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A discrete version of the Brunn-Minkowski
inequality and its stability

Michel Bonnefont

Abstract

In the first part of the paper, we define an approximated Brunn-Minkowski
inequality which generalizes the classical one for metric measure spaces. Our new
definition, based only on properties of the distance, allows also us to deal with
discrete metric measure spaces. Then we show the stability of our new inequality
under convergence of metric measure spaces. This result gives as corollary the
stability of the classical Brunn-Minkowski inequality for geodesic spaces. The proof
of this stability was done for related inequalities (curvature-dimension inequality,
metric contraction property) but not for the Brunn-Minkowski one, as far as we
know.
In the second part of the paper, we show that every metric measure space satisfying
the classical Brunn-Minkowski inequality can be approximated by discrete metric
spaces with some approximated Brunn-Minkowski inequalities.

Une version discrète de l’inégalité de Brunn-Minkowski et sa
stabilité
Résumé

Dans une première partie, nous définissons une inégalité de Brunn-Minkowski
approchée qui généralise l’inégalité de Brunn-Minkowski classique aux cas des es-
paces métriques mesurés. Cette nouvelle définition s’applique aussi aux espaces
métriques mesurés discrets. Nous montrons alors la stabilité de cette nouvelle in-
égalité sous la convergence d’espaces métriques mesurés. Nous obtenons en co-
rollaire la stabilité de l’inégalité de Brunn-Minkowski classique pour les espaces
géodesiques. Cette stabilité a déjà été montrée pour d’autres inégalités (inégalité
de courbure-dimension, propriété de contraction de la mesure) mais, autant que
nous sachions, pas pour celle de Brunn-Minkowski.
Dans la seconde partie de l’article, nous montrons que tout espace métrique me-
suré satisfaisant l’inégalité de Brunn-Minkowski classique peut être approché par
des espaces métriques discrets vérifiant certaines inégalités de Brunn-Minkowski
approchées.

Keywords: Brunn-Minkowski inequality, metric measure spaces, D-convergence, Ricci
curvature, discretization.
Math. classification: 52A40,53C21.
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1. Introduction

Let us recall some facts about the Brunn-Minkowski inequality. It was
first established in Rn for convex bodies by Brunn and Minkowski in 1887
(for more details about the inequality and its birth, one can refer to the
great surveys [1, 5] and the references therein). It can be read as follows:
if K and L are convex bodies (compact convex sets with non-empty inte-
rior) of Rn and 0 ≤ t ≤ 1 then

Vn((1− t)K + tL)1/n ≥ (1− t)Vn(K)1/n + tVn(L)1/n (1.1)

where Vn is the Lebesgue measure on Rn and + the Minkowski sum which
is given by

A+B = {a+ b; a ∈ A, b ∈ B}
for A and B two sets of Rn. Equality holds if and only if K and L are
equal up to translation and dilation.

The Brunn-Minkowski inequality is a very powerful inequality with a
lot of applications. For example it implies very quickly the isoperimetric
inequality for convex bodies in Rn which reads(

Vn(K)
Vn(Bn)

)1/n
≤
(
sn(K)
sn(Bn)

)1/(n−1)
(1.2)

where K is a convex body of Rn, Bn the unit ball of Rn and sn the surface
area measure; with equality if and only if K is a ball.

The Brunn-Minkowski inequality is valid not only for convex bodies but
also for all non-empty compact sets and even for all non-empty Borel sets
of Rn. One way to prove it is to establish the Prekopa-Leindler functional
inequality (see [1]) which applied to characteristic functions of sets gives
the multiplicative Brunn-Minkowski inequality

Vn((1− t)K + tL) ≥ Vn(K)1−tVn(L)t (1.3)

where K and L are two Borel sets of Rn. By homogenity of the Lebesgue
measure Vn, it can be shown that this a priori weaker inequality is in fact
equivalent to the n-dimensional one (1.1).

The Brunn-Minkowski inequality has a very strong geometric content
and it is natural to ask on which more general spaces than Rn the inequal-
ity can be extended.

