Fares Gherbi and Tarek Rouabhi

Hyper–(Abelian–by–finite) groups with many subgroups of finite depth

<http://ambp.cedram.org/item?id=AMBP_2007__14_1_17_0>
Hyper–(Abelian–by–finite) groups with many subgroups of finite depth

Fares Gherbi
Tarek Rouabhi

Abstract

The main result of this note is that a finitely generated hyper–(Abelian–by–finite) group G is finite–by-nilpotent if and only if every infinite subset contains two distinct elements x, y such that $\gamma_n(\langle x, x^y \rangle) = \gamma_{n+1}(\langle x, x^y \rangle)$ for some positive integer $n = n(x, y)$ (respectively, $\langle x, x^y \rangle$ is an extension of a group satisfying the minimal condition on normal subgroups by an Engel group).

1. Introduction and results

Let \mathcal{X} be a class of groups. Denote by (\mathcal{X}, ∞) (respectively, $(\mathcal{X}, \infty)^*$) the class of groups G such that for every infinite subset X of G, there exist distinct elements $x, y \in X$ such that $\langle x, y \rangle \in \mathcal{X}$ (respectively, $\langle x, x^y \rangle \in \mathcal{X}$). Note that if \mathcal{X} is a subgroup closed class, then $(\mathcal{X}, \infty) \subseteq (\mathcal{X}, \infty)^*$.

In answer to a question of Erdős, B.H. Neumann proved in [16] that a group G is centre–by–finite if and only if G is in the class (\mathcal{A}, ∞), where \mathcal{A} denotes the class of Abelian groups. Lennox and Wiegold showed in [13]...
that a finitely generated soluble group is in the class (\mathcal{N}, ∞) (respectively, (\mathcal{P}, ∞)) if and only if it is finite-by-nilpotent (respectively, polycyclic), where \mathcal{N} (respectively, \mathcal{P}) denotes the class of nilpotent (respectively, polycyclic) groups. Other results of this type have been obtained, for example in [1]—[3], [4]—[6], [7], [8], [13], [14]—[16], [21], [22] and [23].

We say that a group G has finite depth if the lower central series of G stabilises after a finite number of steps. Thus if $\gamma_n(G)$ denotes the n^{th} term of the lower central series of G, then G has finite depth if and only if $\gamma_n(G) = \gamma_{n+1}(G)$ for some positive integer n. Denote by Ω the class of groups which has finite depth. Moreover, if k is a fixed positive integer, let Ω_k denotes the class of groups G such that $\gamma_k(G) = \gamma_{k+1}(G)$.

Clearly, any group in the class \mathcal{FN} is of finite depth, where \mathcal{F} denotes the class of finite groups. From this and the fact that \mathcal{FN} is a subgroup closed class, we deduce that finite-by-nilpotent groups belong to $(\Omega, \infty)^*$. Here we shall be interested by the converse. In [5], Boukaroura has proved that a finitely generated soluble group in the class (Ω, ∞) is finite-by-nilpotent. We obtain the same result when (Ω, ∞) is replaced by $(\Omega, \infty)^*$ and soluble by hyper-(Abelian-by-finite). More precisely we shall prove the following result.

Theorem 1.1. Let G be a finitely generated hyper-(Abelian-by-finite) group. Then, G is in the class $(\Omega, \infty)^*$ if, and only if, G is finite-by-nilpotent.

Note that Theorem 1.1 improves the result of [12] which asserts that a finitely generated soluble-by-finite group whose subgroups generated by two conjugates are of finite depth, is finite-by-nilpotent.

It is clear that an Abelian group G in the class $(\Omega_1, \infty)^*$ is finite. For if G is infinite, then it contains an infinite subset $X = G \setminus \{1\}$. Therefore there exist two distinct elements $x, y \neq 1$ in X such that $\gamma_1((x, x^y)) = \gamma_2((x, x^y)) = 1$; so $x = 1$, which is a contradiction. From this it follows that a hyper-(Abelian-by-finite) group G in the class $(\Omega_1, \infty)^*$ is hyper-finite as $(\Omega_1, \infty)^*$ is a subgroup and a quotient closed class. But it is not difficult to see that a hyper-(finite) group is locally finite [17, Part 1, page 36]. So G is locally finite. Now if G is infinite, then it contains an infinite Abelian subgroup A [17, Theorem 3.43]. Since A is in the class $(\Omega_1, \infty)^*$, it is finite; a contradiction and G, therefore, is finite. As consequence of Theorem 1.1, we shall prove other results on the class $(\Omega_k, \infty)^*$.

Corollary 1.2. Let k be a positive integer and let G be a finitely generated hyper-(Abelian-by-finite) group. We have:
A condition on infinite subsets

(i) If G is in the class $(\Omega_k, \infty)^*$, then there exists a positive integer $c = c(k)$, depending only on k, such that $G/Z_c(G)$ is finite.

(ii) If G is in the class $(\Omega_2, \infty)^*$, then $G/Z_2(G)$ is finite.

(iii) If G is in the class $(\Omega_3, \infty)^*$, then G is in the class $\mathcal{FN}_3^{(2)}$, where $\mathcal{N}_3^{(2)}$ denotes the class of groups whose 2-generator subgroups are nilpotent of class at most 3.

Let k be a fixed positive integer, denote by \mathcal{M}, \mathcal{E}_k and \mathcal{E} respectively the class of groups satisfying the minimal condition on normal subgroups, the class of k-Engel groups and the class of Engel groups. Using Theorem 1.1, we will prove the following results concerning the classes $(\mathcal{M}\mathcal{E}, \infty)^*$ and $(\mathcal{M}\mathcal{E}_k, \infty)^*$

Theorem 1.3. Let G be a finitely generated hyper-(Abelian-by-finite) group. Then, G is in the class $(\mathcal{M}\mathcal{E}, \infty)^*$ if, and only if, G is finite-by-nilpotent.

Note that this theorem improves Theorem 3 of [23] (respectively, Corollary 3 of [5]) where it is proved that a finitely generated soluble group in the class $(\mathcal{C}\mathcal{N}, \infty)^*$ (respectively, $(\mathcal{X}\mathcal{N}, \infty)$) is finite-by-nilpotent, where \mathcal{C} (respectively, \mathcal{X}) denotes the class of Chernikov groups (respectively, the class of groups satisfying the minimal condition on subgroups).

Corollary 1.4. Let k be a positive integer and let G be a finitely generated hyper-(Abelian-by-finite) group. We have:

(i) If G is in the class $(\mathcal{M}\mathcal{E}_k, \infty)^*$, then there exists a positive integer $c = c(k)$, depending only on k, such that $G/Z_c(G)$ is finite.

(ii) If G is in the class $(\mathcal{M}\mathcal{A}, \infty)^*$, then $G/Z_2(G)$ is finite.

(iii) If G is in the class $(\mathcal{M}\mathcal{E}_2, \infty)^*$, then G is in the class $\mathcal{FN}_3^{(2)}$.

Note that these results are not true for arbitrary groups. Indeed, Golod [9] showed that for each integer $d > 1$ and each prime p, there are infinite d-generator groups all of whose $(d - 1)$-generator subgroups are finite p-groups. Clearly, for $d = 3$, we obtain a group G which belongs to the class $(\mathcal{F}, \infty)^*$. Therefore, G belongs to the classes $(\Omega, \infty)^*$, $(\Omega_k, \infty)^*$, $(\mathcal{M}\mathcal{E}, \infty)^*$ and $(\mathcal{M}\mathcal{E}_k, \infty)^*$, but it is not finite-by-nilpotent.

Acknowledgments: The authors would like to thank their supervisor Dr. N. Trabelsi for his help and encouragement while doing this work.
2. Proofs of Theorem 1.1 and Corollary 1.2

Let $E(\infty)$ the class of groups in which every infinite subset contains two distinct elements x, y such that $[x, n y] = 1$ for a positive integer $n = n(x, y)$. In [15], it is proved that a finitely generated soluble group in the class $E(\infty)$ is finite-by-nilpotent. We will extend this result to finitely generated hyper-(Abelian-by-finite) groups (Proposition 2.5).

Our first lemma is a weaker version of Lemma 11 of [23], but we include a proof to keep our paper reasonably self contained.

Lemma 2.1. Let G be a finitely generated Abelian-by-finite group. If G is in the class (FN, ∞), then it is finite-by-nilpotent.

Proof. Let G be a finitely generated infinite Abelian-by-finite group in the class (FN, ∞). Hence there is a normal torsion-free Abelian subgroup A of finite index. Let x be a non trivial element in A and let g in G. Then the subset $\{x^i g : i \text{ a positive integer}\}$ is infinite, so there are two positive integers m, n such that $\langle x^m g, x^n g \rangle$ is finite-by-nilpotent, hence $\langle x^r, x^n g \rangle$ is finite-by-nilpotent where $r = m - n$. Thus there are two positive integers c and d such that $[x^r, c x^n g]^d = 1$. The element x being in A which is Abelian and normal in G, we have $[x^r, c x^n g] = [x^r, c g]^r$; so $[x^r, c g]^{r.d} = 1$. Now $[x, c g]$ belongs to the torsion-free group A, so $[x, c g] = 1$. It follows that x is a right Engel element of G. Since G is Abelian-by-finite and finitely generated, it satisfies the maximal condition on subgroups; so the set of right Engel elements of G coincides with its hypercentre which is equal to $Z_i (G)$, the $(i + 1)$-th term of the upper central series of G, for some integer $i > 0$ [17, Theorem 7.21]. Hence, $A \leq Z_i (G)$; and since A is of finite index in G, $G/Z_i (G)$ is finite. Thus, by a result of Baer [10, Theorem 1], G is finite-by-nilpotent. \hfill \square

Lemma 2.2. Let G be a finitely generated Abelian-by-finite group. If G is in the class $E(\infty)$, then it is finite-by-nilpotent.

Proof. Let G be an infinite finitely generated Abelian-by-finite group in the class $E(\infty)$, and let A be an Abelian normal subgroup of finite index in G. It is clear that all infinite subsets of G contains two different elements x, y such that $xA = yA$; so $y = xa$ for some a in A and $\langle x, y \rangle = \langle x, a \rangle$. Thus $\langle x, y \rangle$ is a finitely generated metabelian group in the class $E(\infty)$. It follows by the result of Longobardi and Maj [15, Theorem 1], that $\langle x, y \rangle$...
is finite-by-nilpotent. Hence G is in the class $(\mathcal{F}\mathcal{N}, \infty)$. Now, by Lemma 2.1, G is finite-by-nilpotent; as required. □

Lemma 2.3. A finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$ is nilpotent-by-finite.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$. Since $\mathcal{E}(\infty)$ is a quotient closed class of groups and since finitely generated nilpotent-by-finite groups are finitely presented, we may assume that G is not nilpotent-by-finite but every proper homomorphic image of G is in the class $\mathcal{N}\mathcal{F}$. Since G is hyper-(Abelian-by-finite), G contains a non-trivial normal subgroup H such that H is finite or Abelian; so we have G/H is in $\mathcal{N}\mathcal{F}$. If H is finite then G is nilpotent-by-finite, a contradiction. Consequently H is Abelian and so G is Abelian-(nilpotent-by-finite) and therefore it is (Abelian-nilpotent)-by-finite. Hence, G is a finite extension of a soluble group; there is therefore a normal soluble subgroup K of G of finite index. Now, K is a finitely generated soluble group in the class $\mathcal{E}(\infty)$; it follows, by the result of Longobardi and Maj [15, Theorem 1], that K is finite-by-nilpotent. By a result of P. Hall [10, Theorem 2], K is nilpotent-by-finite and so G is nilpotent-by-finite, a contradiction. Now, the Lemma is shown. □

Since finitely generated nilpotent-by-finite groups satisfy the maximal condition on subgroups, Lemma 2.3 has the following consequence:

Corollary 2.4. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$. Then G satisfies the maximal condition on subgroups.

Proposition 2.5. A finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$ is finite-by-nilpotent.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in $\mathcal{E}(\infty)$. According to Corollary 2.4, G satisfies the maximal condition on subgroups. Now, since $\mathcal{E}(\infty)$ is a quotient closed class, we may assume that every proper homomorphic image of G is in $\mathcal{F}\mathcal{N}$, but G itself is not in $\mathcal{F}\mathcal{N}$. Our group G being hyper-(Abelian-by-finite), contains a non-trivial normal subgroup H such that H is finite or Abelian; so by hypothesis G/H is in the class $\mathcal{F}\mathcal{N}$. If H is finite, then G is finite-by-nilpotent, a contradiction. Consequently H is Abelian and so G is in the class $\mathcal{A}(\mathcal{F}\mathcal{N})$, hence G is in $(\mathcal{A}\mathcal{F})\mathcal{N}$. Now, since G satisfies the maximal condition on
subgroups, it follows from Lemma 2.2, that G is in $(\mathcal{FN})\mathcal{N}$, so it is in $\mathcal{F}(\mathcal{NN})$. Consequently, there is a finite normal subgroup K of G such that G/K is soluble. The group G/K, being a finitely generated soluble group in the class $\mathcal{E}(\infty)$, is in \mathcal{FN}, by the result of Longobardi and Maj [15, Theorem 1]. So G is in the class $\mathcal{F}\mathcal{N}$, which is a contradiction and the Proposition is shown. □

The remainder of the proof of Theorem 1.1 is adapted from that of Lennox’s Theorem [11, Theorem 3]

Lemma 2.6. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $(\Omega, \infty)^*$. If G is residually nilpotent, then G is in the class \mathcal{FN}.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $(\Omega, \infty)^*$ and assume that G is residually nilpotent. Let X be an infinite subset of G, there are two distinct elements x and y of X such that $\langle x, x^y \rangle \in \Omega$. It follows that there exists a positive integer k such that $\gamma_k(\langle x, x^y \rangle) = \gamma_{k+1}(\langle x, x^y \rangle)$. The group $\langle x, x^y \rangle$, being a subgroup of G, is residually nilpotent, so $\bigcap_{i \in \mathbb{N}} \gamma_i(\langle x, x^y \rangle) = 1$. Hence $\gamma_k(\langle x, x^y \rangle) = \bigcap_{i \in \mathbb{N}} \gamma_i(\langle x, x^y \rangle) = 1$. Since $\langle x, x^y \rangle = \langle [y, x], x \rangle$; $\gamma_k([y, x], x) = 1$, thus $[y, k, x] = 1$. We deduce that G is a finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$. It follows, by Proposition 2.5, that G is in the class \mathcal{FN}, as required. □

Lemma 2.7. If G is a finitely generated hyper-(Abelian-by-finite) group in the class $(\Omega, \infty)^*$, then it is nilpotent-by-finite.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in $(\Omega, \infty)^*$. Since finitely generated nilpotent-by-finite groups are finitely presented and $(\Omega, \infty)^*$ is a quotient closed class of groups, by [17, Lemma 6.17], we may assume that every proper quotient of G is nilpotent-by-finite, but G itself is not nilpotent-by-finite. Since G is hyper-(Abelian-by-finite), it contains a non-trivial normal subgroup K such that K is finite or Abelian; so G/K is in \mathcal{NF}. In this case, K is Abelian and so G is in the class $\mathcal{A}(\mathcal{NF})$ and therefore it is in the class $\mathcal{AN}\mathcal{F}$. Consequently, G has a normal subgroup N of finite index such that N is Abelian-by-nilpotent. Moreover, N being a subgroup of finite index in a finitely generated group, is itself finitely generated, and so N is a finitely generated Abelian-by-nilpotent group. It follows, by a result of Segal [19,
Corollary 1], that N has a residually nilpotent normal subgroup of finite index. Thus, G has a residually nilpotent normal subgroup H, of finite index. Therefore, H is residually nilpotent and it is a finitely generated hyper-(Abelian-by-finite) group in the class $(\Omega, \infty)^*$. So, by Lemma 2.6, H is in the class \mathcal{FN}, hence H is in the class \mathcal{NF}. Thus G is in the class \mathcal{NF}, a contradiction which completes the proof.

Lemma 2.8. Let G be a finitely generated group in the class $(\Omega, \infty)^*$ which has a normal nilpotent subgroup N such that G/N is a finite cyclic group. Then G is in the class \mathcal{FN}.

Proof. We prove by induction on the order of G/N that G is in the class \mathcal{FN}. Let $n = |G/N|$; if $n = 1$, then $G = N$ and G is nilpotent. Now suppose that $n > 1$ and let q be a prime dividing n. Since G/N is cyclic, it has a normal subgroup of index q. Thus G has a normal subgroup H of index q containing N. Since $|H/N| < |G/N|$, then by the inductive hypothesis, H is in the class \mathcal{FN}. Let T be the torsion subgroup of H. Since H is finitely generated, T is finite. So H/T is a finitely generated torsion-free nilpotent group. Therefore, by Gruenberg [18, 5.2.21], H/T is residually a finite p-group for all primes p and hence, in particular, H/T is residually a finite q-group. But H has index q in G from which we get that G/T is residually a finite q-group [20, Exercise 10, page 17]. This means that G/T is residually nilpotent. It follows, by Lemma 2.6, that G/T is in the class \mathcal{FN}. So G itself is in \mathcal{FN}. □

Proof of Theorem 1.1. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $(\Omega, \infty)^*$. Hence, by Lemma 2.7, G is in the class \mathcal{NF}. Let K be a normal nilpotent subgroup of G such that G/K is finite. Since K is a finitely generated nilpotent group, it has a normal torsion-free subgroup of finite index [18, 5.4.15 (i)]. