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Non-commutative entropy computations for
continuous fields and cross-products

Emmanuel Germain

Abstract

We present here two non-commutative situations where dynamical entropy
estimates are possible. The first result is concerned with automorphisms of cross-
products by an exact group that commute with the group action and generalizes
the result known for amenable groups. The second is about continuous fields of
C∗-algebras and C(X)-automorphisms. Each result relies on explicit factorization
via matrices.

Calculs d’entropie non commutative pour des champs continus
ou des produits croisés

Résumé
Nous présentons deux situations de géométrie non commutative dans lesquelles

des calculs d’entropie dynamique non commutative sont possibles. La première
s’interesse aux automorphismes des produits croisés par un groupe exact qui com-
mutent avec l’action du groupe généralisant un résultat connu pour les groupes
moyennables. La seconde concerne les champs continues de C∗-algèbres et les au-
tomorphismes fibrés. Dans chacun des deux cas, il s’agit d’utiliser des factorisations
explicites par des algèbres de matrices.

1. Introduction

Although exact C∗-algebras have a weaker form of factorization through
finite dimensional matrix algebras than nuclear C∗-algebras, N. Brown [6]
was able to show that Voiculescu’s initial definition of non-commutative
entropy for automorphisms [15] can be extended to this situation and pro-
duced the first computations, notably for automorphisms of cross-products
of an exact C∗-algebra by the group of the integers. Other results, like a
striking formula for free product automorphisms of reduced free product

Keywords: non-commutative dynamical entropy, cross-products, continuous fields.
Math. classification: 46L55, 46L53.
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C∗-algebras [5], were obtained proving that it was the correct setting for
this kind of entropy.

For group C∗-algebra, Ozawa [12] showed about the same time that
the reduced C∗-algebra of a discrete group is exact if and only if it has
an “amenable” action on a compact space. It was long known that this
condition was a sufficient one [1]. Indeed since the groupoid associated
to the group action on the compact space is amenable, hence its reduced
C∗-algebra is nuclear, the reduced C∗-algebra of the group is a subalgebra
of a nuclear one. Therefore Ozawa result is a geometric caracterization of
exactness parallel to Kirchberg’s caracterization of exact C∗-algebras as
subalgebras of nuclear C∗-algebras.

It was then obvious that in the situation of a reduced cross product of
an exact C∗-algebra by an exact group a formula for the entropy of an
automorphism that commutes with the group action should be available,
extending the previous result obtained for amenable groups (cf. [13]) and
fullfilling C. Anantharaman’s remark in her article [2]. Explicitely, we
prove in the first section that if an exact C∗-algebra A is endowed with an
action of a group Γ commuting with an automorphism β of A, then the
entropy of β in A is the same as the entropy of its unique extension β̄ to
the cross-product A or Γ defined as β̄(a)(g) = β(a(g)) for any element a
in the convolution algebra L1(Γ;A).

The crucial ingredient used in the first section to get this result is the
existence of explicit matrix factorizations due to the fact that analogues
of Folner functions exist for amenable groupoids. Extending the results
of [2] section 8 based on a construction of [14], one shows that if A is
an exact C∗-algebra and Γ has an amenable action on a compact space
X then C(X) ⊗ A is an exact Γ − C(X)-algebra whose cross-product
by Γ has factorizations through finite dimensional matrix algebras which
can be made out of factorizations of A. We show that the ranks of these
factorizations are linearly related which yields the entropy comparison we
want.

If the algebra A is the algebra of continuous functions on a compact
space E with an action of Γ such that B = E/Γ is again compact then
A or Γ is fibered over B (it is actually a C(B)-algebra) hence the result
above can be reinterpreted as computing the entropy of an automorphism
of a fibered space whose action factors through the base space B (a “trans-
verse” automorphism as there are transverse differential operators). The
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Non-commutative Entropy

second part of this article investigates then the “longitudinal” case, i.e
entropy of an automorphism that would act only in the fibers.

It is not clear what is the correct setting for such an appraoch. Of course
when the base is discrete, we are dealing with direct sums and it is known
that one should take the supremum of the entropy of the automorphisms
in each summands (i.e. fibers). But for continuous base space, it must be
trickier. First there are two notions of a C∗-algebra fibered over a compact
space: C(X)-algebras and continuous fields, the latter asking for a strictier
continuity condition for sections. Then a subtlety arises as it is not true
that the whole algebra is exact whenever all fiber algebras are (even for
continuous fields see [4]). Therefore we turned our attention to lipschitz
continuous fields introduced by Kirchberg and Phillips [10] because, for
such continuous fields, explicit matrix factorizations can be realized via the
knowledge of factorizations of the fibers. We then found an upper bound
for the entropy of an automorphism of such fields that has an extra term
which incorporates geometric data (dimension of the base space, lipschitz
exponent of the field) and a symbolic dynamics entropy term.

This second part is organized as follows: we define an entropy for linear
endomorphisms of the non-commutative polynomials using as a gauge the
norm of the non-commutative gradient of a polynomial, we then describe
the factorization of lipschitz fields and compute entropy. At last we apply
our result to the C∗-algebra of the Heisenberg group ( of unipotent upper-
triangular 3× 3 matrices with integer coefficients) since it can be seen as
a lipschitz continuous fields over the unit circle of the non-commutative
tori with exponent 1/2 as it has been proved by Haagerup and Rordam
in [9].

2. Cross-product by exact groups

An exact discrete group Γ is a group such that the reduced cross-product
of any exact sequence of Γ-algebras (i.e. C∗-algebras with an action of
Γ via automorphisms) is again exact. In particular if E is an exact C∗-
algebra with an action of an exact discrete group Γ then the reduced
cross-product E or Γ is again exact. Indeed let 0 → I → A → B → 0 be
an exact sequence. Then by exactness of E, on gets that 0 → I ⊗min E →
A ⊗min E → B ⊗min E → 0 is again exact. Endowing I,A, B with a
trivial action, it is also a sequence of Γ-algebras. By definition, its reduced
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cross product by Γ is again exact. Now observing that (A⊗min E) or Γ is
A⊗min (E or Γ) for any A ensures that tensoring (for the minimal norm)
the original sequence by E or Γ leaves it exact.

For discrete groups, exactness need only be checked for the trivial action
(see [1]), therefore the reduced C∗-algebra C∗

r (Γ) is an exact C∗-algebra
if and only if Γ is exact (see [11]). It has recently been proved by Ozawa
([12]) and independantly by Anantharaman ([2]) that it is equivalent to
amenability at infinity i.e. the existence of a compact Hausdorff space X
with an action of Γ such that the action is amenable, a term defined for
general groupoids in [1]. Using this amenable action, C. Anantharaman
proved that there exists explicit matrix factorizations for the algebra E or

Γ when E is nuclear (see section 8 of [2]). We extend here this construction
to the exact case and use the notations found therein to prove:

Theorem 2.1. Let E be an unital exact C∗-algebra with an action α of
an exact countable discrete group Γ. Let β be an automorphism of E such
that for all g ∈ Γ, β and αg commutes, then β extends to β̄ on E or Γ and

htE(β) = htEorΓ(β̄).

Since E ⊂ E or Γ, one already has htE(β) ≤ htEorΓ(β̄). For the re-
verse inequality, we will consider an amenable action of Γ on a compact
Hausdorff set X. Now A = C(X) ⊗ E is a Γ − C(X)-algebra meaning
that A is a Γ-algebra (with the diagonal action), a C(X)-algebra (actu-
ally it is a trivial continuous field) and has the compatibility condition:
g.(fa) = (g.f)(g.a) with g ∈ Γ, f ∈ C(X) and a ∈ A. Because C(X) is
unital, one has that E or Γ ⊂ A or Γ.

