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Abstract

In this paper we give a geometric cobordism description of differential integral
cohomology. The main motivation to consider this model (for other models see
[5, 6, 7, 8]) is that it allows for simple descriptions of both the cup product and
the integration. In particular it is very easy to verify the compatibilty of these
structures. We proceed in a similar way in the case of differential cobordism as
constructed in [4]. There the starting point was Quillen’s cobordism description of
singular cobordism groups for a differential manifold X. Here we use instead the
similar description of integral cohomology from [11]. This cohomology theory is
denoted by SH∗(X). In this description smooth manifolds in Quillen’s description
are replaced by so-called stratifolds, which are certain stratified spaces. The coho-
mology theory SH∗(X) is naturally isomorphic to ordinary integral cohomology
H∗(X), thus we obtain a cobordism type definition of the differential extension of
ordinary integral cohomology.

Une description géométrique de la cohomologie différentielle
Résumé

Nous donnons une définition géométrique de la cohomologie intégrale diffé-
rentielle. Nous utilisons des cycles de cobordisme avec singularités, et des formes
différentielles distributionnelles. Avec cette description, la construction de la multi-
plication et de l’intégration avec toutes les proprietés désirées est particulièrement
simple.

1. Axioms of differential cohomology theories

To begin, let us recall what is meant by a differential extension of the
functor H∗, ordinary integral cohomology. Compare [2, Definition 1.1] for

Keywords: differential cohomology, smooth cohomology, geometric cycles, cobordism.
Math. classification: 55N20, 57R19.
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the formal definition and the fundamental paper [8] for a general con-
struction of such theories. We denote the differential k-forms by Ωk(X),
the subspace of closed forms by Ωkcl(X) and the forms with compact sup-
port by Ωkc (X). The map to de Rham cohomology, which we identify
with real singular cohomology via the de Rham isomorphism, is denoted
Rham : Ωkcl(X)→ Hk(X; R).

Definition 1.1. A differential extension of H∗ is a functor X 7→ Ĥ∗(X)
from the category of smooth manifolds to Z-graded groups together with
natural transformations

(1) R : Ĥ∗(X)→ Ω∗cl(X) (curvature)

(2) I : Ĥ∗(X)→ H∗(X) (forget differential data)

(3) a : Ω∗−1(X)/im(d)→ Ĥ∗(X) (action of forms).

These transformations have to satisfy the following axioms.

(1) R ◦ a = d : Ω∗−1(X)→ Ω∗cl(X).

(2) The following diagram commutes:

Ĥ∗(X)

R
��

I // H∗(X)

��
Ω∗cl(X) Rham// H∗(X; R)

.

(3) For every smooth manifold X the sequence

H∗−1(X)→ Ω∗−1(X)/im(d) a−→ Ĥ∗(X) I−→ H∗(X)→ 0
is exact, where the first map is the composition

H∗−1(X) −→ ker(d : Ω∗−1(X)→ Ω∗(X))
im(d)

⊆ Ω∗−1(X)
im(d)

.

To have a compatible ring structure means that Ĥ∗ actually takes values
in graded commutative rings (we denote the product by ∪), that R, I are
ring maps, and that for all x ∈ Ĥ∗(X) and ω ∈ Ω(X)∗−1/im(d) we have

a(ω) ∪ x = a(ω ∧R(x)).

2



Geometric differential cohomology

In this case we call the differential extension a multiplicative differential
extension.

We will use a construction of H∗(X) in terms of cobordism classes
similar to Quillen’s description of singular cobordism. The difference is
that we replace manifolds by manifolds with singularities called stratifolds.
In the next section we briefly introduce stratifolds and prove some basic
properties needed for our construction. To distinguish the cohomology
theory constructed from stratifolds from singular cohomology we denote
it by SH∗(X). The use of bordism with singularities to describe ordinary
homology goes back to Sullivan, compare [1]. However, our singularities
are quite different from those employed in that approach.

