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Some examples of harmonic maps for g-natural
metrics

Mohamed Tahar Kadaoui Abbassi
Giovanni Calvaruso
Domenico Perrone

Abstract

We produce new examples of harmonic maps, having as source manifold a
space (M, g) of constant curvature and as target manifold its tangent bundle TM ,
equipped with a suitable Riemannian g-natural metric. In particular, we determine
a family of Riemannian g-natural metrics G on TS2, with respect to which all
conformal gradient vector fields define harmonic maps from S2 into (TS2, G).

Résumé

On produit des nouveaux exemples d’applications harmoniques, ayant chacune
comme espace de départ une variété (M, g) á courbure constante et comme espace
d’arrivée son fibré tangent TM , muni d’une métrique g-naturelle Riemannienne
appropriée. En particulier, on va déterminer une famille de métriques g-naturelles
Riemanniennes G sur TS2, par rapport auxquelles tous les champs de vecteurs
gradients conformes définissent des applications harmoniques de S2 dans (TS2, G).

1. Introduction

In the theory of harmonic maps, a fundamental question concerns the ex-
istence of harmonic maps between two given Riemannian manifolds (M, g)
and (M ′, g′).

If (M, g) is compact and (M ′, g′) is of non-positive sectional curvature,
then there exists a harmonic map f : (M, g)→ (M ′, g′) in each homotopy
class [8]. However, there is no general existence result when (M ′, g′) ad-
mits some positive sectional curvatures. This fact makes it interesting to
find examples of harmonic maps having such a target manifold. Clearly,

Keywords: harmonic map, tangent bundle, vector fields, g-natural metrics, spaces of
constant curvature.
Math. classification: 58E20, 53C43.
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the non-applicability of the standard existence theory for harmonic maps,
leads to the construction of examples by an ad hoc approach. Some ex-
amples in this direction are given in [5], where harmonic maps are defined
by tangent vector fields. Moreover, given an arbitrary section σ of a Rie-
mannian manifold (M, g), Oniciuc [12] showed how to construct a suit-
able metric on the tangent bundle TM , which depends on σ and makes
σ : (M, g)→ TM totally geodesic, hence harmonic.

The Sasaki metric gs is by far the most investigated among all possible
Riemannnian metrics on TM . Nouhaud [11] and Ishihara [9] indepen-
dently proved that parallel vector fields on a compact Riemannian man-
ifold are the only defining harmonic maps V : (M, g) → (TM, gs). This
rigid behaviour of the Sasaki metric with respect to harmonicity, and the
fact that gs and other well-known Riemannian metrics on TM are g-
natural, motivated in [1] the study of the harmonicity of V : (M, g) →
(TM,G), with TM equipped with an arbitrary Riemannian g-natural met-
ric. Riemannian g-natural metrics form a large family of Riemannian met-
rics on TM , which depends on six independent smooth functions from R+

to R. Several different behaviours have been found for the harmonic maps
of (TM,G), with respect to different Riemannian g-natural metrics G. In
particular, it was proved that, for a suitable choice of G, some remarkable
non-parallel vector fields, such as Hopf vector fields on the unit sphere
S2m+1 and, more generally, the Reeb vector field of a contact metric man-
ifold, are harmonic maps of (TM,G).

In this paper, we give new examples of harmonic maps from a Rie-
mannian manifold (M, g) of constant sectional curvature and its tangent
bundle TM , equipped with some Riemannian g-natural metric G. More
precisely, in Section 4 we show that there exists a family of Riemannian
g-natural metrics G on TS2 (also including some metrics conformal to
the Sasaki metric gs), with respect to which all conformal gradient vec-
tor fields define harmonic maps from S2 into (TS2, G). It is worthwhile
to remark that (TS2, G) necessarily admits some positive sectional curva-
tures, and that the metrics of Cheeger-Gromoll type hp,q, studied by M.
Benyounes, E. Loubeau and C.M. Wood ([5],[6]), fail to provide examples
of harmonic maps from (S2, g) to (TS2, hp,q), for any Riemannian metric
g on S2. In Section 5, we show that if (M, g) has constant non-positive
sectional curvature, then a Riemannian g-natural metric can be found,
such that all vector fields of a fixed constant length are harmonic maps.
In Section 6, we suppose (M, g) flat and characterize harmonic maps for a

306



Some examples of harmonic maps

family of Riemannian g-natural metrics on TM . Within this family, there
exist Riemannian g-natural metrics for which the target manifold TM has
nonnegative sectional curvature. The definition and basic properties of g-
natural metrics on TM will be recalled in Section 2, while the expression
of the tension field associated to V : (M, g)→ (TM,G) is in Section 3.