A first answer would be to change the measure: a log-concave measure
on Rn satisfies the multiplicative Brunn Minkowski inequality.
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Stability of the Brunn-Minkowski inequality

But to be able to get away from Rn, we have to generalize the Minkowski
sum. This can be done on geodesic spaces with the notion of s-intermediate
sets. This notion is very useful in optimal transportation on geodesic
spaces (see [3] for length and geodesic spaces and [11] for optimal trans-
portation) and then appeared in some studies of optimal transportation
on Riemmannian manifolds (see [4]). Following an idea of this last paper,
for two subsets C0 and C1 of a metric space X and s ∈ [0, 1] we define the
s-intermediate set between C0 and C1 by

Cs =
{
x ∈ X;∃(c0, c1) ∈ C0 × C1,

d(c0, x) = sd(c0, c1)
d(x, c1) = (1− s)d(c0, c1)

}
.

(1.4)
This is the set spanned by all geodesics going from a point in C0 to a point
in C1. On Rn, this set is exactly the Minkowski sum of (1− s)C0 and sC1.
The authors in [4] use it only for a Riemannian manifold but it makes
sense for all metric spaces even if it is interesting only for geodesic spaces.
In this context we will say a metric measure space (X, d,m) satisfies the
N -dimensionnal Brunn-Minkowski inequality if

m1/N (Cs) ≥ (1− s)m1/N (C0) + sm1/N (C1) (1.5)

for all 0 ≤ s ≤ 1 and all C0, C1 non-empty compact sets of X. We
will refer in the sequel at (1.5) as the "classical" N -dimensionnal Brunn-
Minkowski inequality. It is proven in [4] that a Riemannian manifold M
of dimension n whose Ricci curvature is always non negative satisfies (1.5)
with dimension N = n and with its canonical volume measure, i.e.

vol(Cs)1/n ≥ (1− s)vol(C0)1/n + s vol(C1)1/n (1.6)

for all non-empty compact sets C0 and C1 ofM and with vol the canonical
volume measure of the Riemannian manifold.

Recently, there have been a lot of works on the geometry of metric
measure spaces. Lott-Villani and Sturm have given independently a syn-
thetic treatment of metric spaces having Ricci curvature bounded below
(see [7, 9, 10]). All these works were motivated by the result of precom-
pactness of Gromov: the class of Riemannian manifolds of dimension n
and Ricci curvature bounded below by some constant k is precompact in
the Gromov-Hausdorff metric. The notion of lower bound on Ricci curva-
ture they develop for metric spaces generalizes the Riemannian one and
is stable under Gromov-Hausdorff convergence. Their definition relies on
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convexity properties of relative entropy on the Wasserstein space of prob-
ability measures and is linked with optimal transportation.

Sturm ([10]) in this context defines a Brunn-Minkowski inequality with
curvature bounded below by k. The meaning of this inequality may not be
totally satisfactory. Indeed the inequality involves a parameter Θ which is
infc0∈C0,c1∈C1 d(c0, c1) or supc0∈C0,c1∈C1 d(c0, c1) whether the curvature is
non-negative or negative. It corresponds to the minimal or maximal length
of geodesics between the two compact sets C0 and C1. But this Brunn-
Minkowski inequality is a direct consequence of the dimension-curvature
condition CD(k,N) defined in this paper and it gives all the geometric
consequences of the theory like a Bishop-Gromov theorem on the growth
of balls.

There is another weak concept of lower bound of Ricci curvature which
is known as metric contraction property (see [8, 10, 6]) and which is implied
by this last Brunn-Minkowski inequality at least in the case of curvature
bounded below by 0 and the m ⊗ m a.s. existence and uniqueness of
geodesics between two points of the metric measure space (X,m, d).

As far as we know the stability of Brunn-Minkowski inequality (1.5)
was not proven yet. This is the main result of our paper (corollary 2.4).

In section 2, we prove the result for the classical Brunn-Minkowski
inequality (1.5) (which corresponds to the inequality defined by Sturm
with curvature bounded below by 0) and then explain in a remark how we
can extend our result to the general case with curvature bounded below
by k. We introduce an approximated Brunn-Minkowski inequality which
will be essential in the core of the proof of our main result and allows us
to deal with discrete metric spaces.

In section 3, we show that every metric measure space satisfying a
classical Brunn-Minkowski inequality can be approximated by discrete
metric spaces with some approximated Brunn-Minkowski inequalities.

To avoid issues with sets of zero measure we will work only with metric
spaces (X, d,m) where (X, d) is Polish and m a Borel measure on (X, d)
with full support, i.e. that charges every open ball of X.
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Stability of the Brunn-Minkowski inequality

2. Stability of Brunn-Minkowski inequality

Definition 2.1. Given h ≥ 0 and N ∈ N, N ≥ 1, we say that a metric
measure space (X, d, µ) satisfies the h-Brunn-Minkowski inequality of di-
mension N denoted by BM(N,h) if for each pair (C0, C1) of non-empty
compact subsets of X, we have:

∀s ∈ [0, 1], µ1/N (Csh) ≥ (1− s)µ1/N (C0) + s µ1/N (C1) (2.1)
where Chs is defined by{
x ∈ X;∃(x0, x1) ∈ C0 × C1,

|d(x0, x)− sd(x0, x1)| ≤ h
|d(x, x1)− (1− s)d(x0, x1)| ≤ h

}
.

We call the set Chs the set of h(-approximated) s-intermediate points
between C0 and C1. The idea of introducing this set is due to [2]. If X
is a geodesic space and h = 0, this inequality is just the classical Brunn-
Minkowski inequality. We shall often note BM(N) instead of BM(N, 0).
Remark that this definition is meaningful for discrete metric spaces.
Observe also that if X satisfies BM(N,h) it also satisfies BM(N,h′) for
all h′ ≥ h.
In this work we use the following distance D between abstract metric
measure spaces. We refer to [9] for its properties.

Definition 2.2. Let (M,d,m) and (M ′, d′,m′) be two metric measure
spaces, their D distance is given by

D((M,d,m), (M ′, d′,m′)) = inf
d̂,q

(∫
M×M ′

d̂2(x, y)dq(x, y)
)1/2

where d̂ is a pseudo-metric on the disjoint union M tM ′ which coincides
with d on M and with d′ on M ′ and q a coupling of the measures m and
m′.

A pseudo-metric d̂ on M tM ′ is a metric which coincides with d on
M and with d′ on M ′ but for which the property d̂(x, y) = 0 does not
necessarily imply that x and y are equal. A coupling q of the measures m
and m′ is a measure on M ×M ′ whose marginals are m and m′.

Theorem 2.3. Let (Xn, dn,mn) be a sequence of compact metric measure
spaces which converges with respect to the distance D to another compact
metric measure space (X, d,m). If (Xn, dn,mn) satisfies BM(N,hn) and
if hn → h when n goes to infinity, then (X, d,m) satisfies BM(N,h).
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Before proving this theorem, observe that a direct consequence is the
stability of the classical Brunn-Minkowski inequality for compact geodesic
spaces:

Corollary 2.4. Let (Xn, dn,mn) be a sequence of compact geodesic spaces
which converges with respect to the distance D to another compact metric
measure space (X, d,m), then X is also a geodesic space. If (Xn, dn,mn)
satisfies BM(N) then (X, d,m) satisfies also BM(N).

The fact that the limit set X is a geodesic space is well known (see [9]).
We will prove theorem 2.3 only for compact sets of positive measure.

The remarks following the proof will extend the inequality to all non-
empty Borel sets.

The idea of the proof is quite simple. Take two non-empty compact
subsets of the limit set X. Choose and fix a nearly optimal coupling of
Xn and X. Then one construct two compact sets of Xn by dilating the
first two sets of X in Xn t X with respect to the pseudo-distance d̂n of
the coupling and taking the restriction to Xn.

The fact which makes things work is that the sets built in Xn have
nearly the same mass as the initial ones in X. Now we can define an
approximated s-intermediate set in Xn and apply the Brunn-Minkowski
inequality in Xn. By the same construction as before, we construct a set
in the limit set X from the s-intermediate set in Xn without losing too
much measure. To conclude we have to study the link between this last set
and the set of approximate s-intermediate points between initial compact
subsets of X.