2. Stratifolds

Now we give a short introduction to stratifolds, where we are rather
sketchy and refer the reader to [11] for details. A stratifold is a topological
space S together with a subsheaf C of the sheaf of continuous functions,
which in case of a smooth manifold plays the role of the sheaf of smooth
functions. The space S and the sheaf C have to fulfill certain natural ax-
ioms, which in particular give a decomposition of S into smooth manifolds,
the strata of S. The top-dimensional stratum Sm is also called the regular
part Sreg. There is an obvious definition of morphisms between stratifolds,
which are continuous maps f : S → S′, which pull elements in C′ back to
elements in C. A basic property which relates the strata Sk to the strati-
fold S is that for each x ∈ Sk there is an open neighborhood U ⊆ S of x
and a retract r : U → U ∩ Sk which is a morphism. These are called local
retracts. It is useful to note that a map is a morphism if and only if it is
smooth on all strata and commutes with appropriate local retracts. We
will only consider regular stratifolds which means that locally near each x
in a stratum Sk the stratifold looks like V × F for some stratifold F and
open subset V in Sk. A stratifold is called orientable if the codimension 1
stratum is empty and the top stratum is orientable. Once an orientation
on the top stratum is fixed we call such a stratifold an oriented stratifold.
More generally, if S is a stratifold and X a smooth manifold, a continuous
map f : S → X is called orientable if the codimension 1 stratum of S is
empty and if f |∗SregΛ

Z/2
X is isomorphic to ΛZ/2

Sreg . Here, ΛZ/2
X is the orien-

tation covering of X. An orientation of f is then the choice of such an
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isomorphism. Note that it also gives an isomorphism between ΛSreg and
f |∗SrefΛX , where ΛX is the real orientation bundle of X.

We also consider stratifolds with boundary. This is a pair of spaces
(T , ∂T ) together with stratifold structures on T − ∂T and on ∂T and
a germ of collars c : ∂T × [0, 1) → T . Many basic properties of smooth
manifolds generalize to stratifolds, like tangent spaces (the vector space
of derivations of the germ of morphisms to R), the differential of a mor-
phism, differential forms (see below), Sard’s theorem, approximation of
continuous maps from a stratifold to a smooth manifold by morphisms
and the transversality theorem for a map from a stratifold S to a smooth
manifold X and a smooth map from a manifold Y → X. For all this see
[11].

Since we will use differential forms intensively we define them on strat-
ifolds. A k-form ω on a stratifold S is a prescription which to each x ∈ S
assigns an alternating k-form on TxS, which fulfills the following property:

(1) The restriction to each stratum is a differential k-form.

(2) For each x ∈ Sr, the r-stratum, there is an open neighborhood
U ⊆ S of x in S and a local retract

r : U → U ∩ Sr,
such that

ω|U = r∗(ω|U∩Sr).

Here the pull back of a differential form under a morphism from a strat-
ifold to a smooth manifold is defined as for smooth manifolds using the
differential.

Lemma 2.1. Let S be an m-dimensional stratifold and f : S → X be a
proper morphism to an n-dimensional smooth manifold. Then there is an
open neighborhood V of the singular part such that for all ω ∈ Ωmc (X;E)
the pullback f∗(ω) vanishes on V . Here, E → X is any coefficient bundle.
In other words, there is a fixed compact subset K = S \ V of the regular
part such that supp(f∗ω) ⊂ K.

Proof. Let x ∈ Sr for r < m be a point in the singular part of S. Then
there is an open neighborhood of x in S and a local retract

r : U → U ∩ Sr,
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such that the restriction of f to U factors over r and hence

f∗(ω|U ) = r∗(f∗(ω)|U∩Sr).

Note that U and r are determined by f and can be chosen independent
of ω.

Since f∗(ω)|U∩Sr = 0 for dimensional reasons we conclude that there is
an open neighborhood V of the singular part S−Sm such that (f |Sm)∗(ω)
vanishes on Sm ∩ V .

Now, let K be a compact set in X such that ω vanishes outside of K.
Then, since f is proper, f−1(K) is a compact subset of S. Since Sm−V is
a closed subset of Sm, the set f−1(K) ∩ (Sm − V ) is compact, and f∗(ω)
vanishes outside this set. �

As a consequence we can define the following integral. Let ω be a form
with compact support on X with coefficients in ΛX and f : S → X a
proper oriented morphism from an m-dimensional stratifold S to X. Then
we define ∫

S
f∗(ω) :=

∫
Sm

(f |Sm)∗(ω),

using the identification of f |∗SmΛX with ΛSm from the orientation of f .
Similarly, for a proper oriented morphism F : T → X from an m-

dimensional stratifold with boundary we define∫
T
F ∗(ω) :=

∫
T m

(F |T m)∗(ω).

Stokes’ Theorem applied to the top stratum gives us Stokes’ Theorem:
If ω ∈ Ωm−1

c (X; ΛX), then∫
T
d(F ∗(ω)) =

∫
∂T
F |∗∂T (ω). (2.1)

Remark 2.2. Throughout this article, we will work with oriented mor-
phisms and maps f : S → X and with differential forms with values in
the orientation bundle of X. In the special case that X is an oriented
manifold, these are ordinary forms, and an orientation of f is precisely
an orientation of S. A reader not used to the more general setting might
just assume the orientability and choice of orientations throughout. The
passage to the general case is a mere technical point.
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3. Differential cohomology via stratifolds

Now we define the cycles of our differential cohomology following the recipe
as for for singular cobordism [4]. The starting point is the description of
k-th ordinary integral cohomology of X as bordism classes of continuous
oriented proper maps from oriented regular stratifolds S of dimension
(n−k) to X [11, Chapter 12]. Actually, compared to [11] one has to make
the (obvious) modifications of passing from oriented manifolds to arbitrary
manifolds by working with oriented maps. We call such oriented proper
maps k-cycles. We denote this cohomology group SHk(X), the stratifold
cohomology of X. Since every proper map is homotopic via proper maps
to a morphism [11] we will always assume that f is a morphism. Note that
a proper homotopy can be considered as a special case of a bordism.

Let f : S → X be a k-cycle, i.e. a proper oriented morphism from a
regular (n− k)-dimensional stratifold to X. Then we construct a current
T (S, f), i.e. an element in the topological dual space Ωn−kc (X; ΛX)∗ of
continuous linear maps from Ωn−kc (X; ΛX) to R as follows:

ω 7→
∫

S
f∗(ω).

We have an injective map
j : Ωk(X)→ Ωn−kc (X; ΛX)∗

given by
j(α) := {ω 7→

∫
X
α ∧ ω} .

After these preparations we define a cycle for k-th differential cohomol-
ogy:

Definition 3.1. A differential cycle of degree k is a triple
(S, f, α)

where (S, f) is as above given by a proper oriented morphism f : S →
X, with S an (n − k)-dimensional oriented regular stratifold, and α ∈
Ωn−(k+1)
c (X; ΛX)∗/im(d∗), such that T (S, f) − d∗(α) is in the image of
j. The sum of two differential cycles is defined by disjoint union. The
negative of a cycle (S, f, α) is (S, f−,−α) where f− is f with the reverse
orientation.
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We define cobordisms of cycles for differential cohomology as follows:
if T is a stratifold with boundary ∂T = S and F : T → X is a proper
oriented morphism, we say that (T , F ) is a zero bordism of

(∂W,F |∂T , T (T ,F)),
and a bordism between two cycles is a zero bordism of the difference. The
only thing which is a bit special is that for the map F on a bordism T to
X we require that F commutes with the collar c : ∂T × [0, ε)→ T for some
appropriate ε > 0. This allows to glue bordisms (using the collars) in a
compatible way. Note also that dT (T ,F)−T (∂T , F |∂T ) = 0 (in particular
is in the image of j) by (2.1):

d∗T (T ,F)(ω) =
∫
T
F ∗(dω) =

∫
T
dF ∗ω =

∫
∂T
F |∗∂T ω = T (∂T , F |∂T )(ω) .

We denote the corresponding bordism group by
ˆSHk(X).

We call this group the differential stratifold cohomology of X.
As in [4, Definition 4.9] we define the maps

R : ˆSH∗(X)→ Ω∗(X); [S, f, α] 7→ j−1(T (S, f)− d∗(α)),
a : Ω∗−1(X)/im(d)→ ˆSH∗(X); α 7→ [∅,−j(α)],

I : ˆSH∗(X)→ SH∗(X); [S, f, α] 7→ [S, f ].

The proof that these maps are well defined is literally the same as in
the case, where we have smooth manifolds instead of stratifolds [4, Lemma
4.10], since the basic ingredient, Stokes’ Theorem, is available.

The next aim is to construct induced maps for a smooth map g : Y → X.
The basic idea is that, if (S, f, α) is a differential cycle in X then we can
after a proper homotopy of f (which we can consider as a special case of
a bordism) assume that g is transversal to f . Then, as in [11], one can
consider the pull back of S giving a cycle (g∗(S), F ) in Y . We denote the
canonical map g∗(S)→ S by G. As in [4, Section 4.2.6], the orientation of
f induces an orientation of F = g∗f .

To extend this pull back to a differential cycle by pulling back α, one
has the same situation as in [4], i.e. one has to pull back α along g. Recall
that this is only possible if WF (α) ∩ N(g) = ∅. Here WF (α) ⊆ T ∗X
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denotes the wave front set of the distributional form α, and N(f) ⊆ T ∗X
is the normal set to f . The wave front set of a distributional form α on
X is a conical subset of T ∗X which measures the locus and the directions
of the singularities of α. For a precise definition and for the properties of
distributions using the wave front set needed we refer to [9, Section 8].
Compare [4, Section 4.2.6] for the notation and more details. In terms of
normal sets transversality of f and g can be expressed as N(f)∩N(g) = ∅
(where N(f) is the normal set of the restriction of f to the top stratum).
Hence g∗α is defined if WF (α) ⊆ N(f). In order to match this condition
we use the freedom to change α by an element in the image of d∗.

We observe that by definition and by Lemma 2.1 T (S, f) = (f |regS )!(ρ)
where ρ : Sreg → R is a smooth compactly supported cutoff function which
is zero in a neighborhood of the singular set of S, and which is identically
1 on the support of any f∗ω for ω ∈ Ωn−kc (X).

Consequently, the construction of T is described entirely in the context
of smooth manifolds, smooth maps and smooth forms; as in the context
of [4]. Now, the arguments there, in particular [4, Lemma 4.12] literally
apply in our situation to show that we can change α to a representative α′
such that the wave front set of α′ satisfies WF (α′) ⊆ N(f). Then g∗(α′)
is a well defined distribution and we can make the following definition.

Definition 3.2. We set g∗[S, f, α] := [g∗(S), g∗f, g∗(α)], where we choose
a representative such that f is transversal to g and WF (α) ⊆ N(f).

The proof that this induced map is well defined and functorial is the
same as in the case where S is a smooth manifold. Naturality of the trans-
formations R, I and a is checked in a straigtforward way.

4. Ring structure on differential stratifold cohomology

Definition 4.1. We define the ×-product of classes [S, f, α] ∈ ˆSHk(X)
and [S′, f ′, α′] ∈ ˆSHr(X ′) with values in ˆSHk+r(X ×X ′) as

[S, f, α]× [S′, f ′, α′] :=

[(−1)krS× S′, f × f ′, (−1)kR([S, f, α])× α′ + α× T (S′, f ′)].

The sign (−1)kr comes from the fact that in contrast to [4] we work with
orientations of the tangent bundle, whereas there normal orientations are
used. This orientation convention is in agreement with that in [11].
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The proof of the following fundamental properties is the same as in [4],
except that for the difference of signs one has to use the arguments in [11].

Proposition 4.2. The product is well defined, associative, graded com-
mutative, and natural.

Using the map induced by the diagonal ∆: X → X ×X we define the
cup product.

Definition 4.3. For a ∈ ˆSHk(X) and b ∈ ˆSHr(X) we define
a ∪ b := ∆∗(a× b).

By a straightforward calculation we see

Proposition 4.4. The maps R and I are multiplicative and
a(β) ∪ [S, f, α] = a(β ∧R([S, f, α])).

5. Differential stratifold cohomology as differential exten-
sion of ordinary cohomology

We have constructed a differential extension of the SH∗-homology theory
as developped in [11]. However, we argue that ˆSH∗ is a differential ex-
ension of ordinary integral cohomology. For this, we have to observe that
the corresponding stratifold cohomology SH∗(X) is naturally isomorphic
to ordinary integral cohomology H∗(X). The reason is that this functor
fulfills the homotopy axiom (obvious) and that one has a natural Mayer-
Vietoris sequence. This was proven in [11] for the case where X is oriented,
but the same proof works in the non-oriented case. Now we apply [12] or
[3, Section 7]. There, it is proven that a cohomology theory on smooth
manifolds is naturally isomorphic to ordinary integral cohomology if it
satisfies the homotopy axiom, the Mayer-Vietoris sequence and if the co-
homology groups of a 0-dimensional manifold X are the direct product
of the cohomology groups of the points in X. Moreover, it was shown
in [12] that the natural isomorphism can be chosen to preserve the ring
structure. Thus we can identify the multiplicative cohomology theories
stratifold cohomology and ordinary integral cohomology.

We now formulate our main theorem.

Theorem 5.1. Our construction ˆSH∗ defines a multiplicative differential
extension of ordinary cohomology with integer coefficients in the sense of
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Definition 1.1. By [13, Theorem 1.1] or [3] it follows that our theory is
uniquely naturally equivalent to any other of the many models for this
extension, in particular to Cheeger-Simons differential characters of [5],
as described in [13].

This is actually even true as a multiplicative extension: by [13, Theorem
1.2] or [3], there is only one multiplicative differential extension of integral
cohomology.

Proof. Our setup is not quite identical to the one of [13], as there it is
required that the kernel of R : ĤS∗(M) → Ω∗(M) is naturally identified
with H∗−1(M ; R/Z).

As this is not given, we use instead the method of proof of [3]. There, a
natural transformation Φ between any two differential extensions Ĥ and
Ĥ ′ of integral cohomology is constructed by making a universal choice. It
is shown that Φ is additive and unique in even degrees because Hk(pt) = 0
for k odd. The same method implies immediately that the transformation
is additive and unique in all degrees except for ∗ = 1, as H∗−1(pt) = 0
except if ∗ = 1.

Next, the method shows that for the transformation Φ there is

c ∈ R/Z = H0(S1 × S1; R/Z) = H0(K(Z, 1)×K(Z, 1); R/Z)

such that for two classes x, y of degree 1 we have

Φ(x+ y) = Φ(x) + Φ(y) + a(c).

However, we can modify Φ by setting Φ′(x) := Φ(x)−a(c) if x is of degree
1 and Φ′(x) = Φ(x) otherwise. Then we conclude that Φ′ is the unique
additive transformation between the two differential extensions of integral
cohomology satisfying our axioms.

The methods of [3] finally show that there is at most one ring struc-
ture on a differential extension of integral cohomology. Again, this follows
because of the vanishing of H∗(pt; R/Z) if ∗ 6= 0, together with the consid-
eration of distributivity for products of classes of degree zero and degree
one. �

Proposition 5.2. The flat theory corresponding to ˆSH∗, i.e. the func-
tor U∗(X) := ker(R : ˆSH∗(X) → Ω∗(X)) is naturally isomorphic to the
functor H∗−1(X; R/Z).