2. Basic formulas on g-natural metrics on tangent bundles

Let (M, g) be an n-dimensional Riemannian manifold and ∇ its Levi-
Civita connection. At any point (x, u) of its tangent bundle TM , the
tangent space of TM splits into the horizontal and vertical subspaces
with respect to ∇: (TM)(x,u) = H(x,u) ⊕ V(x,u). For any vector X ∈ Mx,
there exists a unique vector Xh ∈ H(x,u) (the horizontal lift of X to
(x, u) ∈ TM), such that π∗Xh = X, where π : TM → M is the natural
projection. The vertical lift of a vector X ∈Mx to (x, u) ∈ TM is a vector
Xv ∈ V(x,u) such that Xv(df) = Xf , for all functions f on M . Here we
consider 1-forms df on M as functions on TM (i.e., (df)(x, u) = uf). The
mapX → Xh is an isomorphism between the vector spacesMx andH(x,u).
Similarly, the map X → Xv is an isomorphism between Mx and V(x,u).
Each tangent vector Z̃ ∈ (TM)(x,u) can be written Z̃ = Xh + Y v, where
X,Y ∈ Mx are uniquely determined vectors. Horizontal and vertical lifts
of vector fields on M can be defined in an obvious way and define vector
fields on TM .

The Sasaki metric gs has been the most investigated among all pos-
sible Riemannnian metrics on TM . However, in many different contexts
such metrics showed a very "rigid" behaviour. Moreover, gs represents only
one possible choice inside a wide family of Riemannian metrics on TM ,
known as Riemannian g-natural metrics, which depend on several inde-
pendent smooth functions from R+ to R. As their name suggests, those
metrics arise from a very "natural" construction starting from a Riemann-
ian metric g over M . g-natural metrics arise from the description of all
possible first order natural operators D : S2

+T
∗  (S2T ∗)T , transforming

Riemannian metrics on manifolds into metrics on their tangent bundles,
where S2

+T
∗ and S2T ∗ denote the bundle functors of all Riemannian met-

rics and all symmetric (0, 2)-tensors over manifolds. For more details about
the concept of naturality and related notions, we refer to [10].
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We shall call g-natural metric a metric G on TM , coming from g by
a first-order natural operator S2

+T
∗  (S2T ∗)T [2]. Given an arbitrary

g-natural metric G on the tangent bundle TM of a Riemannian manifold
(M, g), there are six smooth functions αi, βi : R+ → R, i = 1, 2, 3, such
that for every u, X, Y ∈Mx, we have

G(x,u)(Xh, Y h) = (α1 + α3)(r2)gx(X,Y )
+(β1 + β3)(r2)gx(X,u)gx(Y, u),

G(x,u)(Xh, Y v) = α2(r2)gx(X,Y ) + β2(r2)gx(X,u)gx(Y, u),
G(x,u)(Xv, Y h) = α2(r2)gx(X,Y ) + β2(r2)gx(X,u)gx(Y, u),
G(x,u)(Xv, Y v) = α1(r2)gx(X,Y ) + β1(r2)gx(X,u)gx(Y, u),

(2.1)

where r2 = gx(u, u). For n = 1, the same holds with βi = 0, i = 1, 2, 3.
Put

• φi(t) = αi(t) + tβi(t),

• α(t) = α1(t)(α1 + α3)(t)− α2
2(t),

• φ(t) = φ1(t)(φ1 + φ3)(t)− φ2
2(t),

for all t ∈ R+. Then, a g-natural metric G on TM is Riemannian if and
only if
α1(t) > 0, φ1(t) > 0, α(t) > 0, φ(t) > 0, ∀ t ∈ R+. (2.2)

Convention a) In the sequel, all Riemannian g-natural metrics G on
TM will be defined by the functions αi, βi : R+ → R, i = 1, 2, 3, satisfying
(2.1)-(2.2).

b) Unless otherwise stated, all real functions αi, βi, φi, α and φ and
their derivatives are evaluated at r2 := gx(u, u).

c) We shall denote respectively by R and Q the curvature tensor and
the Ricci operator of a Riemannian manifold (M, g). The tensor R is taken
with the sign convention

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

for all vector fields X,Y, Z on M .
All examples presented in this paper will concern Riemannian g-natural

metrics satisfying
α2 = β2 = 0, α1 > 0, α1 + α3 > 0, (2.3)
φ1 = α1 + tβ1 > 0 and α1 + α3 + t(β1 + β3) > 0.
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Note that, because of (2.1), α2 = β2 = 0 is equivalent to requiring that
the horizontal and vertical distributions are mutually orthogonal with re-
spect to G. On the other hand, inequalities in (2.3) are nothing but (2.2),
rewritten when α2 = β2 = 0.

The Levi-Civita connection ∇̄ of an arbitrary g-natural metricG on TM
was written down in [3], to which we refer for more details. Restricting
ourselves to the case when α2 = β2 = 0, we have the following

Proposition 2.1. Let (M, g) be a Riemannian manifold, ∇ its Levi-Civita
connection and R its curvature tensor. Let G be a Riemannian g-natural
metric on TM , satisfying α2 = β2 = 0. Then, the Levi-Civita connection
∇̄ of (TM,G) is characterized by

(i) (∇̄XhY h)(x,u) = (∇XY )h(x,u) + v{B(u;Xx, Yx)},

(ii) (∇̄XhY v)(x,u) = (∇XY )v(x,u) + h{C(u;Xx, Yx)},

(iii) (∇̄XvY h)(x,u) = h{C(u;Yx, Xx)},

(iv) (∇̄XvY v)(x,u) = v{F (u;Xx, Yx)},

for all vector fields X, Y on M and (x, u) ∈ TM , where B, C and F are
defined, for all u, X, Y ∈Mx, x ∈M , by:

B(u;X,Y ) = B2R(X,Y )u+B3[gx(Y, u)X + gx(X,u)Y ]

+B5gx(X,Y )u+B6gx(X,u)gx(Y, u)u,

where 
B2 = −1

2 , B3 = −β1+β3
2α1
, B5 = − (α1+α3)′

φ1
,

B6 = −α1(β1+β3)′+β1(β1+β3)
α1φ1

,

C(u;X,Y ) = C1R(Y, u)X + C2gx(X,u)Y + C3gx(Y, u)X

+C4gx(R(X,u)Y, u)u+ C5gx(X,Y )u+ C6gx(X,u)gx(Y, u)u,
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where 
C1 = − α1

2(α1+α3) , C2 = − β1+β3
2(α1+α3) , C3 = (α1+α3)′

α1+α3
,

C4 = α1(β1+β3)
2(α1+α3)(φ1+φ3) , C5 = β1+β3

2(φ1+φ3) ,

C6 = 2α1(α1+α3)(β1+β3)′−α1(β1+β3)[2(α1+α3)′+(β1+β3)]
2α1φ1

,

F (u;X,Y ) = F1[gx(Y, u)X + gx(X,u)Y ] + F2gx(X,Y )u

+F3gx(X,u)gx(Y, u)u,

where
F1 = α

′
1
α1
, F2 = β1 − α′1

φ1
, F3 = α1β

′
1 − 2α′1β1
α1φ1

.

3. Harmonicity of V : (M, g)→ (TM,G)

We briefly recall that, given f : (M, g)→ (M ′, g′) a smooth map between
Riemannian manifolds, with M compact, the energy of f is defined as the
integral

E(f) :=
∫
M
e(f)dvg

where e(f) = 1
2 ||f∗||

2 = 1
2trgf∗g′ is the energy density of f . With respect to

a local orthonormal basis of vector fields {e1, .., en} onM , the energy den-
sity is e(f) = 1

2
∑n
i=1 g

′(f∗ei, f∗ei). Critical points of the energy functional
on C∞(M,M ′) are called harmonic maps. They have been characterized
in [8] as maps having vanishing tension field τ(f) = tr∇df . WhenM is not
compact, a map f : (M, g)→ (M ′, g′) is said to be harmonic if τ(f) = 0.
For more on harmonic maps, cf. [7],[15].