Consider a faithful representation π0 of A in some B(H) such that the
action of Γ is implemented by a unitary representation noted ug for g ∈ Γ
(take for instance the regular covariant representation). For convenience
we will identify A with its image in B(H). Note also that B(H) is endowed
with an action of Γ (by conjugation with the ug’s) which we will still call α
and Aor Γ ⊂ B(H)or Γ. The covariant pair of representations (π, λ⊗1H)
of B(H) or Γ in B(`2(Γ)⊗H) is defined as (π(a)ξ)(t) = αt−1(a)ξ(t) with
λ the regular representation of Γ in `2(Γ).

Following closely the proofs of section 8 of [2], we can reprove the ex-
actness of E or Γ as follows:

4



Non-commutative Entropy

Proposition 2.2. Let X be a compact space with an amenable action of
the discrete group Γ, and let A be an exact Γ−C(X)-algebra. Then Aor Γ
is exact.

Indeed we can use Kirchberg’s caracterization of exactness: A or Γ is
exact if there exists a net of completely positive maps Φλ from A or Γ
to B(`2(Γ) ⊗ H) that factorize through finte rank matrices and simply
converge in norm to the inclusion map. This is exactly what proposition 8.2
of [2] says once we remark that lemma 8.1 can be identically reformulated
with Φ : A → B(H) a completely positive (or completely bounded) map
instead of Φ : A → A.

Corollary 2.3. If E is an exact C∗-algebra with an action of an exact
discrete group Γ then E or Γ is exact.

Indeed E or Γ is a subalgebra of the exact algebra A or Γ. But this
proof allows also to make entropy computations. Recall the definition

Definition 2.4. Let ε > 0 and ω ⊂ A finite. rcpA(π, ε, ω) is the smallest
integer p such that there exists a completely positive contractive (ε, ω)-
factorization A

σ−→Mp(C) τ−→B(H) of the faithful morphism A
π−→B(H),

i.e. such that for all x in ω, ||π(x)− τ ◦ σ(x)|| ≤ ε.

Lemma 2.5. Let ω ⊂ Γ be a symetric finite set and O ⊂ E be a finite set
of norm 1 elements. Let Ω be the set {aug, g ∈ ω, a ∈ O} in E or Γ. Then
there exists a finite set F in Γ such that

rcpEorΓ((π, λ⊗ 1H), ε, Ω) ≤ |F |rcpE(π0, ε/2,∪t∈F αt−1(O))

To prove this we will look carefully at the reformulation of proposition
8.2 in [2].

With the help of a function f : Γ → Cc(X) with finite support C such
that supx∈X

∑
t∈Γ |f(t)(x)|2 = 1 and

sup
x∈X

|
∑
t∈Γ

f(t)(x)f(s−1t)(s−1x)− 1| < ε/2

for s ∈ ω which exists by the amenability of the action on X, we define
the set F = ∪s∈ω∪{e}s

−1C = ∪s∈ω∪{e}sC.
We then choose a (ε/2,∪t∈F αt−1(O)) factorization (σ, τ) of E through

Mn(C) and extends it by Arveson’s extension theorem for completely pos-
itive maps to a factorization (σ̄, τ) of A through the same Mn(C).

5



E. Germain

Consider now the two completely positive maps: σ̃ from E or Γ in
B(`2(F ))⊗Mn(C)

σ̃(aug) = (I ⊗ σ̄) [(PF ⊗ In)(π(a)λ(g))(PF ⊗ In)]

with PF the orthogonal projection of `2(Γ) onto `2(F ) and τ̃ from the
algebra B(`2(F ))⊗Mn(C) to B(`2(Γ)⊗H)

τ̃(x) = Tf (I ⊗ τ(x))

with Tf from B(`2(Γ)⊗H) onto itself as defined is [2].
The composition of the two produces a map Ψ such that ||Ψ(aug) −

π(a)λ(g)|| < ε for all a ∈ O and g ∈ ω because the completely positive
map Φ = τ ◦ σ̄ has the property that ||Φ(αt−1(a))−a|| < ε/2 for all a ∈ O.