In particular, ˆSH∗ satisfies the setup of [13].
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Proof. This is a special case of [3, Theorem 7.12]. �

6. Integration along the fiber

Let p : X → B be the projection map of a locally trivial fiber bundle. To
define “integration along the fibers” of p for a cohomology theory E, one
has to choose an E-orientation for p (which might not exist).

For a general cohomology theory E and a differential extension Ê, usu-
ally one has to choose further data in addition to an ordinary E-orientation
to prescribe an Ê-orientation, compare e.g. [2, Section 3.1] or [4, Section
4.3.7].

An exception is ordinary integral cohomology H, as already observed
in [5, 6, 10]. Here, an ordinary orientation determines canonically a dif-
ferential orientation and a differential integration map. In our model of
differential cohomology using stratifolds, the definition of the integration
map as well as the proof of its main properties is particularly simple. More
precisely, we will prove the following theorem.

Theorem 6.1. Given a locally trivial smooth fiber bundle with closed
d-dimensional fibers which is oriented for ordinary integral cohomology,
there is a canonical integration for differential stratifold cohomology

p̂! : ˆSH∗(E)→ ˆSH∗−d(B).
This has the following properties

(1) The differential integration is compatible with integration of forms
and of ordinary integral cohomology classes, i.e. the following di-
agrams commute:

Ω∗−1(E) α−−−−→ ˆSH∗(E) I−−−−→ H∗(E)y∫E/B yp̂! yp!
Ω∗−1−d(B) α−−−−→ ˆSH∗−d(B) I−−−−→ H∗−d(B).

ˆSH∗(E) R−−−−→ Ω∗cl(E)yp̂! y∫E/B
ˆSH∗−d(B) R−−−−→ Ω∗−dcl (B).

11
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(2) Naturality: If
F

v−−−−→ Eyq yp
C

u−−−−→ B
is a cartesian diagram, then

ˆSH∗(E) v̂∗−−−−→ ˆSH∗(F )yp̂! yq̂!
ˆSH∗−d(B) û∗−−−−→ ˆSH∗−d(C)

commutes, where we use on q the pullback of the orientation on p.

(3) Functoriality: if r : D q−→ E p−→ B is a composition of two smooth
oriented fiber bundles (with composed orientation), then

r̂! = p̂! ◦ q̂!.

(4) Projection formula: if x ∈ ˆSHk(B), y ∈ ˆSHm(E) then

p̂!(p̂∗(x) ∪ y) = (−1)kdx ∪ p̂!(y).

(5) On a cycle x = [S, f, α],

p̂!(x) = [S, p ◦ f,
∫
E/B
α := p∗α],

where by definition
∫
E/B α(ω) = α(p∗ω) and where we equip p ◦ f

with the composed orientation.

In the remainder of this section we prove Theorem 6.1. Note that (5)
actually is a definition of p̂! which by construction is compatible with
the addition in ˆSH∗. However, we have to check that it is well defined.
By compatibility with addition, for a cycle (S, f, α) representing zero,
i.e. S = ∂T , f = (F : T → X)|S, α = T (T , F ), we have to check that
this is mapped to zero under p̂!. However, [S, p ◦ f, p∗α] is precisely the
boundary of [T , p ◦F, T (T , F )], as by definition T is the pushdown of the
fundamental class, and this is natural for composition, so 5 indeed defines
p̂!.

12
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Next we prove the compatibilities of (1). Here, we have for a class of
cycles x = [S, f, α] and a form ω ∈ Ω∗(E):

p!I(x) = p![f : S→ E] = [p ◦ f : S→ B] = I(p̂!(x)),∫
E/B
R(x) =

∫
E/B

(T (S, f)− d∗α) = T (S, p ◦ f)− d∗
∫
E/B
α = R(p̂!(x)),

p̂!α(ω) = p̂![∅,−ω] = [∅,−
∫
E/B
ω] = α(

∫
E/B
ω).

