernet

2. Algebras over an operad

In this section we give the definitions of operads and algebras over an
operad and we refer to Fresse [11] for more general theory on operads. We
further state the main results of the section: the underlying graded vector
space of an algebra over an operad P in S-mod is always a P-algebra and
when P is regular there exists a second P-algebra structure.

2.1. Operads
An operad is a monoid in the category of S-modules with respect to the
plethysm. Namely, an operad is an S-module P together with a product
µP : P ◦ P → P and a unit ηP : I → P satisfying

µP(IdP ◦µP) =µP(µP ◦ IdP),
µP(IdP ◦ηP) =µP(ηP ◦ IdP) = IdP .

As a consequence the functors FP and F gP are monads in the category
S-mod and grVect.

The product µP is expressed in terms of maps called compositions
P(n)⊗ P(l1)⊗ . . .⊗ P(ln) → P(l1 + . . .+ ln)

µ⊗ ν1 ⊗ . . .⊗ νn 7→ µ(ν1, . . . , νn)

which are morphisms of right Sl1+...+ln-modules and which factors through
the quotient by the action of the symmetric group Sn.

The operad As is the S-module (k[Sn])n≥0. For σ ∈ Sn, τi ∈ Sli the
composition µAs(σ; τ1, . . . , τn) is the permutation of Sl1+...+ln obtained by
substituting the block τi + lσ−1(1) + lσ−1(2) . . .+ lσ−1(σ(i)−1) for the integer
σi. For instance

µAs((3, 2, 1, 4); (2, 1), (1, 3, 2), (1), (2, 3, 1)) = (6, 5︸︷︷︸
τ1+4

, 2, 4, 3︸ ︷︷ ︸
τ2+1

, 1︸︷︷︸
τ3

, 8, 9, 7︸ ︷︷ ︸
τ4+6

).

2.2. Algebras over an operad
Let C denotes either the category of S-modules or the category of graded
vector spaces. For any S-module M , the functor FC

M denotes the functor
FM or F gM .
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From left modules to algebras

Let P be an operad. A P-algebra or an algebra over P is an algebra
over the monad FC

P , that is an object M of C together with a product
µM : FC

P (M)→M such that the following diagrams commute:

FC
P◦P(M)

FC
µP (M)

��

FC
P (µM )

// FC
P (M)

µM

��
FC
P (M)

µM // M

FC
I (M)

FC
ηP (M)

��

= // M

FC
P (M)

µM

<<xxxxxxxxx

For p ∈ P(n) and m1, . . . ,mn ∈M the product µM (p⊗m1⊗ . . .⊗mn)
is usually written

p(m1, . . . ,mn) ∈M.

In the category of graded vector spaces one gets the usual definition of
an algebra over an operad. In the category of S-modules, P-algebras are
also

-Left modules over P in the terminology of Fresse [11],
- If P = As or P = Lie, twisted associative or twisted Lie algebras in

the terminology of Barratt [3],
- Twisted P-algebras in the terminology of Livernet and Patras [12].
In the sequel we dedicate the word twisted to the only case P = As: a

twisted algebra is an algebra over the operad As in the category S-mod.

Any free P-algebra in the category C writes FC
P (M) for some M ∈ C.

As a consequence P is the free P-algebra in S-mod generated by the
S-module I.

2.3. Relating P-algebras in S-mod and in grVect
2.3.1. Theorem

Let M ∈ S-mod be an algebra over an operad P. The graded vector space
O(M) is a P-algebra for the product µ̂O(M) given by the composition

F gP O(M)
ψP (M)// O FP(M)

O(µM ) // O(M) .

That is

µ̂O(M)(p⊗m1 ⊗ . . .⊗mn) = µM (p⊗m1 ⊗ . . .⊗mn) · ql1,...,ln (2.1)
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with p ∈ P(n),mi ∈M(li) and ql1,...,ln is the sum of all (l1, . . . , ln)-shuffles.

Proof. One has to prove the commutativity of the following two diagrams:

F gP◦P O(M)

F gµP O(M)
��

F gP µ̂O(M)// F gP O(M)

µ̂O(M)
��

F gP O(M)
µ̂O(M) // O(M)

F gI O(M)

F gηP O(M)
��

= // O(M)

F gP O(M)
µ̂O(M)

99ssssssssss

The second diagram is commutative because ψN is functorial in N , so

ψI = Id,
ψP(F gηP O) =(O FηP )ψI ,

and because µM (FηP (M)) = IdM .

Since M is a P-algebra µM (FµPM) = µM (FPµM ).
The commutativity of the first diagram is a consequence of the compu-

tation

µ̂O(M)F
g
µP O(M)

= O(µM )ψP(M)(F gµP O(M)) by definition,
= O(µM )(O FµP )ψP◦P(M) by functoriality of ψ,
= O(µM )O(FPµM )ψP◦P(M) M is a P − algebra,
= O(µM )O(FPµM )(ψPFP)(F gPψP) by proposition 1.4,
= O(µM )ψP(M)(F gP O(µM ))(F gPψP) ψ is a natural transformation,
= µ̂O(M)(F

g
P µ̂O(M)) by definition. �

As pointed out in section 2.2 any free P-algebra in S-mod is a P-algebra
and satisfies the conditions of the theorem. Hence any free P-algebra in
S-mod gives rise to a P-algebra in grVect. In particular the graded vector
space ⊕n≥0P(n) is a P-algebra.

2.3.2. Example

We apply formula (2.1) for the examples of the commutative operad and
the associative operad.
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The commutative operad Com is the trivial Sn-module k for all n. Let
en be a generator of Com(n). The composition is

µCom(en ⊗ el1 ⊗ . . .⊗ eln) = el1+...+ln .

The graded vector space ⊕n Com(n) is isomorphic to k[X]. The commu-
tative product on k[X] induced by the composition µCom is

Xn ·̂Xm =
(
n+m

n

)
Xn+m, (2.2)

since the number of (n,m)-shuffles is
(n+m

n

)
.

The associative operad was defined in section 2.1. The associative prod-
uct on the space ⊕n k[Sn] induced by the composition µAs is

σ∗̂τ =
∑

ξ∈Shp,q
(σ × τ) · ξ, (2.3)

where σ ∈ Sp and τ ∈ Sq. This is the product defined by Malvenuto and
Reutenauer in [18].

2.3.3. Remark

Let P be an operad and M be a P-algebra in S-mod such that the action
of Sn on M(n) is trivial. There is another P-algebra structure on O(M)
given by

µt,gO(M)(p⊗m1 ⊗ . . .⊗mn) = µM (p⊗m1 ⊗ . . .⊗mn), (2.4)

since the formula (1.2) together with the trivial action imply the Sn-
invariance.

If P = Com then k[X] is a commutative algebra for the product
Xn ·Xm = Xn+m.

In characteristic 0 the two commutative products on k[X] are isomor-
phic but it is no more the case in characteristic p.

2.4. Regular operads
In this section we prove that any algebra over a regular operad P gives rise
to two structures of P-algebra on its underlying graded vector space. This
is the generalization to operads of the result of Patras and Reutenauer in
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[21] in the associative case. Note that this generalization holds only for
regular operads.

2.4.1. Definition

The forgetful functor O : S-mod → grVect has a left adjoint, the sym-
metrization functor S : grVect → S-mod which associates to a graded
vector space (Vn)n the S-module (Vn ⊗ k[Sn])n, where the action of the
symmetric group is the right multiplication. An S-module M is regular if
there exists a graded vector space M̃ such that M = SM̃ . For instance,
the S-module I is regular, since I = SI. Let S-modr be the subcategory
of S-mod of regular modules (and regular morphisms). A regular operad
P = SP̃ is an operad in the category S-modr, i.e. µ(ν1, . . . , νk) ∈ P̃ as
soon as µ, νi ∈ P̃.

Indeed, there is also a plethysm in the category grVect:

V ◦g W = ⊕kVk ⊗W⊗k.

Note that

SV ◦ SW = S(V ◦g W ).

A non-symmetric operad is a monoid in the category grVect with respect
to the plethysm ◦g. The operad SP̃ is regular if and only if P̃ is a non-
symmetric operad.

2.4.2. Proposition

Let M = SM̃ be a regular module and N be an S-module. The map

M̃ ◦ O(N) → O(M ◦N)
m⊗ n1 ⊗ . . .⊗ nk 7→ m⊗ n1 ⊗ . . .⊗ nk

defines a natural transformation

ψrM : F gM O → O FM
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functorial in M ∈ S-modr. Furthermore for M and N in S-modr the
following diagram commutes

F gM◦N O

F gMψ
r
N &&LLLLLLLLLL

ψrM◦N // O FM◦N

F gM O FN
ψrMFN

88rrrrrrrrrrr

Proof. Since any element in M writes m ·σ for m ∈ M̃ , define ψrM (m ·σ⊗
n1 ⊗ . . . ⊗ nk) to be m ⊗ nσ−1(1) ⊗ . . . ⊗ nσ−1(k). It is straightforward to
verify the statement with this definition of ψrM . �

Adapting the proof of theorem 2.3.1 by using ψrP in place of ψP , we
prove the following theorem:

2.4.3. Theorem

Let M ∈ S-mod be an algebra over a regular operad P. The graded vector
space O(M) is a P-algebra for the product µ̄O(M) given by the composition

F gP O(M)
ψrP (M)

// O FP(M)
O(µM ) // O(M) ,

that is, for all p ∈ P̃(k) and m1, . . . ,mk ∈M ,
µ̄O(M)(p⊗m1 ⊗ . . .⊗mk) = µM (p⊗m1 ⊗ . . .⊗mk).

Hence µ̂O(M) and µ̄O(M) endow O(M) with two structures of P-algebra.�

If M is a trivial S-module µ̄O(M) coincides with µt,gO(M).
Since any free P-algebra is a P-algebra, the theorem holds for any

free P-algebra FP(M). In particular the graded vector space ⊕n≥0P(n) is
endowed with two structures of P-algebra.

2.5. Multiplicative operads
An operad P is multiplicative if there exists a morphism of operads As→
P. Any algebra in S-mod over a multiplicative operad P is a twisted
algebra and thus its underlying graded vector space is endowed with two
associative products. It holds in particular for the graded vector space
⊕nP(n). For instance Com is a multiplicative operad and we recover the
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two associative (and commutative) structures found in example 2.3.2 and
remark 2.3.3.

3. Hopf algebras over a Hopf operad

In this section, we generalize the results of Patras and Reutenauer in [21]
obtained in the associative case to any Hopf operad. We prove that any
Hopf P-algebra in S-mod yields a Hopf P-algebra in grVect and two
Hopf P-algebras in grVect if P is regular.

3.1. Hopf operads–the general case

From now on C is either the category grVect or the category S-mod. The
definitions and propositions related to Hopf operads and Hopf algebras
over a Hopf operad can be found in [12]. Here we recall only what is
needed for our purpose.

3.1.1. Definition

Let Coalg be the category of coassociative counital coalgebras, that is
vector spaces V endowed with a coassociative coproduct ∆ : V → V ⊗ V
and a counit ε : V → k. A Hopf operad P is an operad in Coalg, i.e. µP
and ηP are morphisms of coassociative counital coalgebras. A Hopf op-
erad amounts to the following data: for each n a coproduct δ(n) : P(n)→
P(n)⊗P(n) and a counit ε(n) : P(n)→ k preserving the operadic compo-
sition and the action of the symmetric group . We use Sweedler’s notation,
that is,

δ(µ) =
∑

(1),(2)
µ(1) ⊗ µ(2).

One has maps in S-mod and in grVect

τM,N : FP(M ⊗N)→ FP(M)⊗ FP(N)

and

τ gX,Y : F gP(X ⊗ Y )→ F gP(X)⊗ F gP(Y )
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defined by

τM,N (µ⊗m1 ⊗ n1 ⊗ · · · ⊗mk ⊗ nk ⊗ (A1, B1, . . . , Ak, Bk)) =∑
(1),(2)

(µ(1)⊗m1 . . .mk⊗st(A1, . . . , Ak))⊗(µ(2)⊗n1 . . . nk⊗st(B1, . . . , Bk))

⊗ (∪Ai,∪Bi). (3.1)

and

τ gX,Y (µ⊗ x1 ⊗ y1 ⊗ · · · ⊗ xk ⊗ yk) =∑
(1),(2)

(µ(1) ⊗ x1 ⊗ . . .⊗ xk)⊗ (µ(2) ⊗ y1 ⊗ . . .⊗ yk). (3.2)

As a consequence if M and N are P-algebras in the category C, then
M ⊗N is a P-algebra for the following product

FC
P (M ⊗N)

τC
M,N // FC

P (M)⊗ FC
P (N)

µM⊗µN// M ⊗N .

3.1.2. Definition

Let P be a Hopf operad. A P-algebra M is a Hopf P-algebra if M is
endowed with a coassociative coproduct and a counit

∆M : M →M ⊗M εM : M → 1

which are morphisms of P-algebras. For P = As, a Hopf As-algebra is
named a twisted bialgebra.

3.1.3. Theorem

The underlying graded vector space of any Hopf P-algebra M in S-mod
is a Hopf P-algebra in grVect. More precisely, the P-algebra product on
O(M) is µ̂O(M) and the coproduct

∆̄O(M) : O(M)
O(∆M )// O(M ⊗M)

πOM,M // O(M)⊗O(M)

is a morphism of P-algebras. This Hopf P-algebra is denoted M̄ and
named the symmetrized Hopf P-algebra associated to M .
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In particular, if for m ∈M(p) one writes

∆(m) =
∑

(1),(2)
StT=[p]

m
(S,T )
(1) ⊗m

(S,T )
(2) ⊗ (S, T )

then

∆̄(m) =
∑

(1),(2)

p∑
i=0

m
([i],i+[p−i])
(1) ⊗m([i],i+[p−i])

(2) (3.3)

Proof. One has to prove that the following diagram is commutative:

F gP O(M)

F gP∆̄O(M)
��

µ̂O(M) // O(M)

∆̄O(M)

��

F gP(O(M)⊗O(M))

τgO(M),O(M)
��

F gP O(M)⊗ F gP O(M)
µ̂O(M)⊗µ̂O(M)

// O(M)⊗O(M)

Recall that

∆̄O(M) =πOM,M O(∆M ),
µ̂O(M) =O(µM )ψP(M),

∆MµM =(µM ⊗ µM )τM,MFP∆M .

The functoriality and naturality of πO and ψP imply

∆̄O(M)µ̂O(M) = πOM,M O(∆M )O(µM )ψP(M)
= πOM,M O(µM ⊗ µM )O(τM,M )O(FP∆M )ψP(M)

= (O(µM )⊗O(µM ))πOFP (M),FP (M)O(τM,M )ψP(M ⊗M)F gP O(∆M ).
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Therefore, the commutativity of the previous diagram follows from the
commutativity of the following diagram

F gP O(M ⊗M)

F gP (πOM,M )
��

ψP (M⊗M) // O FP(M ⊗M)

O τM,M
��

F gP(O(M)⊗O(M))

τgO(M),O(M)
��

O(FP(M)⊗ FP(M))

πO
FP (M),FP (M)

��
F gP O(M)⊗ F gP O(M)

ψP (M)⊗ψP (M)
// O F gP(M)⊗O F gP(M)

Let us compute the composition R = πOFP (M),FP (M)O τM,MψP(M ⊗M)
applied to
X = µ⊗(m1⊗n1⊗(A1, B1))⊗ . . .⊗(mk⊗nk⊗(Ak, Bk)) ∈ F gP O(M⊗M),
where mi ∈ M(li) and ni ∈ M(ri) and Ai t Bi is an ordered partition of
[li + ri].

Y := ψP(M ⊗M)(X) =
∑

(T1,...,Tk)
X ⊗ (T1, . . . , Tk),

where the sum is taken over all ordered partitions of [l1 +r1 + . . .+ lk+rk]
such that |Ti| = li + ri. For Ui = Ti(Ai) and Vi = Ti(Bi) one has

((A1, B1)× . . .× (Ak, Bk))(T1, . . . , Tk) = (U1, V1, . . . , Uk, Vk).
As a consequence

Y =
∑

(U1,V1...,Uk,Vk)
µ⊗m1 ⊗ n1 ⊗ . . .⊗mk ⊗ nk ⊗ (U1, V1, . . . , Uk, Vk),

where the sum is taken over all ordered partitions of [l1 +r1 + . . .+ lk+rk]
such that |Ui| = li, |Vi| = ri and st(Ui) = Ai, st(Vi) = Bi. Set m̄ =
m1 ⊗ . . .⊗mk and n̄ = n1 ⊗ . . .⊗ nk. By the definition of τ (see (3.1)),

Z := O τM,M (Y ) =
∑

(U1,V1...,Uk,Vk)

(µ(1) ⊗ m̄⊗ st(U1, . . . , Uk))⊗ (µ(2) ⊗ n̄⊗ st(V1, . . . , Vk))⊗ (∪Ui,∪Vi).

Furthermore πOFP (M),FP (M)(Z) = 0 except in case (∪Ui,∪Vi) = Id. But

(∪Ui,∪Vi) = Id⇔ (Ai, Bi) = Id,∀i.
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For, if (∪Ui,∪Vi) = Id then Ti(Ai) < Ti(Bi) and Ai < Bi which is equiv-
alent to (Ai, Bi) = Id.

As a consequence if ∀i, (Ai, Bi) = Id, then

R(X) =
∑

(U1,...,Uk)
(V1,...,Vk)

(µ(1) ⊗ m̄⊗ (U1, . . . , Uk))⊗ (µ(2) ⊗ n̄⊗ (V1, . . . , Vk)),

where the sum is taken over all shuffles (U1, . . . , Uk) and (V1, . . . , Vk). If
there exists i such that (Ai, Bi) 6= Id, then R(X) = 0.

The composition L = (ψP(M)⊗ψP(M))τ gO(M),O(M)F
g
P(πOM,M ) is easier

to compute. First of all, if there exists i such that (Ai, Bi) 6= Id, then
L(X) = 0. Assume that (Ai, Bi) = Id,∀i. Then

W = τ gO(M),O(M)F
g
P(πOM,M )(X) =

∑
(1),(2)

(µ(1) ⊗ m̄)⊗ (µ(2) ⊗ n̄)

and (ψP(M) ⊗ ψP(M))(W ) = R(X). Thus R(X) = L(X),∀X and the
diagram is commutative. �

3.1.4. Connected operads and connected Hopf operads

An operad is connected if P(0) = k and P(1) = k. Let 10 denote the unit
of k ∈ P(0). If P is a connected operad, for any subset S of [n], there
exists a map

P(n) → P(|S|)
µ 7→ µ|S = µ(x1, . . . , xn)

where {
xi = 11 if i ∈ S,
xi = 10 if i 6∈ S.

For P = As one recovers the definition given in section 1.1 for the sym-
metric group.

A connected Hopf operad is a Hopf operad which is connected and such
that ε(0) : k = P(0)→ k is the identity isomorphism. As a consequence

ε(µ) = µ|∅.
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Recall from [12] that if P is a connected Hopf operad then P is a Hopf
P-algebra in S-mod for the coproduct given by

∆(µ) =
∑

(1),(2)
StT=[n]

µ(1)|S ⊗ µ(2)|T ⊗ (S, T )

=1⊗ µ+ µ⊗ 1 +
∑

StT=[n]
S,T 6=∅

µ(1)|S ⊗ µ(2)|T ⊗ (S, T ).

Indeed the map ∆ is the unique P-algebra morphism such that ∆(11) =
10 ⊗ 11 + 11 ⊗ 10.

It happens in many examples that P is not connected and P(0) = 0.
Nevertheless it is sometimes possible to define a P-algebra structure on
(P+ ⊗ P+)− where {

P+(0) = k
P+(n) = P(n), n > 0

and {
(P+ ⊗ P+)−(0) = 0
(P+ ⊗ P+)−(n) = (P+ ⊗ P+)(n), n > 0.

(see for instance [13]). In that case, ∆ is defined as the unique P-algebra
map such that ∆(11) = 10 ⊗ 11 + 11 ⊗ 10. These kind of operads will be
treated as connected operads.

If P is connected, one has two examples of Hopf P-algebras in grVect:

• F gP(V ) for V in grVect where the product is given by F gµP (V ) and
the coproduct is given by F g∆(V ).

• For any S-moduleM the free P-algebra FP(M) is a Hopf P-algebra
in S-mod. The symmetrized Hopf P-algebra FP(M) is a Hopf P-
algebra in grVect by theorem 3.1.3.

3.2. Regular Hopf operads
Let P = SP̃ be a regular operad. Assume (P, δ) is a Hopf operad. The
operad P is a regular Hopf operad if δ(P̃) ⊂ P̃ ⊗ P̃. For instance As
is a regular Hopf operad. We prove that for any regular Hopf operad
a Hopf P-algebra in the category S-mod gives rise to two structures of
Hopf P-algebra in the category grVect. This is a generalization to regular
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operads of a theorem announced by Stover in [24] and proved by Patras
and Reutenauer in [21] in the context of twisted bialgebras. Note that the
hypothesis regular is needed to obtain two structures of Hopf P-algebras.

3.2.1. Theorem

Let P be a regular Hopf operad. Let (M,µM ,∆M ) be a Hopf P-algebra in
S-mod. The product µ̄O(M) together with the coproduct ∆̂O(M) defined as
the composite

O(M)
O(∆M )// O(M ⊗M)

ιgM,M// O(M)⊗O(M)

endows O(M) with a structure of Hopf P-algebra which is cocommutative
if (M,∆M ) is. This Hopf P-algebra is denoted M̂ and named the cosym-
metrized Hopf P-algebra associated to M .

Note that the coproduct ∆̂O(M) is always defined: for m ∈M(p), if the
coproduct in M writes

∆M (m) =
∑

(1),(2)
StT=[p]

m
(S,T )
(1) ⊗m

(S,T )
(2) ⊗ (S, T ),

then the induced coproduct in O(M) writes

∆̂O(M)(m) =
∑

(1),(2)
StT=[p]

m
(S,T )
(1) ⊗m

(S,T )
(2) . (3.4)

Proof. The proof is similar to the proof of theorem 3.1.3. The commuta-
tivity of the diagram

F gP O(M)

F gP∆̂O(M)
��

µ̄O(M) // O(M)

∆̂O(M)

��

F gP(O(M)⊗O(M))

τgO(M),O(M)
��

F gP O(M)⊗ F gP O(M)
µ̄O(M)⊗µ̄O(M)

// O(M)⊗O(M)
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is a consequence of the commutativity of the diagram

F gP O(M ⊗M)

F gP (ιOM,M )
��

ψrP (M⊗M)
// O FP(M ⊗M)

O τM,M
��

F gP(O(M)⊗O(M))

τgO(M),O(M)
��

O(FP(M)⊗ FP(M))

ιO
FP (M),FP (M)

��
F gP O(M)⊗ F gP O(M)

ψrP (M)⊗ψrP (M)
// O F gP(M)⊗O F gP(M)

We first evaluate R = ιOFP (M),FP (M)O τM,Mψ
r
P(M ⊗M) at

X = µ⊗(m1⊗n1⊗(A1, B1))⊗ . . .⊗(mk⊗nk⊗(Ak, Bk)) ∈ F gP O(M⊗M),
where µ ∈ P̃(k),mi ∈M(li), ni ∈M(ri) and AitBi is an ordered partition
of [li + ri]. Set m̄ = m1 ⊗ . . .⊗mk and n̄ = n1 ⊗ . . .⊗ nk and

(A1, B1)× . . .× (Ak, Bk) = (U1, V1, . . . , Uk, Vk).

R(X) =
∑

(1),(2)
(µ(1) ⊗ m̄⊗ st(U1, . . . , Uk))⊗ (µ(2) ⊗ n̄⊗ st(V1, . . . , Vk)),

and st(U1, . . . , Uk) = Id and st(V1, . . . , Vk) = Id .
The composite L := (ψrP(M)⊗ ψrP(M))τ gO(M),O(M)F

g
P(ιOM,M ) evaluated

at X gives
L(X) =

∑
(1),(2)

(µ(1) ⊗ m̄)⊗ (µ(2) ⊗ n̄).

Thus R(X) = L(X),∀X and the diagram is commutative.
It is clear that if ∆M is cocommutative, so is ∆̂O(M). �

As a consequence, if P is a regular Hopf operad then any Hopf P-algebra
M in S-mod gives rise to two structures of Hopf P-algebra in grVect.
In particular this result holds for ⊕nP(n) and for the underlying graded
vector space of any free P-algebra.

3.3. Application to multiplicative Hopf operads
In a first step we establish that the corresponding Hopf structures in case
P = As coincide with the ones discovered by Stover [24] and proved by
Patras and Reutenauer in [21]. In a second step we apply the above results
to multiplicative Hopf operads.
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3.3.1. The associative case

Recall that the operad As is a regular Hopf operad. Hence the underlying
graded vector space of a twisted bialgebra is endowed with two struc-
tures of Hopf algebra. Let M be a twisted bialgebra with product m and
coproduct ∆.

The Hopf algebra M̄ = (O(M), m̂O(M), ∆̄O(M)) is described for a ∈
M(p), b ∈M(q) by

m̂O(M)(a, b) = m(a, b) · qa,b,

∆̄O(M)(a) =
p∑
i=0

a
([i],i+[p−i])
(1) ⊗ a([i],i+[p−i])

(2) ,

which is the symmetrized bialgebra associated to the twisted bialgebra M
as in [21, proposition 15].

The Hopf algebra M̂ = (O(M), m̄, ∆̂O(M)) is described for a ∈M(p), b ∈
M(q) by

m̄O(M)(a, b) = m(a, b),

∆̂O(M)(a) =
∑

StT=[p]
a

(S,T )
(1) ⊗ a

(S,T )
(2) ,

which is the cosymmetrized bialgebra associated to the twisted bialgebra
M as in [21, definition 8].

A multiplicative Hopf operad is a Hopf operad P together with an
operad morphism As → P which commutes with the Hopf structure. As
a consequence any Hopf P-algebra is a Hopf As-algebra. The result below
is a consequence of the previous sections.

3.3.2. Corollary

Let P be a multiplicative Hopf operad. The underlying graded vector space
of any Hopf P-algebra is endowed with two different structures of Hopf
algebra. �

4. Unital infinitesimal P-bialgebras

In this section we give some comparison between ∆̄ and µ̄ when the op-
erad is regular, in view of generalizing the theory of unital infinitesimal
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bialgebra developed by Loday and Ronco in [17]. This yields the defini-
tion of unital infinitesimal P-bialgebras. As a consequence we prove that
any Hopf algebra over a multiplicative Hopf operad is isomorphic to a
cofree coassociative algebra. Moreover, if P is regular then this isomor-
phism respects the P-algebra structure. We study the associative case in
detail.

From now on a connected Hopf operad P is given.

4.1. Unital infinitesimal P-bialgebras
In this section, We prove that the underlying graded vector space of a
Hopf P-algebra is a unital infinitesimal P-bialgebra (theorem 4.1.2). We
prove also in theorem 4.1.3 that the same result holds for F gP(V ) when V
is a graded vector space such that V (0) = 0.

A connected coalgebra M in S-mod or grVect is a coalgebra such that
M(0) = k and such that the counit ε : k = M(0) → k is the identity
isomorphism. That is for M ∈ S-mod the coproduct writes

∆(m) =1⊗m+m⊗ 1 +
∑

StT=[p]
S,T 6=∅

m
(S,T )
(1) ⊗m

(S,T )
(2) ⊗ (S, T ),

and for V ∈ grVect it writes, ∀v ∈ Vr
∆(v) =1⊗ v + v ⊗ 1 +

∑
p+q=r
p,q>0

m(1),p ⊗m(2),q.

4.1.1. Definition

Assume P = SP̃ is a regular Hopf operad. A unital infinitesimal P-
bialgebra M is a P-algebra in grVect endowed with a connected coalgebra
structure ∆ : M →M ⊗M satisfying the infinitesimal relation:

∆µ(m1, . . . ,mk) =
k∑
j=1

µ(m1 ⊗ 1, . . . ,mj−1 ⊗ 1,∆(mj), 1⊗mj+1, . . . , 1⊗mk)

−
k−1∑
j=1

µ(m1 ⊗ 1, . . . ,mj ⊗ 1, 1⊗mj+1, . . . , 1⊗mk), (4.1)
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for µ ∈ P̃(k). Note that the operad needs to be regular since the infinites-
imal relation is not Sk-equivariant.

For instance if P = As, a unital infinitesimal As-bialgebra is the defi-
nition of Loday and Ronco in [17] of a unital infinitesimal bialgebra since
the previous relation amounts to

∆(ab) = ∆(a)(1⊗ b) + (a⊗ 1)∆(b)− a⊗ b.

Let M be a Hopf P-algebra in S-mod with P regular. Theorems 3.1.3
and 3.2.1 assert that the underlying graded vector space of M is endowed
with two structures of Hopf P-algebras in grVect. One is given by (µ̂, ∆̄)
and the other one by (µ̄, ∆̂). The next theorem explores the relation be-
tween µ̄ and ∆̄.

4.1.2. Theorem

Let P be a connected regular Hopf operad and M be a connected Hopf
P-algebra in S-mod. The product µ̄ := µ̄O(M) and coproduct ∆̄ = ∆̄O(M)
endow O(M) with a structure of unital infinitesimal P-bialgebra.

Proof. Recall that

∆̄ =πOM,M O(∆)
µ̄ =O(µM )ψrP(M).

Following the proof of theorem 3.1.3 one has

∆̄µ̄ = (O µM ⊗O µM )πOFP (M),FP (M)O τM,Mψ
r
P(M ⊗M)F gP O∆.

Let X = µ⊗m1 ⊗ . . .⊗mk ∈ F gP O(M) with mi ∈M(hi).

Y := ψrP(M ⊗M)F gP O∆(X) =∑
µ⊗(m(S1,T1)

1(1) ⊗m(S1,T1)
1(2) ⊗(S1, T1))⊗. . .⊗(m(Sk,Tk)

k(1) ⊗m(Sk,Tk)
k(2) ⊗(Sk, Tk)),

where the sum is taken over all ordered partitions Si t Ti of [hi] for all
i. In order to compute O τM,M (Y ), we write (S1, T1) × . . . × (Sk, Tk) as
(U1, V1, . . . , Uk, Vk) which is an ordered partition of [h1 + . . . + hk] and
Ui = |Si|, Vi = |Ti|. It is obvious that st(U1, . . . , Uk) = Id and that the
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same equality holds for the sequence of Vi’s. Furthermore if S = ∪Ui and
T = ∪Vi, then S = S1× . . .×Sk and T = T1× . . .×Tk. As a consequence

O τM,M (Y ) = ∑
(S,T )

(µ(1) ⊗m
(S1,T1)
1(1) ⊗ . . .⊗m(Sk,Tk)

k(1) )⊗

(µ(2) ⊗m
(S1,T1)
1(2) ⊗ . . .⊗m(Sk,Tk)

k(2) )⊗ (S, T ),

where the sum is taken over all ordered partitions (S, T ) of [h1 + . . .+hk]
and where S = S1 × . . . × Sk and T = T1 × . . . × Tk with Si, Ti ⊂ [hi].
The map πOFP (M),FP (M) is non zero on an ordered partition (S, T ) if and
only if there exists r such that S = [r]. For any such r there exists j such
that Sk = [hk] for k < j and Sk = ∅ for k > j. Since M is connected
m
∅,[h]
(1) ⊗m

∅,[h]
(2) = 1⊗m. As a consequence

(O µM ⊗O µM )πOFP (M),FP (M)O τM,M (Y ) =
k∑
j=1

hj−1∑
α=1

µ(1)(m1, . . . ,mj−1,m
([α],α+[hj−α])
j(1) , 1, . . . , 1)

⊗ µ(2)(1, . . . , 1,m
([α],α+[hj−α])
j(2) ,mj+1, . . . ,mk)

+
k∑
j=0

µ(1)(m1, . . . ,mj , 1, . . . , 1)⊗ µ(2)(1, . . . , 1,mj+1, . . . ,mk).

On the other hand let us compute the right hand side of the equation
(4.1):

k∑
j=1

µ(m1 ⊗ 1, . . . ,mj−1 ⊗ 1,∆(mj), 1⊗mj+1, . . . , 1⊗mk)

−
k−1∑
j=1

µ(m1 ⊗ 1, . . . ,mj ⊗ 1, 1⊗mj+1, . . . , 1⊗mk) =
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k∑
j=1

µ(m1 ⊗ 1, . . . ,mj−1 ⊗ 1,∆′(mj), 1⊗mj+1, . . . , 1⊗mk)+

k∑
j=1

µ(m1 ⊗ 1, . . . ,mj−1 ⊗ 1, 1⊗mj +mj ⊗ 1, 1⊗mj+1, . . . , 1⊗mk)

−
k−1∑
j=1

µ(m1 ⊗ 1, . . . ,mj ⊗ 1, 1⊗mj+1, . . . , 1⊗mk)

where

∆′(mj) =
hj−1∑
α=1

m
([α],α+[hj−α])
j(1) ⊗m([α],α+[hj−α])

j(2) .

Thus the left and right hand sides of the equation (4.1) are equal and the
theorem is proved. �

4.1.3. Theorem

Let P = SP̃ be a connected regular Hopf operad. Let V be a graded vector
space with V (0) = 0. The free P-algebra in grVect F gP(V ) is a unital
infinitesimal P-bialgebra. The product is given by the usual product on free
P-algebras and the coproduct is given for x = µ ⊗ v1 ⊗ . . . ⊗ vk ∈ F gP(V )
with µ ∈ P̃(k) by

∆̄(x) = 1⊗x+x⊗1+
k−1∑
i=1

(µ(1)|[i]⊗v1 . . .⊗vi)⊗(µ(2)|i+[k−i]⊗vi+1 . . .⊗vk).

Proof. When P is regular F gP(V ) = ⊕nP̃(n)⊗V ⊗gn, hence it is enough to
prove the formula (4.1) for

∆̄µ(ν1 ⊗ v̄1, . . . , νk ⊗ v̄k)

with µ, νi ∈ P̃ and v̄i ∈ V ⊗li . The computation is straightforward. �

4.2. Rigidity for twisted bialgebras
Loday and Ronco proved a theorem of rigidity for unital infinitesimal
bialgebras. Recall from [17] that the fundamental example of a unital
infinitesimal bialgebra is given by T fc(V ) = F gAs(V ) where V is a graded
vector space concentrated in degree 1 and where the product is given
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by the concatenation and the coproduct is given by the deconcatenation.
Recall also that for a connected coalgebra C, with a coproduct ∆ and a
counit ε, the space of primitive elements is defined by

Prim∆(C) = {x ∈ Ker ε|∆(x) = 1⊗ x+ x⊗ 1}.
Here is the statement of the theorem:

4.2.1. Theorem [17]

Any connected unital infinitesimal Hopf bialgebra H is isomorphic to
T fc(Prim(H)).

Let (A,m,∆) be a connected twisted bialgebra and Ā = (A, m̂, ∆̄)
the symmetrized bialgebra and Â = (A, m̄, ∆̂) the cosymmetrized bialge-
bra as in paragraph 3.3.1. The triple (A, m̄, ∆̄) is a unital infinitesimal
bialgebra by theorem 4.1.2 and then, by theorem 4.2.1 is isomorphic to
T fc(Prim∆̄(A)). Hence Â is a free associative algebra and Ā is a cofree
coassociative coalgebra. Assume furthermore that k is of characteristic 0
and ∆ is cocommutative. Then Â is a cocommutative Hopf algebra, and
by the theorem of Cartier-Milnor-Moore, it is the universal enveloping al-
gebra of its primitive elements. If each An is finite dimensional, since Â is
free as an associative algebra, by lemma 22 in [21] the space of primitive
elements is a free Lie algebra.

These results are summed up in the following theorem:

4.2.2. Theorem

Let (A,m,∆) be a connected twisted bialgebra. The associated symmetrized
bialgebra Ā is a cofree coassociative algebra. The associated cosymmetrized
bialgebra Â is a free associative algebra.

If k is of characteristic 0, if ∆ is cocommutative and if An is finite
dimensional for all n, there is an isomorphism of Lie algebras

Prim∆̂(A) = F gLie(Prim∆̄(A)).

This isomorphism is functorial in A. �

Using the results of Loday and Ronco we have improved the results of
Patras and Reutenauer. Furthermore, if P is a connected multiplicative
Hopf operad then it provides connected twisted bialgebras: indeed, any
Hopf P-algebra in S-mod is a twisted bialgebra. For instance P and more
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generally FP(M) with M an S-module such that M(0) = 0 are connected
twisted bialgebras.

4.2.3. Remark

If (A,m,∆) is a connected twisted bialgebra then
(A, m̂, m̄, ∆̄) is a connected 2-associative bialgebra in the terminology of
Loday and Ronco in [17], that is (A, m̂, ∆̄) is a Hopf algebra and (A, m̄, ∆̄)
is a unital infinitesimal bialgebra. By the structure theorem in [17], one
gets that Prim∆̄(A) is a B∞-algebra and A is the enveloping 2-as bialgebra
of its primitive elements.

Assume P and V satisfy the conditions of theorem 4.1.3. Assume P
is multiplicative and A = F gP(V ) is finite dimentional in each degree.
Then A2 = (A∗,t ∆,t ∆̄,tm) where m is the associative product induced
by the multiplicative structure of P is also a 2-associative bialgebra. If
A2 is connected then it is the enveloping 2-as bialgebra of its primitive
elements.

5. Application to combinatorial Hopf algebras

In this section, we would like to apply our previous results to combinatorial
Hopf algebras. The idea is the following: given a graded vector space H =
⊕nH(n), how does a Hopf algebra structure arise on H? We present two
cases coming from the two examples detailed in section 3.1.4.

Case 1. The space H(n) is endowed with a right Sn-action. We denote by
HS the associated S-module. Assume there exists a connected multiplica-
tive Hopf operad structure on PH = HS. From section 3.1.4, we obtain
our first result: there exists a PH -algebra product µ and a coalgebra co-
product ∆ such that (HS, µ,∆) is a Hopf PH -algebra. The graded vector
space H has a Hopf PH -algebra structure which is the symmetrized Hopf
PH -algebra HS by theorem 3.1.3.

The second result is a direct consequence of theorem 4.2.2: since the
operad PH is multiplicative, there is a twisted product m : HS ⊗ HS →
HS. As a consequence (HS,m,∆) is a twisted bialgebra. The associated
symmetrized Hopf algebra (H, m̂, ∆̄) is cofree and the associated cosym-
metrized Hopf algebra H̄ = (H, m̄, ∆̂) is free. In case ∆ is cocommutative,
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under the hypothesis of theorem 4.2.2, H̄ is the enveloping algebra of the
free Lie algebra generated by Prim∆̄(H). Furthermore, by remark 4.2.3 the
2-associative bialgebra (H, m̂, m̄, ∆̄) is the 2-associative enveloping bialge-
bra of its primitive elements: Prim∆̄(H) is endowed with a B∞-structure.

Case 1 applies also when H is a free P-algebra in S-mod generated
by an S-module M , with P a multiplicative Hopf operad and M(0) = 0.

Case 2. Assume PrH = SH is a connected regular Hopf operad. The
graded vector space H is the free graded PrH -algebra generated by the
graded vector space I. As a consequence, the graded vector space (H,µ,∆)
is a Hopf PrH -algebra, where µ is the PrH -product and where

∆(h) =
∑

StT=[|h|]
h(1)|S ⊗ h(2)|T

comes from the regular Hopf operad PrH . Also (H,µ, ∆̄) with

∆̄(h) =
|h|∑
i=0

h(1)|[i] ⊗ h(2)|i+[|h|−i]

is a unital infinitesimal PrH -bialgebra by theorem 4.1.3.

Again, by remark 4.2.3, ifHn is finite dimensional, then (H∗,t ∆,t ∆̄,tm)
in which m is the associative product, is a 2-associative bialgebra, which
is the 2-associative enveloping bialgebra of its primitive elements.

Case 2 applies also when H is a free P-algebra in grVect generated
by a graded vector space V , with P a Hopf regular operad and V (0) = 0.

We illustrate by some examples that many combinatorial Hopf algebras
arise either from case 1 or from case 2.

5.1. The Hopf algebra T (V )
Let us apply Case 1 for H = FCom(V ) where V is considered as an
S-module concentrated in degree 1. That is H = T (V ). As a twisted
bialgebra, T (V ) is endowed with the concatenation product and with the
following coproduct

∆(v1 ⊗ . . .⊗ vk) =
∑

StT=[k]
v̄|S ⊗ v̄|T ⊗ (S, T )
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where v̄|S = vs1 ⊗ . . .⊗ vsj for S = {s1 < . . . < sj}. It is cocommutative.
The symmetrized Hopf algebra structure on T (V ) is the shuffle product to-
gether with the deconcatenation, whereas the cosymmetrized Hopf algebra
structure on T (V ) is the dual structure: the product is the concatenation
and the coproduct is the unshuffle coproduct. In characteristic 0 it is the
enveloping algebra of the free Lie algebra generated by V .

5.2. The Malvenuto-Reutenauer Hopf algebra
This Hopf algebra, denoted HMR has been extensively studied in [18], in
[9] under the name of free quasisymmetric functions or in [1]. The graded
vector space considered is A = ⊕n k[Sn]. It is the underlying graded vector
space of the operad As and Case 1 applies. Recall that the operad As
gives rise to a cocommutative twisted bialgebra:

m(σ, τ) =σ × τ,

∆(σ) =
∑

StT=[n]
σ|S ⊗ σ|T ⊗ (S, T ).

The Hopf algebra HMR is the symmetrized Hopf algebra (A, m̂, ∆̄). That
is, for σ ∈ Sn, τ ∈ Sm

m̂(σ, τ) =
∑

ξ∈Shp,q
(σ × τ) · ξ,

∆̄(σ) =
n∑
i=0

st(σ1, . . . , σi)⊗ st(σi+1, . . . , σn).

which is not commutative nor cocommutative.
The cosymmetrized Hopf algebra Â = (A, m̄, ∆̂) is given by

m̄(σ, τ) =σ × τ,

∆̂(σ) =
∑

StT=[n]
σ|S ⊗ σ|T .

The latter Hopf algebra is different from the former one or its dual since
it is a cocommutative Hopf algebra.

From Case 1 we get that HMR is cofree and that Â is free as an as-
sociative algebra: it is generated by the connected permutations, the ones
which don’t write σ × τ for σ ∈ Sn, τ ∈ Sm, n,m > 0. In characteristic
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0, Â is isomorphic to the enveloping algebra of the free Lie algebra gener-
ated by the connected permutations (compare with theorems 20 and 21 in
[21]). Furthermore, HMR together with m̄ is a 2-associative bialgebra and
it is isomorphic to the 2-associative enveloping bialgebra generated by the
connected permutations: in [9] and in [1] a basis of the space of primitive
elements of HMR, indexed by the connected permutations is given.

In paragraph 5.3.4 we prove that HMR is free as an associative algebra,
without using the self-duality of HMR.

5.3. Hopf algebra structures on the faces of the permutohe-
dron

Recall that Com is a Hopf operad. Let Com(n) =
{
Com(n) if n > 0
0 if n = 0

.

The S-module Comp = As ◦Com has for linear basis the faces of the n-
permutohedra. Indeed

As ◦Com(n) =⊕k≥0 As(k)⊗Sk (Com)⊗k(n)

=
∑

(I1,...,Ik)=[n]
k

where the sum is taken over all set compositions (or ordered set parti-
tions) (I1, . . . , Ik) of [n] such that Ij 6= ∅,∀1 ≤ j ≤ k. The action of the
symmetric group is given, for σ ∈ Sn, by

(I1, . . . , Ik) · σ = (σ−1(I1), . . . , σ−1(Ik)).

Chapoton described some Hopf algebra structures on the graded vector
space O(Comp) in [5] and in [6], whereas Patras and Schocker described
a twisted bialgebra structure on Comp in [22]. Chapoton described a (dif-
ferential graded) operad structure on Comp in [8] and Loday described a
(filtered) one in [14].

The aim of this section is to apply our operadic point of view Case 1
in order to relate these structures.

A set composition of [n] is written as a word in the alphabet {, }∪{i, 1 ≤
i ≤ n}. For instance (14, 2, 35) is the set composition ({1, 4}, {2}, {3, 5})
of [5].
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5.3.1. Operad structures on the faces of the permutohedron.

Both operads built by Loday in [14] and Chapoton in [8] are quadratic
binary operads. They are generated by the commutative operation repre-
sented by the set composition (12) and by the operation represented by
the set composition (1, 2) in Comp(2). Let wf = (12) + (1, 2) + (2, 1) and
wg = (1, 2) + (2, 1). The composition in the operad CTD described by
Loday is given by the following inductive formula

(12)(∅, P ) = 0, (12)(P, ∅) = 0,
(1, 2)(∅, P ) = 0, (1, 2)(P, ∅) = P,

(12)(P,Q) =(P1 ∪Q1, wf ((P2, . . . , Pk), (Q2, . . . , Ql))),
(1, 2)(P,Q) =(P1, wf ((P2, . . . , Pk), Q)),

with P = (P1, . . . , Pk) a set composition of [n] and Q = (Q1, . . . , Ql)
a set composition of [m] considered as a set composition of n + [m]. By
convention, wf (∅, ∅) = 0. The degree of the set composition P is n−k. Set
compositions of degree 0 are in 1-to-1 correspondance with permutations.

The operad CTD is filtered by the degree of set compositions but not
graded. It is not regular and algebras (in the category of vector spaces) over
this operad are named commutative tridendriform algebras by Loday, that
is vector spaces endowed with a product ≺ and a commutative product ·
satisfying the relations

(x ≺ y) ≺ z =x ≺ (y ≺ z + z ≺ y + y · z),
(x · y) ≺ z =x · (y ≺ z),

(x · y) · z =x · (y · z).

The composition in the operad Π described by Chapoton has the same
definition except that wf is replaced by wg. It is graded by the degree of
set compositions. Algebras (in the category of graded vector spaces) over
Π are described in [8].

These operads are not connected in the strict sense, since the composi-
tion with ∅ ∈ Comp(0) is not always defined. The equalities involving the
emptyset above, are needed for an inductive definition and are needed in
order to build a coproduct Comp → Comp⊗Comp, as was explained in
the paragraph 3.1.4 on connected operads.
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5.3.2. Proposition

The S-module Comp is a CTD-Hopf algebra for the coproduct

∆(P1, . . . , Pk) =
k∑
l=0

st(P1, . . . , Pl)⊗ st(Pl+1, . . . , Pk)⊗ (∪1≤j≤lPj ,∪l+1≤h≤kPh).

The S-module Comp is a Π-Hopf algebra for the same coproduct.

Proof. Let X denote either the operad CTD or the operad Π. Let w denote
either wf ∈ CTD(2) or wg ∈ Π(2). Note that for any set composition P

w(P, ∅) = w(∅, P ) = P. (5.1)

One needs first to define the X -algebra structure on Comp⊗Comp. This
trick is due to Loday and Ronco: for x ∈ X (2),

x(P1 ⊗ P2, Q1 ⊗Q2) ={
∅ ⊗ x(P2, Q2), if P1 = Q1 = ∅,
x(P1, Q1)⊗ w(P2, Q2)⊗ (P1 ∪Q1, P2 ∪Q2), otherwise.

(5.2)

The coproduct ∆ : Comp → Comp⊗Comp is the unique X -algebra
morphism mapping (1) to (1)⊗ ∅+ ∅ ⊗ (1).

Let (Il1 , . . . , Ilk) be the set composition of [l1 + . . .+ lk] defined by

Ilj = l1 + . . .+ lj−1 + [lj ],∀1 ≤ j ≤ k.

Let n = l1 + . . .+ lk. We prove the formula for such a set composition by
induction on k. If k = 1, the set composition is just (n). For n = 1 the
formula is proved. If n > 1 then (n) = (12)((1), (n−1)). By induction one
has

∆(n) = (12)(∆(1),∆(n− 1)) =
(12)((1)⊗ ∅+ ∅ ⊗ (1), (n− 1)⊗ ∅+ ∅ ⊗ (n− 1)) = (n)⊗ ∅+ ∅ ⊗ (n),

because (12)(P,Q) = 0 if P or Q is empty and because of relation (5.2)
and (5.1).
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If k > 1, then X = (Il1 , . . . , Ilk) = (1, 2)((Il1), (Il2 , . . . , Ilk)). By induc-
tion

∆(X) = (1, 2)(∆(Il1),∆(Il2 , . . . , Ilk)) =

(1, 2)(Il1 ⊗ ∅+ ∅ ⊗ Il1 ,
k∑
j=1

(Il2 , . . . , Ilj )⊗ (Ilj+1 , . . . , Ilk)) =

∅ ⊗X +
k∑
j=1

(Il1 , Il2 , . . . , Ilj )⊗ (Ilj+1 , . . . , Ilk)),

because (1, 2)(P, ∅) = P and (1, 2)(∅, P ) = 0 and because of relations (5.2)
and (5.1).

For any set composition P = (P1, . . . , Pk) of [n], there exists σ ∈ Sn
such that

(P1, . . . , Pk) = (Il1 , . . . , Ilk) · σ.
One can choose for σ the shuffle associated to the set composition P. The
coproduct ∆ is a morphism of S-modules. One gets the conclusion with
formula (1.1). �

In [12] we proved that the space of primitive elements with respect to
∆ is a suboperad of the initial operad. The space of primitive elements is
clearly the vector space generated by the set compositions (n), for n > 0.
Then Prim∆(CTD) is the operad Com (compare with [14]).

5.3.3. Twisted bialgebras associated to the faces of the permuto-
hedron

The operation wf (resp. wg) is associative and commutative. As a conse-
quence, the operads CTD and Π are Hopf multiplicative operads and give
rise to twisted connected commutative (non cocommutative) bialgebras
Hf = (Comp, wf ,∆) and Hg = (Comp, wg,∆).

i) The twisted bialgebra Hf . Patras and Schocker [22] defined
a twisted bialgebra structure on Comp denoted T = (Comp, ?, δ) which is
the following. The product ? is the concatenation of set compositions and
the coproduct δ is defined for a set composition P of [n] by

δ(P ) =
∑

StT=[n]
st(P ∩ S)⊗ st(P ∩ T )⊗ (S, T ),
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where (P1, . . . , Pk) ∩ S = (P1 ∩ S, . . . , Pk ∩ S) and if Pi ∩ S = ∅ the i-th
term is omitted. For instance (14, 2, 35)∩{1, 3, 5} = (1, 35). It is clear that
? is the dual of ∆ and one can check that δ is the dual of wf . It gives an
operadic interpretation of their structure:

The dual of the twisted bialgebra defined by Patras and Schocker is the
free commutative tridendriform algebra on one generator in the category
S-mod.

Applying Case 1 one gets that the symmetrized Hopf algebra T̄ asso-
ciated to T is cofree, and that the associated cosymmetrized Hopf algebra
T̂ is free generated by reduced set compositions: a set composition which
is non reduced is the concatenation of two non trivial set compositions.
For instance (13, 24, 6, 5) is non reduced since it is the concatenation of
(13, 24) and (2, 1). Moreover if the field k is of characteristic 0, then T̂ is
isomorphic to the enveloping algebra of the free Lie algebra generated by
reduced set compositions. (Compare with proposition 10 and corollary 13
in [22]). Applying remark 4.2.3 one gets that (T , ?̄, ?̂, δ̄) is the 2-associative
enveloping bialgebra on its primitive elements.

The Hopf algebra structure given by Chapoton in [5] is (Comp, w̄f , ∆̂)
which is the dual of the symmetrized Hopf algebra (T , ?̂, δ̄). It is also the
Hopf algebra NCQSym of Bergeron et Zabrocky in [4] and we recover
that it is a free algebra.

ii) The twisted bialgebra Hg. This twisted bialgebra gives rise to
two Hopf algebras, which are (Comp, ŵg, ∆̄) and (Comp, w̄g, ∆̂). One can
check that the latter Hopf algebra is the one described by Chapoton in
[6]. Again it is a free associative algebra because (Comp, w̄g, ∆̄) is a unital
infinitesimal bialgebra. The space of primitive elements Prim∆̄(Comp) is
generated by reduced set compositions. One can check by an inductive ar-
gument, that the Hopf algebra described by Chapoton is a free associative
algebra generated by reduced set compositions.

5.3.4. From set compositions to permutations.

Let Comp0 be the sub S-module of Comp of set compositions of degree 0.
The vector space Comp0(n) is isomorphic to k[Sn] but the right Sn-action
is given by σ · τ = τ−1σ. The S-module Comp0 is a sub-operad of Π. It is
the operad Zin, as noticed by Chapoton in [8]. In the category of vector
spaces, an algebra over Zin is a Zinbiel algebra, that is, a vector space Z
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together with a product ≺ satisfying the relation
(x ≺ y) ≺ z = x ≺ (y ≺ z + z ≺ y), ∀x, y, z ∈ Z.

As a consequence there are surjective morphisms of Hopf operads
CTD→ Zin, Π→ Zin .

The operad Zin is consequently a multiplicative operad and Comp0 is a
commutative twisted bialgebra. The product and coproduct are given, for
σ ∈ Comp0(p) and τ ∈ Comp0(q) by

mZ(σ, τ) =
∑

x∈Shp,q
(σ × τ)x

∆Z(σ) =
p∑
i=0

σ|[i] ⊗ σ|i+[p−i] · (∪1≤j≤i{σ(j)},∪i+1≤k≤p{σ(k)})

The morphisms above induce surjective morphisms of twisted bialgebras
Hf → Comp0, Hg → Comp0 .

The cosymmetrized Hopf algebra associated to Comp0 is clearly HMR, and
since it is a cosymmetrized algebra associated to a twisted bialgebra it is
free on Prim∆̄Z (Comp0). But ∆̄Z(σ) =

∑
ρ×τ=σ ρ ⊗ τ. As a consequence,

HMR is free generated by the connected permutations and cofree (see
section 5.2). We recover the results obtained in e.g. [23], [9] and [1].

Considering the graded linear duals, one has an embedding of cocom-
mutative twisted bialgebras

(Comp0)∗ ↪→ (Hf )∗ = T .
The symmetrized Hopf algebra associated to (Comp0)∗ is the dual of the
Malvenuto-Reutenauer Hopf algebra H∗MR (which is isomorphic to HMR).
By functoriality in theorem 4.2.2, we obtain in characteristic 0 an em-
bedding of enveloping algebras at the level of associated cosymmetrized
algebras (compare with Theorem 17 in [22]).

5.4. Hopf algebra structures on the faces of the associahe-
dron

In his thesis, Chapoton considered various Hopf algebra structures on the
faces of the associahedra, or Stasheff polytopes, filtered in [5], graded in [6].
He considered also filtered and graded operad structures on these objects
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in [7]. The filtered operadic structure coincides with the one defined by
Loday and Ronco in [16], under the name of tridendriform operad. In this
section, we apply Case 2 to obtain Hopf algebra structures on the faces
of the associahedra.

5.4.1. Planar trees

The set of planar trees with n+ 1 leaves is denoted by Tn. The set Tn =
∪n−1
k=0Tn,k is graded by k where n − k is the number of internal vertices.

For instance Tn,0 is the set of planar binary trees. The Stasheff polytope
of dimension n − 1 has its faces of dimension 0 ≤ k ≤ n − 1 indexed by
Tn,k. The aim of this section is to provide the vector space ⊕k[Tn] with
Hopf structures.

Given some planar trees t1, . . . , tk the planar tree ∨(t1, . . . , tk) is the
one obtained by joining the roots of the trees t1, . . . , tk to an extra root,
from left to right. If ti has degree li then ∨(t1, . . . , tk) has degree l1 + . . .+
lk + k − 1.

One can label the n sectors delimited by a tree t in Tn from left to right
as in the following example:

t =

1
2 5 6

3 4

= ∨( , , ).

5.4.2. The operad of tridendriform algebras [16], [7]

The operad T riDend is a regular operad whose underlying S-module is
T riDend(n) = S k[Tn]. It is a quadratic binary operad generated by 3
operations

≺:= ,

�:= ,

· := ,
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satisfying the relations
(x ≺ y) ≺ z = x ≺ (y ∗ z) = + + ,

(x � y) ≺ z = x � (y ≺ z) = ,

(x ∗ y) � z = x � (y � z) = + + ,
(x � y) · z = x � (y · z) = ,

(x ≺ z) · z = x · (y � z) = ,

(x · y) ≺ z = x · (y ≺ z) = ,{
(x · y) · z = x · (y · z) = ,

where

x ∗ y =x · y + x ≺ y + x � y (5.3)

is associative.
One can also give an inductive formula for the composition in T riDend

by the following

(|, y) = y, (x, |) = 0,

(|, y) = 0, (x, |) = 0,

(|, y) = 0, (x, |) = x,

(∨(x1, . . . , xk), y) = ∨ (x1, . . . , xk−1, xk ∗ y),

(∨(x1, . . . , xk),∨(y1, . . . , yl)) = ∨ (x1, . . . , xk−1, xk ∗ y1, y2, . . . , yl),

(x,∨(y1, . . . , yl)) = ∨ (x ∗ y1, y2, . . . , yl).

In [7], Chapoton describes the composition x ◦i y for trees x and y:

x ◦i y =
∑

(fl,fr)
x ◦(fl,fr)i y,

where y is inserted in the sector i of x following the maps (fl, fr): the left
(right) edge of the sector i of x is a set of edges and vertices ordered from
bottom to top and denoted by xil, (xir). The left (right) most edge of y
has several vertices: the ordered set of these vertices is denoted by yl (yr).
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The map fl (fr) is an increasing map from yl (yr) to xil (xir). For instance

a

c

b
1

2

◦1

α

= ︸ ︷︷ ︸
f1

+ ︸ ︷︷ ︸
f2

+ ︸ ︷︷ ︸
f3

,

where

x1
l = yl = ∅,

x1
r = {a < b < c}, yr = {α},

f1 = (Id, α 7→ a), f2 = (Id, α 7→ c) and f3 = (Id, α 7→ b).

Moreover one can define a Hopf structure on this operad following the
same pattern than proposition 5.3.2: for x ∈ T riDend(2),

x(t1 ⊗ t2, s1 ⊗ s2) =
{
| ⊗ x(t2, s2), if t1 = s1 = |,
x(t1, s1)⊗ t2 ∗ s2, otherwise.

By induction on the degree of a tree t one can prove that

5.4.3. Proposition

The S-module (k[Tn] ⊗ k[Sn])n is a tridendriform Hopf algebra for the
coproduct

∆(∨(t1, . . . , tk)) = | ⊗ ∨(t1, . . . , tk)+∑
SitTi=[li]

∨(tS1
1(1), . . . , t

Sk
k(1))⊗ t

T1
1(2) ∗ . . .∗ t

Tk
k(2)⊗ (S1×̄ . . . ×̄Sk, T1×̄ . . . ×̄Tk)

where |ti| = li,

∆(ti) =
∑

SitTi=[li]
tSii(1) ⊗ t

Ti
i(2) ⊗ (Si, Ti)

and for any Ui ⊂ [li],

U1×̄ . . . ×̄Uk = {l1+. . .+li+i, 1 ≤ i ≤ k−1}∪1≤i≤kUi+l1+. . .+li−1+i−1. �
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5.4.4. Hopf structures

Let us apply Case 2 to the connected Hopf operad T riDend which is
multiplicative with the product ∗ introduced in equation (5.3).

The graded vector space T ree = ⊕n k[Tn] is the free graded tridendri-
form algebra over one generator, hence it is a Hopf tridendriform algebra
in grVect. Let µ be the tridendriform product and ∆ be the coproduct.
By theorem 4.1.3, (T ree, µ, ∆̄) is a unital tridendriform bialgebra. The
description of ∆ gives the description of ∆̄: if ∆̄(tk) =

∑
tk(a)⊗ tk(b), then

∆̄(∨(t1, . . . , tk)) = | ⊗ ∨(t1, . . . , tk) +
∑
∨(t1, . . . , tk−1, tk(a))⊗ tk(b).

As a consequence a basis of Prim∆̄(T ree) is given by the planar trees of
type ∨(t1, . . . , tk−1, |).

The Hopf algebra (T ree, ∗,∆) is the free associative algebra spanned by
the set of trees of the form ∨(t1, . . . , tk−1, |).

Recall that the product ∗ is defined by induction: for x = ∨(x1, . . . , xk)
and y = ∨(y1, . . . , yl)

x ∗ y = ∨(x1, . . . , xk−1, xk ∗ y) + ∨(x ∗ y1, y2, . . . , yl)+
∨ (x1, . . . , xk−1, xk ∗ y1, y2, . . . , yl).

and
∆(t) = | ⊗ t+

∑
∨(t1(1), . . . , tk(1))⊗ t1(2) ∗ . . . ∗ tk(2).

The Hopf structure defined by Chapoton in [5] is essentially the same: the
product is the same and the coproduct is τ∆, where τ is the symmetry
isomorphism. Hence it is a free associative algebra spanned by the set of
trees of the form ∨(|, t2, . . . , tk).

The graded linear dual of T ree is a 2-associative bialgebra: it is free as
an associative algebra for the product t∆̄, cofree as a coalgebra for t∗ and
it is the enveloping 2-as bialgebra of its primitive elements (with respect
to t∗). The product of two trees t∆̄(t, s) is the tree obtained by gluing the
tree s on the right most leave of t. it is usually denoted t\s. For instance

\ = .
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5.4.5. Some operad morphisms

There are morphisms of Hopf operads

T riDend
πT riDend

��

ψ // CTD
πCTD

��
Dend

ψ0 // Zin

(5.4)

The vertical maps are projection onto cells of degree 0. The map πCTD
has been explained in paragraph 5.3.4. The map πT riDend is the projection
onto the dendriform operad, which is a regular operad generated by planar
binary trees (see e.g. [15]). The morphism ψ sends ≺ to the set composition
(1, 2), � to the set composition (2, 1) and · to the set composition (12).
Indeed we can describe ψ at the level of trees. There is a map φ from
set compositions to trees, described by induction as follows. Let P =
(P1, . . . , Pk) be a set composition of [n]. If P1 = {l1 < . . . < lj} then it
splits [n] into j+1 intervals Is possibly empty: for 0 ≤ s ≤ j, Is =]ls, ls+1[
with l0 = 0 and lj+1 = n+ 1. The map φ is defined by{

φ(∅) = |,
φ(P ) = ∨(φ(P ∩ I0), . . . , φ(P ∩ Ij)).

For instance if P = (34, 1, 56, 2) then I0 = {1, 2}, I1 = ∅ and I2 = {5, 6}
and

φ(34, 1, 56, 2) = ∨(φ(1, 2), φ(∅), φ(12)) = .

Note that the function θ from the permutohedra to the associahedra de-
fined by Tonks in [25] (see also [5] and [22]) satisfies

θ(P1, . . . , Pk) = φ(Pk, Pk−1, . . . , P2, P1).
The morphism ψ is the transpose of φ. It is an operad morphism,

whereas the transpose of θ is not an operad morphism.
The morphism ψ0 is the transpose of φ0 which is an operad morphism.

Loday and Ronco defined in [15] a function from k[Yn] (the vector space
generated by planar binary trees with n vertices) to k[Sn] in order to
embed k[Yn] as a Hopf subalgebra of the (graded linear dual of the)
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Malvenuto-Reutenauer Hopf algebra. It is also a transpose of a set mor-
phism Sn → Yn. If α : Sn → Sn is the involution defined by

α(σ1, . . . , σn) = (σn, . . . , σ1)−1,

then the set morphism defined by Loday and Ronco is φ0α.

5.4.6. Consequences on Hopf algebra morphisms

The operad T riDend is a regular operad. A tridendriform 2-bialgebra
is a 4-uple (H,µ,∆, δ) where (H,µ,∆) is a Hopf tridendriform bialgebra
in grVect and (H,µ, δ) is a unital infinitesimal tridendriform bialgebra.
The diagram (5.4) is a diagram of tridendriform 2-bialgebras:

• The operad T riDend induces the tridendriform 2-bialgebra

(T ree := ⊕n k[Tn], µT ,∆T , ∆̄T )

explained in paragraph 5.4.4.

• Using the surjective operad morphism ΠT riDend : T riDend →
Dend one gets the tridendriform 2-bialgebra structure on the vec-
tor space spanned by planar binary trees denoted by

(PBT := ⊕n k[Yn], µY ,∆Y , ∆̄Y ),

where Yn is the set of planar binary trees with n + 1 leaves as in
[15].

• The underlying S-modules of the operads CTD and Zin are triden-
driform algebras in S-mod then by theorems 3.1.3 and 4.1.2 one
gets tridendriform 2-bialgebras on the underlying graded vector
spaces. These structures are denoted respectively

(Comp, µC ,∆C , ∆̄C) and (⊕n k[Sn], µS ,∆S , ∆̄S).

As a consequence we obtain a diagram of Hopf algebras (and unital infin-
itesimal bialgebras as well):
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(⊕n k[Tn], ∗T ,∆T )

πT riDend
��

ψ // (Comp, ∗C ,∆C) = NCQSym

πCTD
��

(⊕n k[Yn], ∗Y ,∆Y )
ψ0 // (⊕n k[Sn], ∗S ,∆S) = HMR

where the horizontal arrows are injective morphisms of Hopf algebras
and vertical arrows are surjective morphisms of Hopf algebras. Note that
the Hopf algebra structure on the planar binary tree (⊕n k[Yn], ∗Y , τ∆Y )
where τ is the symmetry isomorphism is the one described by Loday and
Ronco in [15]. Note also that the graded linear dual of this diagram is
a diagram of 2-associative bialgebras. It extends the results obtained by
Palacios and Ronco in [20].

5.4.7. Conclusion

For the last decade, many results of freeness and cofreeness of combina-
torial Hopf algebras have appeared in the litterature (see the references
cited throughout the paper and recently [2], [10], [19]). The present pa-
per illustrates that these freeness results are a consequence of an operadic
structure on the Hopf algebra H itself or its symmetrization SH. Namely,
either the Hopf algebra H is an S-module and one can find an operad
structure on H in order to apply Case 1; or the Hopf algebra is not an
S-module and one can find an operad structure on SH in order to apply
Case 2.

Acknowledgments: The author thanks the Institut Mittag-Leffler (Djur-
sholm, Sweden) where this work was carried out during her stay.
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