Proof of Theorem 2.3. Let C0, C1 be two compact sets of X of positive
measure and let s ∈ [0, 1]. Extracting a subsequence, we may assume that
D(Xn, X) ≤ 1

2n . By definition of D, there exists d̂n a pseudo-metric on
Xn tX and qn a coupling of mn and m such that(∫

Xn×X
d̂2n(x, y)dqn(x, y)

)1/2
≤ δn = 1

n

Let εn = 1√
n

. For i = 0, 1, define An,i = {x ∈ Xn; d̂n(x,Ci) ≤ εn}, these
are compact sets of Xn. Let us first prove that they are non empty for n
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Stability of the Brunn-Minkowski inequality

large enough. Indeed, for i = 0, 1,

m(Ci) = qn(Xn × Ci)
= qn(An,i × Ci) + qn({Xn \An,i} × Ci)

But if (x, y) ∈ {Xn \An,i} × Ci, then d̂2n(x, y) ≥ ε2n, so

qn({Xn \An,i} × Ci) ≤
∫
{Xn\An,i}×Ci

d̂2n(x, y)
εn2 dqn(x, y)

≤ δ2n
εn2 = 1

n
.

On the other hand, we have:

mn(An,i) = qn(An,i ×X)
≥ qn(An,i × Ci)

Therefore, for i = 0, 1,

mn(An,i) ≥ m(Ci)−
1
n
. (2.2)

So the sets An,i are non empty for n large enough.
Now since Xn satisfies BM(N,hn), introduce the set Ân,s ⊂ Xn defined

as in definition 2.1 by{
x ∈ Xn ; ∃(xn,0, xn,1) ∈ An,0 ×An,1, |d(xn,0, x)− sd(xn,0, xn,1)| ≤ hn,

|d(x, xn,1)− (1− s)d(xn,0, xn,1)| ≤ hn
}
.

This is the set of all the hn s-intermediate points between An,0 and An,1.
By definition of BM(N,hn), we have

m1/N
n (Ân,s) ≥ (1− s)m1/N

n (An,0) + sm1/N
n (An,1) (2.3)

We can now define Cn,s ⊂ X by

Cn,s = {y ∈ X;∃x ∈ Ân,s, d̂n(x, y) ≤ εn}

Similary to (2.2) we have

m(Cn,s) ≥ mn(Ân,s)−
1
n

(2.4)
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Now since (x − 1
n)1/N

+ ≥ x1/N − ( 1
n)1/N for all x ≥ 0, combining the

inequalities (2.2), (2.3) and (2.4) give us:

m1/N (Cn,s) ≥ m1/N
n (Ân,s)− ( 1

n
)1/N

≥ (1− s)m1/N
n (An,0) + sm1/N

n (An,1)− ( 1
n

)1/N

≥ (1− s)m1/N (C0) + sm1/N (C1)− 2( 1
n

)1/N .

Now let us prove that the set Cn,s of X is included in the set Chn+4εn
s

of all the hn+ 4εn s-intermediate points between C0 and C1 defined as in
defintion 2.1 by{
x ∈ X ; ∃(x0, x1) ∈ C0 × C1, |d(x0, x)− sd(x0, x1)| ≤ hn + 4εn,

|d(x, x1)− (1− s)d(x0, x1)| ≤ hn + 4εn
}
.

Indeed, let y ∈ Cn,s, by definition of this set, there exists x ∈ Ân,s
so that d̂n(x, y) ≤ εn. By definition of Ân,s, it follows that there exists
(xn,0, xn,1) ∈ An,0 ×An,1 such that

|dn(x, xn,0)− s dn(xn,0, xn,1)| ≤ hn
|dn(x, xn,1)− (1− s) dn(xn,0, xn,1)| ≤ hn.

By definition of An,i for i = 0, 1, there exists (y0, y1) ∈ C0 × C1 with
d̂n(xn,0, y0) ≤ εn and d̂n(xn,1, y1) ≤ εn. It follows:

|d̂(y, y0)− s d̂(y0, y1)| ≤ |d̂(y, y0)− d̂(x, xn,0)|

+ |d̂(x, xn,0)− s d̂(xn,0, xn,1)|

+ s |d̂(y0, y1)− d̂(xn,0, xn,1)|
≤ hn + 4εn

and
|d̂(y, y1)− (1− s) d̂(y0, y1)| ≤ hn + 4εn.

The sequence (hn+4εn)n is converging to h. Extracting a subsequence,
we may assume this sequence is monotone. There are two cases. The first
one is when the extracting subsequence is non-decreasing. Then we have
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Stability of the Brunn-Minkowski inequality

Chn+4εn
s ⊂ Chs . So, for all n,

m1/N (Chs ) ≥ m1/N (Chn+4εn
s ) ≥ (1− s)m1/N (C0) + sm1/N (C1)− 2( 1

n
)1/N .

Letting n go to infinity gives the conclusion.
The second one, more interesting, is when the extracted subsequence is
non-increasing. Then we have

Chs =
⋂
n

Chn+4εn
s .

Indeed if y ∈
⋂
nC
hn+4εn
s , for all n ∈ N, ∃(yn,0, yn,1) ∈ C0 × C1 so that

|d(y, yn,0)− s d(yn,0, yn,1)| ≤ hn + 4εn
|d(y, yn,1)− (1− s) d(yn,0, yn,1)| ≤ hn + 4εn.

By compactness of C0 and C1 we can extract another subsequence so that
yn,0 → y0 ∈ C0 and yn,1 → y1 ∈ C1 and we have

|d(y, y0)− s d(y0, y1)| ≤ h
|d(y, y1)− (1− s) d(y0, y1)| ≤ h .

The other inclusion is immediate. This intersection is non-increasing so

m1/N (Chs ) = lim
n→∞
m1/N (Chn+4εn

s )

which gives the conclusion

m1/N (Chs ) ≥ (1− s)m1/N (C0) + sm1/N (C1).

�

Remark 2.5. BM(N) is directly implied by the conditions CD(O,N) of
Sturm or Lott and Villani for all the compact sets with positive measure
(in fact for all the Borel sets with positive measure) (see [10]). But if the
measure m charges all the balls of the space then if the space satisfies
BM(N) for all its compact subsets with positive measure it satisfies also
it for all its non-empty compact subsets.

Indeed let (X, d,m) be a metric measure space where the measure m
charges all the open balls. Assume X satifies BM(N) for all its compact
subsets with positive measure. Let C0, C1 be non-empty compact subsets
with m(C0) = 0 and m(C1) > 0 (the case m(C0) = m(C1) = 0 is trivial)
and s ∈ [0, 1]. Define Hε0 = {y ∈ X;∃x ∈ C0, d(x, y) ≤ ε}, then m(Hε0) >
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0. Define Hεs the set of all the s-intermediate points between Hε0 and C1.
By Brunn-Minkowski inequality we have:

m1/N (Hεs ) ≥ (1− s)m1/N (Hε0) + sm1/N (C1) ≥ sm1/N (C1).
As before Hεs is included in C2ε

s the set of all 2ε s-intermediate points
between C0 and C1. As before

⋂
ε>0C

2ε
s is an non-increasing intersection

equal to C0
s the set of all the exact s-intermediate points between C0 and

C1. So
m(C0

s ) = lim
ε→0
m(C2ε

s )

which gives the annonced result. Consequently, on a compact metric mea-
sure space where the measure charges all the open balls, the condition
CD(0, N) implies BM(N) for all non-empty compact sets.

Remark 2.6. In Polish spaces, Borel measures are regular. It enables us
to pass from compact sets to Borel ones. More precisely, if a Polish space
satisfies BM(N,h) for all its compact subsets, it also satisfies it for all
its Borel subsets. Therefore, if the spaces Xn and X are only Polish (no
more compact), the sets An,i for i = 0, 1 defined as above may be no more
compact. However they will be closed, therefore (2.3) will still stay true
in this more general context. We can, consequently, drop the assumption
of compactness of Xn and X in theorem (2.3) and its corollary (2.4).

Remark 2.7. We can do the same for the Brunn-Minkowski inequality
with curvature bounded below by k by using the definition given in [10].
The only additional thing to do is to control the parameter Θ. But, with
preceeding notations, we have |Θ(C0, C1)−Θ(Cn,0, Cn,1)| ≤ 2εn.

Remark 2.8. We can prove also the same theorem for the multiplicative
Brunn-Minkowski inequality (1.3).

3. Discretizations of metric spaces

Let (M,d,m) be a given Polish measure space. For h > 0, let Mh =
{xi, i ≥ 1} be a countable subset of M with M =

⋃
i≥1Bh(xi). Choose

Ai ⊂ Bh(xi) measurable and mutually disjoint such that
⋃
i≥1Ai = M

and xi ∈ Ai. Such a construction always exist (see [2] and the references
therein). Consider the measure mh on Mh given by mh({xi}) = m(Ai) for
i ≥ 1. We call (Mh, d,mh) a h-discretization of (M,d,m).
It is proved in [2] that if m(M) <∞ then
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Stability of the Brunn-Minkowski inequality

(Mh, d,mh)
D−→ (M,d,m).

Theorem 3.1. Let h > 0. If (M,d,m) satisfies BM(N) then (Mh, d,mh)
satisfies BM(N, 4h).

The proof is based on the two following facts.

Lemma 3.2. (1) If H ⊂Mh then

m(Hh) ≥ mh(H) (3.1)

where Hh = {x ∈M ; d(x,H) ≤ h}.

(2) If C ⊂M measurable then

mh(Ch) ≥ m(C) (3.2)

where Ch = {xi ∈Mh; d(xi, C) ≤ h}.

Proof of lemma 3.2. For the first point, let H ⊂Mh, we have

mh(H) =
∑
i;xi∈H

m(Ai)

= m(∪i;xi∈HAi)
≤ m(Hh)

since the Ai are mutually disjoint and ∪i;xi∈HAi ⊂ Hh.
For the second point, let C ⊂M measurable, define Ch as above, then

mh(Ch) =
∑
i;xi∈Ch

m(Ai)

= m(∪i;xi∈ChAi)
≥ m(C)

since ∪i;xi∈ChAi ⊃ C. Indeed, if for some j, C ∩ Aj 6= ∅ then there exists
c ∈ C with d(c, xj) ≤ h so xj ∈ Ch.

�

Proof ot theorem 3.1. Let H0,H1 be two compact subsets of Mh and s ∈
[0, 1]. The sets H0 and H1 consist of a finite or countable number of points
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xj . Define Ci ⊂M , for i = 0, 1, by Ci = {x ∈M ;∃xj ∈ Hi, d(xj , x) ≤ h}.
By the first point of the lemma, for i = 0, 1,

m(Ci) ≥ mh(Hi). (3.3)
Let Cs ⊂M be the set of all the s-intermediate points between C0 and
C1 in the entire space M , i.e.

Cs =
{
x ∈M ;∃(c0, c1) ∈ C0 × C1,

d(x, c0) = s d(c0, c1)
d(x, c1) = (1− s) d(c0, c1)

}
.

BM(N) inequality on M gives us

m1/N (Cs) ≥ (1− s)m1/N (C0) + sm1/N (C1). (3.4)
As before by triangular inequality, we can see that Cs is included in the

set C̃3h
s of 3h s-intermediate points between H0 and H1 in the whole space

M . Therefore, the set H4h
s ⊂Mh of 4h s-intermediate points between H0

and H1 in the discrete space Mh contains the restriction at Mh of the h
dilated of Cs. By the second point of the lemma we have

mh(H4h
s ) ≥ m(Cs). (3.5)

Combining inequalities (3.3), (3.4) and (3.5) ends the proof of the the-
orem.

�

Remark 3.3. The same proof shows that if (M,d,m) satisfies BM(N, k),
then (Mh, d,mh) satisfies BM(N, k + 4h).
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