To prove naturality (2) with respect to pullback in a diagram

F
v−−−−→ Eyq yp

C
u−−−−→ B

choose (without loss of generality) the cycle x = [S, f, α] such that f is
transversal to v and WF (α) ⊆ N(f). Since p and q are submersions,
the composition p ◦ f is transversal to u. Moreover (with the notation
WFy(β) =WF (β) ∩ T ∗yB and similar for normal sets)

WFy(
∫
E/B
α) ⊆

⋃
x∈p−1(y)

(dp∗x)−1(WFx(α))

⊆
⋃

x∈p−1(y)
(dp∗x)−1Nx(f) ⊆ Ny(p ◦ f),

so that u∗(p̂!(x)) is defined using the cycle (S, p ◦ f,
∫
E/B α).

Then,

q̂!(v∗(x)) = q̂!(v∗S, v∗f, v∗α) = (v∗S, q ◦ v∗f,
∫
F/C
v∗α)

= (u∗S, u∗(p ◦ f), u∗
∫
E/B
α) = u∗(p̂!(x)).

Here we use that pullback and pushdown of distributional forms in a
cartesion square are compatible (which follows from the corresponding
statement for differential forms by continuity, as the pullback is extended
from differential to distributional forms by continuity).

It remains to prove the projection formula (4). This we do in two steps.
First we consider the projection id×p : B ×E → B ×B. If x = [S, f, α] ∈
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ˆSHk(B) and y = [S̃, f̃ , α̃] ∈ ˆSHm(E) then

îd×p!(x× y) =

(−1)km[S× S̃, f × (p ◦ f̃), (−1)kR(S, f, α)×
∫
E/B
α̃+ α× T (S̃, p ◦ f̃)]

= (−1)kdx× p̂!(y) .

Secondly, using the diagonal inclusion B → B×B we pull back the whole
situation to p : E → B and use the naturality of the differential integration
with respect to pullback. Observe that the natural map E p×id−−−→ B × E
which lifts the diagonal map B → B × B factors as E diag−−→ E × E p×id−−−→
B × E. Recall finally that the cup product in differential cohomology is
defined as the pullback of the exterior product with respect to the diagonal
map. We obtain

p̂!(p∗x× y) = (−1)kdx ∪ p̂!(y).

7. Transformations between differential cohomology

The construction of differential cohomology via stratifolds, i.e. generalized
oriented manifolds, immediately allows to define a lift of the orientation
transformation from a bordism theory which is naturally equipped with an
H-orientation to the corresponding differential extensions of the present
article and of [4] (provided the characters are chosen appropriately).

As an example, take the canonical orientation from complex bordism
to integral homology. As character on complex bordism, use this map
composed with the natural map from integral cohomology to cohomology
with real coefficients:

MU∗(X) ori−−→ H∗(X; Z) i∗−→ H∗(X; R).

In the stratifold description of integral cohomology and for X an ori-
ented manifold, the transformation sends [E → X] ∈ MU∗(X) to [E →
X], where the complex oriented manifold E with proper map to X is inter-
preted as a stratifold with proper morphism to X. A bordism of manifolds
over X is also a bordism of stratifolds, so this map is well defined; it is an
easy exercise that this indeed describes the natural transformation dual
to taking the fundamental class of a stable almost complex manifold.

14
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We immediately get a differential lift
M̂U

∗(X)→ ĤS∗(X)

by mapping the M̂U∗(X)-class [E, f, α] to the ĤS∗(X)-class [E, f, α]. Ob-
viously this is compatible with the curvature homomorphisms as well as
with the passage to the underlying homology theories and the transfor-
mation ori, and with the action of differential forms.
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