Now the rank of σ̃ is |F | multiplied by the rank of σ which is what we
seek.

Corollary 2.6. Let ω ⊂ Γ be a finite set and O ⊂ E be a finite set of
norm 1 element. Let Ω be the set {aug, g ∈ ω, a ∈ O} in E or Γ. Then
there exists a finite set F in Γ such that

rcpEorΓ((π, λ⊗ 1H), ε, Ω ∪ β̄(Ω) ∪ · · · ∪ β̄k(Ω)) ≤
≤ |F |rcpE(π0,

ε
2 ,∪t∈F αt−1(O) ∪ · · · ∪ βk(∪t∈F αt−1(O))).

Indeed β commutes with the action of Γ, hence β̄(Ω) = {aug, g ∈ ω, a ∈
β(O)} and ∪t∈F αt−1(β(O)) = β(∪t∈F αt−1(O)).

Since the entropy htEorΓ(β̄) is then defined as

sup
ε>0

sup
Ω∈T

lim
n→∞

1
n

log(rcpEorΓ((π, λ⊗ 1H), ε, Ω ∪ β̄(Ω) ∪ · · · ∪ β̄n(Ω))

with T the set of all finite subsets of the linear span of elements of the
form aug with a ∈ E, g ∈ Γ by Kolmogorov density property, we have
that

htEorΓ(β̄) ≤ htE(β)

keeping in mind that entropy can be computed via the rcp function of any
faithful representation.
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3. Entropy for continuous fields of C∗-algebras

A unital continuous field A of C∗-algebras over a compact Hausdorff space
X is caracterized by two properties. First it is a C(X)-algebra, meaning
there is a unital morphism of C(X) into the center of A. There is thus
an action of C(X) on A that we denote as f.a for a function f and an
element a of A.

Note that the norm in A is given as a supremum. Indeed, for any x ∈ X,
let’s call Cx(X) the ideal of functions vanishing at x. Then Ax is the
quotient algebra A/(Cx(X).A) and note ax the image of a ∈ A in this
quotient. We have the embedding A ↪→ Πx∈XAx. (see Blanchard [3])

A C(X)-algebra is a continous field if and only if the map x 7→ ||ax||Ax

is continuous.
We are interested in a C(X)-automorphism α of a continuous field A,

meaning an automorphism such that for any function f ∈ C(X) and
a ∈ A we have that f.α(a) = α(f.a). Note that α factorizes through all
the algebras Ax. Let’s call αx the induced automorphism.

For the moment we will study entropy of linear endomorphisms on non-
commutative polynomials and propose a definition of symbolic entropy for
automorphisms of C∗-algebras having a dense finitely generated subalge-
bra.

3.1. Symbolic entropy

Let C < X1 · · ·Xn > denotes the set of non-commutative polynomials in
n variables.

Definition 3.1. If P ∈ C < X1 · · ·Xn > then JP ∈ C < X1 · · ·Xn >
⊗C < X1 · · ·Xn > will denote the non-commutative gradient of P with
respect to the variable X1, ..., Xn and is defined by linearity on generators
as follows

JXi = 1⊗ 1,∀i = 1 · · ·n
JXi1 · · ·Xin = 1⊗Xi2 · · ·Xin +

∑n−1
k=2 Xi1 · · ·Xik−1

⊗Xik+1
· · ·Xin

+Xi1 · · ·Xin−1 ⊗ 1

Because the tensors 1⊗1, 1⊗Xj1 · · ·Xjn , Xi1 · · ·Xin⊗1 and Xi1 · · ·Xin⊗
Xj1 · · ·Xjn form a basis of C < X1 · · ·Xn > ⊗C < X1 · · ·Xn >, there is
an associated `1-norm (for which the base elements have norm 1), we will
call it ||.||1.
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The total variation of P ∈ C < X1 · · ·Xn > will then be ||JP ||1.
Note that on monomials, this gives the total degree of P with respect to
X1 · · ·Xn. This name is appropriate because of:

Proposition 3.2. If A is a complex normed algebra and Σi for i = 1, 2
are two algebra homomorphims from C < X1 · · ·Xn > to A such that
Σi(Xj) is a norm 1 element in A for i = 1, 2 and j = 1, ..., n, then for all
P ∈ C < X1 · · ·Xn >,

||Σ1(P )− Σ2(P )||A ≤ ||JP ||1 sup
i∈{1,2,..,n}

||Σ1(Xi)− Σ2(Xi)||A

The proof is obvious with the remarks that
||Σ2(Xi1 ...Xik−1

)Σ1(Xik ...Xip)− Σ2(Xi1 ...Xik)Σ1(Xik+1
...Xip)||A ≤

≤ ||Σ1(Xik)− Σ2(Xik)||A
and ||Σj(Xi1 ...Xin)||A ≤ 1.

Now if θ is a linear endomorphism of C < X1 · · ·Xn >, we will define
its symbolic entropy as

se(θ) = sup
P∈C<X1···Xn>

lim sup
n→∞

1
n

log ||J (θnP )||1

The above quantity behaves almost as an entropy for we have

Proposition 3.3. (1) se(θk) = k se(θ),∀k ≥ 0.

(2) If θ(P ) = QP or PQ for some Q ∈ C < X1 · · ·Xn >, then se(θ) ≤
log ||Q||1.

For 1., one just needs to remark that se(θ) is the infimum of the con-
stants σ such that for all polynomial P there exists a constant CP such that
||J (θn(P ))||1 ≤ CP exp(nσ). Hence se(θk) ≤ kse(θ) and by considering
the maximum of {CP , Cθ(P )..., Cθk−1(P )} one gets the reverse inequality.

For 2., we of course endow C < X1...Xn > with the `1-norm for
which the monomials have norm 1 which is an algebra norm. Then for
the bimodule structure of C < X1...Xn > ⊗C < X1...Xn > we have
that ||Q1.P.Q2||1 ≤ ||Q1||1||P ||1||Q2||1 with Qi ∈ C < X1...Xn > and
P ∈ C < X1...Xn > ⊗C < X1...Xn >. Finally note that J (QP ) =
J (Q).P + Q.J (P ) and J (Qn) =

∑n−1
i=0 QiJ (Q).Qn−i−1. Therefore the

result follows from the inequality

||J (QnP )||1 ≤ n||Q||n−1
1 ||J (Q)||1||P ||1 + ||Q||n1 ||J (P )||1.
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Note that if Q is a monomial then se(θ) = 0.

Finally we propose this definition for C∗-algebra automorphisms:
If A is a unital C∗-algebra and α an automorphism, let F be the set

of all dense finitely generated subalgebras A of A such that α induces an
automorphism of A.

Now take G as the set of all linear extensions of α i.e. the set of linear
endomorphisms θ of C < X1 · · ·Xn > such that there exists an epimor-
phism π from C < X1 · · ·Xn > to A ∈ F with π(θ(P )) = α(π(P )) for all
polynomials P .

Definition 3.4. The symbolic entropy of the automorphism α is

se(A,α) = inf
θ∈G

se(θ)

The infimum is taken to be +∞ if F is empty.

3.2. Exact lipschitz continuous fields over a compact metric
space

Suppose A is a unital continuous field over a compact metric space X.
Let’s assume that A is exact (in particular all the Ax are exact since they
are quotients). It is then known that A admits a C(X)-embedding in some
C(X)⊗B(H). Consider the following definition:

Definition 3.5. Suppose A is an exact continuous field on some compact
metric space X with metric d, we say that A is lipschitz of exponent L if
there exists a C(X)-linear embedding π of A in some C(X)⊗B(H) such
that for all a ∈ A the map x 7→ πx(ax) from X to B(H) is lipschitz with
exponent L i.e. for all a ∈ A there exists a constant C such that

||πx(ax)− πy(ay)|| ≤ Cd(x, y)L.

In [4], Blanchard showed that exact continuous fields over a compact
space X have C(X)-embeddings but in [10] for X = [0, 1] the authors
proved the existence of lipschitz embeddings when an intrinsically defined
metric function is itself lipschitz (see theorem 2.10 p.83). It is the case for
example of the continuous field of the non-commutative tori (reproving a
theorem of Haagerup-Rordam, see [9]).

First a minoration.
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Proposition 3.6. Suppose A is an C(X)-algebra over a compact set X,
and α is a C(X)-automorphism of A. Then

htA(α) ≥ supx∈X′htAx(αx)

where X ′ is the set of all such x ∈ X with Ax commutative.

Indeed we know topological entropy dominates CNT-entropy [8], there-
fore htA(α) ≥ htCNT

A (α). Since CNT-entropy decreases in quotient, one
gets htA(α) ≥ supx∈XhtCNT

Ax
(αx). Since all entropy definitions coincide in

the commutative case, one gets the result.

And now the majoration

Proposition 3.7. Suppose A is an exact lipschitz continuous field of ex-
ponent L over a compact metric space X of Hausdorff dimension N . Let
α be an C(X)-automorphism and call F(A) the set of all finite sets in
A. Choose also a faithful C(X)-homomorphism π of A in C(X)⊗B(H).
Then htA(α) is bounded by

sup
Ω∈F(A)

sup
ε>0

lim sup
n

sup
x∈X

1
n

log(rcp(πx, ε, Ωx ∪ · · · ∪ αn
x(Ωx))) +

N

L
se(A,α)

If moreover the automorphism is inner then the term N
L se(A,α)can be

discarded.

Corollary 3.8. Under the above hypothesis and if moreover for all ε > 0
and Ω ∈ F(A) there exists y ∈ X such that for all n

sup
x∈X

1
n

log(rcp(πx, ε, Ωx ∪ αx(Ωx) ∪ · · · ∪ αn
x(Ωx))) ≤

≤ 1
n

log(rcp(πy, ε, Ωy ∪ αy(Ωy) ∪ · · · ∪ αn
y (Ωy)))

then the entropy htA(α) is bounded by supy∈X htAy(αy) + N
L se(A,α).

We will see in the last section that it is the case for the continuous field
of the non-commutative tori.

Proof of prop 2.7:
We assume A is faithfully represented (via a lipschitz (C(X)-representa-

tion π) in C(X) ⊗ B(H) so that we identify any element of A with a
function with value in B(H). Note that Ax embeds then in B(H) (via the
representation πx) since ax is the evaluation at x of a ∈ A.

10
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Since X is of Hausdorff dimension N , there exists a constant C1 such
that when X is covered by balls of radius η, the smallest number of such
balls is bounded by C1η

−N .
Let δ be positive and A be a dense finitely generated algebra in A with

an epimorphism p from C < X1...Xq > onto A such that α induces a map
θ of C < X1...Xq > for which se(θ) ≤ se(A,α) + δ and choose ε > 0 and
a finite set Ω of norm 1 elements in A. There exists then a constant C3

such that for all integer k, ||J θk(P )||1 ≤ C3 exp(k(se(θ) + δ)) for any P
in a finite set Ω̄ with p(Ω̄) = Ω.

By Lipschitz continuity, there exists a constant C2 such that for all b in
the generating set S of A, ||bx − by|| ≤ C2d(x, y)L.

Consider Ωn = Ω ∪ α(Ω) ∪ · · · ∪ αn(Ω), we are going to construct now
a factorization for Ωn with error bounded by ε of the embedding of A in
C(X)⊗B(H).

Take η = [ ε
2C2

min(1, 1
C3

exp(−n(se(θ)+δ)))]1/L and cover X with balls
of radius η: X ⊂ ∪j∈JB(xj , η).

Then there exists σj from Axj to Mpj (C) completely contractive and
τj from Mpj (C) to B(H) completely contractive such that ∀a ∈ Ωn, ||τj ◦
σj(axj )− axj || ≤ ε/2 and pj = rcp(πxj , ε/2, (Ωn)xj ).

Supppose (ϕj)j∈J is a partition of unity associated to the covering and
consider σ from A to ⊕j∈JMpj (C) defined as

σ(a) = ⊕
j∈J

σj(axj )

and τ from ⊕j∈JMpj (C) to C(X)⊗B(H) defined as

τ( ⊕
j∈J

zj) =
∑
j∈J

ϕjτj(zj)

Then for all a ∈ Ωn, ||τ◦σ(a)−a|| ≤ ε/2+maxj∈J supx∈B(xj ,η) ||ax−axj ||
Now if a ∈ Ω, supx∈B(xj ,η) ||ax − axj || ≤ ε/2 by definition of η and the

lipschitz continuity.
Let P in C < X1...Xq > be such that p(P ) = a and define Σ1 and Σ2

the homomorphisms of C < X1...Xq > in B(H) obtained by composition
of p with the evaluation at x or at xj .

Then for all integer k,
||αk

x(ax)− αk
xj

(axj )|| = ||Σ1(θk(P ))− Σ2(θk(P ))||
≤ ||J θk(P )||1 sup1≤i≤q ||Σ1(Xi)− Σ2(Xi)||
≤ C3 exp(k(se(θ) + δ)) supb∈S ||bx − bxj ||

11
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Thus ||αk
x(ax)−αk

xj
(axj )|| ≤ ε/2 for k ≤ n and a ∈ Ω, so ||τ ◦σ(a)−a|| ≤ ε

for all a ∈ Ωn.
Now the rank of the matrix algebra ⊕j∈JMpj (C) is bounded by |J |

times the supj∈J pj , i.e. by

C1(
2C2C3

ε
)N/L exp(n

N

L
(se(A,α) + δ)) sup

x∈X
rcp(πx, ε/2, (Ωn)x)

For any faithful representation C(X) in B(K), we have a faithful rep-
resentation π of C(X)⊗B(H) hence A in B(K ⊗H).

Hence

lim sup
n→∞

1
n

log rcp(π, ε, Ω ∪ α(Ω) ∪ · · · ∪ αn(Ω)) ≤ N

L
[se(A,α) + δ]+

+ lim sup
n

1
n

sup
x∈X

log(rcp(πx, ε, Ωx ∪ αx(Ωx) ∪ · · · ∪ αn
x(Ωx)))

Since htA(α) is computed by taking the sup over all finite sets of A
since it is dense, we have that, for all δ positive, htA(α) − N

L se(A,α) is
bounded by

δ
N

L
+ sup

Ω∈F(A)
sup
ε>0

lim sup
n

1
n

sup
x∈X

log(rcp(πx, ε, Ωx ∪ αx(Ωx)∪ · · · ∪ αn
x(Ωx)))

which is the result.

In the case of an inner automorphism the proof follows the same lines.
Let u be the unitary that implements α

After choosing the constant C1 and a finite set Ω of norm 1 elements
in A, one consider the constant C2 such that for all a ∈ Ω ∪ {u, u∗},
||ax − ay|| ≤ C2d(x, y)L.

For a given n take η = [ ε
2(2n+1)C2

]1/L and we cover X by balls of radius
η and center xj for j in the finite set J .

The definition of σ and τ carries along, we just has to explain the
majoration of ||αk

x(ax)− αk
xj

(axj )|| for a ∈ Ω and k ≤ n:

||αk
x(ax)− αk

xj
(axj )|| ≤ ||uk

xax(u∗x)k − uk
xj

axj (u
∗
xj

)k||
≤ ||ax − axj ||+ ||uk

xaxj (u
∗
x)k − uk

xj
axj (u

∗
xj

)k||
≤ ||ax − axj ||+ 2k||axj ||.||ux − uxj ||
≤ (2k + 1)C2η

L

≤ ε/2

12
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Therefore σ and τ gives a ε-factorization of the set Ω∪α(Ω)∪· · ·∪αn(Ω)
through matrices of rank |J | supx rcp(πx, ε/2,Ωx ∪ αx(Ωx) ∪ · · · ∪ αn

x(Ωx)
And since lim supn

1
n

N
L log[2(2n+1)C2)

ε ] = 0 we get our proposition.

In the case of the continuous field of the non-commutative tori,a more
precise computation can be made:

Theorem 3.9. Let M be a matrix in SL2(Z) with non negative entries
and αM the induced automorphism on the continuous field of the non-
commutative tori A = (Aθ)θ∈T, then

sup
λ∈Sp(M)

log |λ| ≤ htA(αM ) ≤ 3. sup
λ∈Sp(M)

log |λ|.

Note that it actually gives a computation for an automorphism of
the C∗-algebra of the Heisenberg group in M3(C). Indeed this group is

generated by the three matrices u =

1 1 0
0 1 0
0 0 1

, v =

1 0 0
0 1 1
0 0 1

 and

w =

1 0 1
0 1 0
0 0 1

. Now call U, V,W the corresponding three unitaries in

the group C∗-algebra A (the group is amenable so there is no need to
specify a norm). Then since w commutes with u and v and is the commu-
tator of the two, we have that W is in the center of A and UV = WV U .
So A is a C(T)-algebra with T = Spec(W ). But Haagerup and Rordam
proved that A is actually a lipschitz continuous field of exponent 1/2.

Now take a matrix M ∈ SL2(N), then it induces an automorphism αA

of this field as follows:

αM (U) = UaV c, αM (V ) = U bV d αM (W ) = W

where M =
(

a b
c d

)
.

One can check that αM (U)αM (V ) = W det MαM (V )αM (U) and α−1
M =

αM−1 so that det M = 1 is the only requirement to get an automorphism
of the continuous field as well as of all the Aθ.

Now the lower bound comes from the computation for entropy in A0 =
C∗(Z2).

13
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For the upper bound, recall that Aθ is a cocycle group algebra over the
group Z2. Then we can reinterpret proposition 3.3 of [7]. This proposition
actually shows that if one chooses a finite set Ω of elements of Z2 (and sees
them as monomials in the two generators U and V ) then supθ rcp(ε,Ωθ ∪
(αM )θ(Ωθ) ∪ · · · ∪ (αM )n

θ (Ωθ)) is bounded by the amenable ε-rank of the
set Ω ∪ αM (Ω) ∪ · · · ∪ αn

M (Ω) of elements in Z2 where αM is now an
automorphism of the group Z2.

Therefore htA(αM ) is bounded by ha(αM ) + N
L se(A,αM ), i.e. by

sup
λ∈Sp(M)

log |λ|+ 2se(A,αM ).

It remains to compute the symbolic entropy of the automorphism. Con-
sider the dense algebra generated by the six unitaries U , V , W , U−1, V −1,
W−1. Since the automorphism leaves W invariant, we only need to con-
centrate on iterates of polynoùmials in U ,V ,U−1,V −1. Since the image of
monomials are monomials and we have an algebra homomorphism, we just
have to bound the total degree of iterates of each of the unitaries. Because
the coefficients of M are all positive (hence no cancellation need to occur
between U and U−1 or V and V −1 hence no commutativity is required)
the degree of the n-th iterate is given by the matrix product

(1, 1, 1, 1).


a b 0 0
c d 0 0
0 0 a b
0 0 c d


n

.E

where E is a vector of the canonical basis of N4; (1, 0, 0, 0) representing
U , (0, 1, 0, 0) representing V , and so on. But these quantities are bounded
by C.|λ|n where λ is the eigenvalue of M of maximal modulus. Hence
se(A,αM ) = supλ∈Sp(M) log |λ|.

Remark 3.10. In a private communication , N.P. Brown mentionned that
a computation of the “dual entropy” (see[7]) of the same automorphism of
the field of non-commutative tori, but this time seen as an automorphism
of the C∗-algebra of the Heisenberg group is possible and that one gets
the same upper bound.
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