Now, let (M, g) be a compact Riemannian manifold of dimension n
and (TM,G) its tangent bundle, equipped with a g-natural Riemannian
metric. Each vector field V ∈ X (M) defines a smooth map V : (M, g) →
(TM,G), p 7→ Vp ∈Mp. By definition, the energy E(V ) of V is the energy
associated to the corresponding map V : (M, g) → (TM,G). Therefore,
E(V ) =

∫
M e(V )dvg, where the density function e(V ) is given by

ep(V ) = 1
2
||V∗p||2 = 1

2
trg(V ∗G)p = 1

2

n∑
i=1

(V ∗G)p(ei, ei), (3.1)
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{e1, .., en} being any local orthonormal basis of vector fields defined in
a neighborhood of p. Harmonicity of the map V : (M, g) → (TM,G) is
studied in [1]. Using formulas of Proposition 2.1, we have

2 e(V ) = n(α1 + α3)(r2) + (β1 + β3)(r2)r2 + α1(r2)||∇V ||2

+1
4β1(r2)||grad r2||2

where r = ||V ||.
Next, considering the horizontal and vertical components of the tension

field τ(V ) = tr(∇dV ) associated to the map V : (M, g) → (TM,G),
harmonic maps V : (M, g) → (TM,G) where characterized in [1] for all
Riemannian g-natural metrics on TM . Restricting ourselves to the case
of Riemannian g-natural metrics satisfying (2.3), from the main result of
[1] we have at once the following

Theorem 3.1. Let (M, g) be a compact Riemannian manifold and G
a Riemannian g-natural metric on TM , determined by functions αi, βi
satisfying (2.3). A vector field V ∈ X(M) defines a harmonic map V :
(M, g)→ (TM,G) if and only if

τh(V ) = − α1
α1 + α3

tr[R(∇·V, V )·] + (α1 + α3)′

α1 + α3
grad r2 − β1 + β3

α1 + α3
∇V V

+
[ α1(β1 + β3)
(α1 + α3)(φ1 + φ3)

g(tr[R(∇·V, V )·], V ) + β1 + β3
φ1 + φ3

divV

+2α1(α1 + α3)(β1 + β3)′ − 2α1(β1 + β3)(α1 + α3)′

2α1φ1
V (r2)

−α1(β1 + β3)(β1 + β3)
2α1φ1

V (r2)
]
V = 0, (3.2)

τv(V ) = −∆̄V + α
′
1
α1
∇grad r2V +

[
− β1 + β3
α1

− n(α1 + α3)′

φ1

+β1 − α′1
φ1

||∇V ||2 + β1(β1 + β3)− α1(β1 + β3)′

α1φ1
r2 (3.3)

+α1β
′
1 − 2α′1β1
4α1φ1

∣∣∣∣∣∣grad r2
∣∣∣∣∣∣2 ]V = 0.
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Remark 3.2. As usual, we can assume condition τ(V ) = 0 as a definition
of harmonic maps when M is not compact, and Theorem 3.1 extends at
once to the non-compact case.

Remark 3.3. In the next Sections, we shall use Riemannian g-natural met-
rics on the tangent bundle TM , and the characterization obtained in this
Section for their harmonic maps, in order to determine new examples of
harmonic maps. There are some prices to pay when the Sasaki metric is
replaced by Riemannian g-natural metrics:

• With respect to these metrics, parallel vector fields are not always
harmonic [1].

• The projection map π : (TM,G) → (M, g) is not always a Rie-
mannian submersion [3].

4. Harmonic maps V : S2 → (S2, G)

Let Sn ⊂ Rn+1 be the unit sphere with the induced Riemannian metric
g. Xin [16] proved that for any compact manifold (N,h), all non-constant
harmonic maps f : (Sn, g) → (N,h) are unstable, provided that n ≥ 3.
Vector fields responsible for this unstability are the conformal gradient
vector fields. Given any vector a ∈ Rn+1, a 6= 0, the conformal gradient
vector field Va corresponding to a, is defined as Va = ∇λa, where, for all
x ∈ Sn, λa(x) =< x, a >. These vector fields satisfy [16]:

∇XVa = −λaX, ∆̄Va = Va. (4.1)

Moreover, putting c2 = ||a||2, one has [5]

r2 = ||Va||2 = c2 − λ2
a, ∇r2 = −2λaVa. (4.2)

Finally, (4.1) also easily implies

divVa = −nλa, ||∇Va||2 = nλ2
a. (4.3)

Let now G be an arbitrary Riemannian g-natural metric on TSn. Using
(4.1), (2.1) and (2.3), we obtain

V ∗a G = {(1+λ2
a)α1(r2)+α3(r2)}g+{(1+λ2

a)β1(r2)+β3(r2)}ωa⊗ωa, (4.4)

where ωa is the 1-form dual to Va.
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Next, we recall that the volume of Va is defined as

vol(Va) =
∫

Sn

√
detV ∗a Gvg =

∫
Sn

√
µ1 . . . µn vg,

where µ1 . . . µn are the eigenvalues of V ∗a G. In particular, if n = 2, then
2√µ1µ2 ≤ µ1 + µ2 and so,

vol(Va) ≤ E(Va) = 1
2

∫
Sn

(µ1 + µ2) vg

and the equality holds if and only if µ1 = µ2, that is, Va is a conformal
map. On the other hand, Sanini [14] proved that if f : (M, g) → (M ′, g′)
is a conformal map and M is a compact two-dimensional manifold, then
the energy of f remains unaltered for any deformation of the metric g on
M . Therefore, we have the following

Proposition 4.1. Let G be a Riemannian g-natural metric on TS2, sat-
isfying β1 = β2 = β3 = α2 = 0. Then,

E(Va) =
∫

Sn
((1 + λ2

a)α1(r2) + α3(r2)) vg = vol(Va).

Moreover, E(Va) is stationary with respect to an arbitrary deformation of
the standard metric g0 on S2.

Harmonicity of conformal gradient vector fields was investigated in [5],
equipping the tangent bundle with a metric of Cheeger-Gromoll type.
However, in the examples found in [5], the metrics are not Riemannian, but
have varying signature. Moreover, these metrics fail to provide examples of
harmonic maps defined on S2. We will show in the sequel how to construct
such examples using Riemannian g-natural metrics.

Consider a Riemannian g-natural metric G on TM of the special type
described by (2.3). Moreover, we also assume β1 = β3 = 0. We then rewrite
harmonicity conditions τh(V ) = τv(V ) = 0 for a conformal gradient vector
field Va = ∇λa. Using (4.1) and (4.3), we obtain that Va : Sn → (TSn, G)
is a harmonic map if and only if{

−2(α1 + α3)′ + α1 − nα1 = 0,
−α1 − n(α1 + α3)′ + (2− n)α′1λ2

a = 0. (4.5)

Calculating (α1 + α3)′ from the first equation in (4.5) and replacing into
the second one, we see that if n = 2, then (4.5) reduces to its first equation,
namely,

α1 + 2(α1 + α3)′ = 0, (4.6)
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which can be integrated finding solutions compatible with the Riemannian
conditions (2.2). Thus, if G is a Riemannian g-natural metric on TS2

determined by

α1 > 0, α1 +α3 > 0, α1 + 2(α1 +α3)′ = 0, α2 = β1 = β2 = β3 = 0, (4.7)

then Va : S2 → (TS2, G) is a harmonic map. For example, we can take
explicitly

α1(t) = µe−
1

2(µ1+1) t, α3(t) = µ1α1(t), α2 = β1 = β2 = β3 = 0, (4.8)

for any real constants µ > 0 and µ1 ≥ 0. Note that if µ1 = 0, then the
Riemannian g-natural metric G determined by (4.8) is conformal to the
Sasaki metric gs on TS2; moreover, if G is a Riemannian g-natural metric
on TS2 determined by (4.7), then (by (4.4) ) V ∗a G is conformal to g.

Next, we recall the following decreasing property for harmonic im-
mersions of a surface, proved by Sampson ([13], Theorem 7, p.217): if
f : (M2, g)→ (M̃, g̃) is a harmonic immersion and f∗g̃ is conformal to g,
then the sectional curvatures of (M2, f∗g̃) and (M̃, g̃) satisfy

Kf∗g̃(TxM2) ≤ Kg̃(f∗TxM2),

for any x ∈ M2. This result ensures that (TS2, G) admits some positive
sectional curvatures for any Riemannian g-natural metric G on TS2 sat-
isfying (4.7). In fact, the Gauss-Bonnet Theorem then gives

1
2π

∫
S2
KV ∗a g̃(TxS

2) = χ(S2) = 2 > 0,

where χ(S2) denotes the Euler number of S2. Therefore, we proved the
following

Theorem 4.2. Let G be a Riemannian g-natural metric satisfying (4.7).
Then, all conformal gradient vector fields Va = ∇λa on S2 define har-
monic maps Va : S2 → (TS2, G). Moreover, (TS2, G) admits some positive
sectional curvatures.

Remark 4.3. Standard calculations show that system (4.5), when n ≥ 3,
admit solutions which depend on the function λ2

a = c2 − r2 defining the
conformal gradient vector field Va. Explicitly, we find

α1(t) = µ(c2 − t)
1−n

2
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and

α3(t) =
{
−α1(t) + µ ln(c2 − t) + κ if n = 3,
−α1(t)− µn−1

n−3(c2 − t)
3−n

2 + κ if n > 3,
for arbitrary constants µ > 0 and κ. However, in general these solutions
are not compatible with the Riemannian conditions (2.2). Indeed, an easy
analysis of the above expressions of α3 leads to the following conclusions:

• The metric G is Riemannian if and only if n > 3, κ > 0 and

c2 −
[
n−3
n−1

κ
µ

] 2
3−n ≤ 0.

• The metric G is pseudo-Riemannian of signature (n, n) if and only
if either n = 3 and c2 − e−

κ
µ ≤ 0, or n > 3 and κ ≤ 0.

• In the remaining cases, the metric G is of varying signature.

The following result has been proved in [4]: let f : (M2, g)→ (M ′, g′) be
a conformal harmonic map, with M compact. If f is volume-stable, then
it is also energy-stable. Theorem 4.2 above then implies the following

Corollary 4.4. Let G be a Riemannian g-natural metric satisfying (4.7).
If the harmonic map Va : S2 → (TS2, G) is volume-stable, then it is also
energy-stable.

5. Harmonic maps V : (M(k), g)→ (TM,G) when k ≤ 0

Let (M(k), g) be an n-dimensional Riemannian manifold of constant sec-
tional curvature k ≤ 0, and V a vector field on M , of constant length√
ρ. Consider a Riemannian g-natural metric G on TM , determined by

functions αi(t), βi(t) satisfying
α2 = β2 = 0, β3 = −β1 − kα1. (5.1)

Using the second equation of (5.1), one can easily rewrite the connection
functions given in Proposition 2.1 and then the horizontal and vertical
components of the tension field τ(V ). We also use the constancy of the
sectional curvature and of the length of V . We conclude that τh(V ) = 0
identically, and

τv(V ) = −∆̄V +
[
k−n(α1 + α3)′

φ1
−kρβ1 − α′1

φ1
−α
′
1 − β1
φ1

||∇V ||2
]
V. (5.2)
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By (5.2), τv(V ) = 0 if and only if

∆̄V =
[
k − n(α1 + α3)′

φ1
− kρβ1 − α′1

φ1
− α

′
1 − β1
φ1

||∇V ||2
]
V. (5.3)

Since in this case ∆̄V = 1
ρ ||∇V ||

2V , replacing into (5.3) we find

(α1 + ρα′1)||∇V ||2 = −nρ(α1 + α3)′ + kρ(α1 + ρα′1). (5.4)

In particular, assuming α1 + α3 = µ and taking α1(t) = ce−
1
ρ
t, for two

positive constants µ, c, (5.4) is automatically satisfied. Then, we get

Theorem 5.1. Let (M(k), g) be an n-dimensional Riemannian manifold
of nonpositive constant sectional curvature k, and G a Riemannian g-
natural metric on TM , determined by functions αi(t), βi(t) which satisfy

α1(t) = ce−
1
ρ
t
, α3 = µ− α1, α2 = β2 = 0, β3 = −β1 − kα1, (5.5)

where ρ, µ, c are positive real constants. Then, any vector field V of con-
stant lengt ρ defines a harmonic map V : (M(k), g)→ (TM,G).

Remark 5.2. Conditions (5.5) ensure that (2.2) are satisfied and so, g-
natural metrics G as in Theorem 5.1 are Riemannian. Note that when
k > 0, then (5.5) again determines g-natural metrics G for which all vector
fields of constant length √ρ are harmonic maps. However, these G are not
Riemannian, because (2.2) are not satisfied. Explicit examples of non-
parallel harmonic maps of (TM,G′), when (M, g) has positive constant
sectional curvature and G′ is a suitable Riemannian g-natural metric, have
already been found in [1].

6. Harmonic maps V : (M, g)→ (TM,G) when (M, g) is flat

Let (M, g) be an n-dimensional locally flat Riemannian manifold and con-
sider a (local) orthonormal frame of coordinate vector fields { ∂∂xi } on M .
Clearly, a vector field V =

∑
Vi
∂
∂xi

is parallel if and only if Vi is constant
for all i = 1, . . . , n.

As it is well known, if the tangent bundle TM is equipped with the
Sasaki metric gs, then parallel vector fields are harmonic maps (M, g)→
(TM, gs). Moreover, when M = Ω is an open subset of Rn, a vector field
V =

∑
Vi
∂
∂xi

defines a harmonic map from Ω → (TΩ, gs) if and only if
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the map
f : Ω→ Rn, x 7→ (V 1(x), .., V n(x))

is harmonic. To our knowledge, these are the only general results on the
harmonicity of vector fields defined in a locally flat manifold.

Consider now M = Ω an open subset of Rn, equipped with the induced
flat metric, and a Riemannian g-natural metric G on TM , satisfying (2.3)
and the additional conditions

α1 + α3 = a > 0, β1 = β3 = 0, (6.1)

where a is a constant. Then, by Theorem 3.1 and taking into account
R = 0 and (6.1), we have that (3.2) holds identically, and the map V :
(M, g)→ (TM,G) is harmonic if and only if

− ∆̄V + α
′
1
α1
∇grad r2V −

α′1
α1
||∇V ||2V = 0 (6.2)

Since V =
∑
Vi
∂
∂xi

, we then have r2 =
∑
i V

2
i and we easily find

∆̄V = −
∑
i,k

∂2Vk
∂x2
i

∂

∂xk
, ∇gradr2V = 2

∑
i,j,k

Vi
∂Vi
∂xj

∂Vk
∂xj

∂

∂xk
.

Hence, (6.2) is equivalent to the following system of partial differential
equations:∑
i

∂2Vk
∂x2
i

+ 2α
′
1
α1

∑
i,j

Vi
∂Vi
∂xj

∂Vk
∂xj
− α

′
1
α1

∑
i,j

(
∂Vj
∂xi

)2
Vk = 0, k = 1, . . . , n.

(6.3)
Because of the regularity of α1, general existence results for the solutions of
a system of partial differential equations, ensure that system (6.3) admits
solutions. Note that whenever at least one component Vk is not constant,
V is not parallel.

As an extremely special case, assume the components of V are all con-
stant except for Vk, for a fixed index k, and that Vk only depends on one
of the local coordinates, say Vk = Vk(xi). Then, system (6.3) reduces to

∂2Vk
∂x2
i

= −α
′
1
α1
Vk

(
∂Vk
∂xi

)2
. (6.4)

Remark 6.1. It would be worthwhile to find some explicit solutions of sys-
tem (6.3), also taking into account the fact that there exist some g-natural

317



M.T.K. Abbassi and G. Calvaruso and D. Perrone

Riemannian metrics G satisfying (2.3) and (6.1), such that (TM,G) has
non-negative sectional curvature. For example, we have the following

Proposition 6.2. Let (M, g) be a flat Riemannian manifold and G a
Riemannian g-natural metric defined by

α1(t) = 1
1 + t
, α3(t) = a− 1

1 + t
, α2 = β1 = β2 = β3 = 0. (6.5)

Then, (TM,G) has non-negative sectional curvature.

Proof. Applying the formulas for the curvature tensor of a Riemannian
g-natural metric on TM [2], standard calculations show that if G satisfies
(6.5), then the sectional curvature K̃ of (TM,G) satisfies

K̃(x,u)(XH , Y H) = K̃(x,u)(XH , Y V ) = 0,

K̃(x,u)(XV , Y V ) = 2 + ||u||2

(1 + ||u||2)2 [g(X,u)2 + g(Y, u)2] + 1
1 + ||u||2

> 0,

at any point (x, u) ∈ TM and for all tangent vectors X,Y at x �
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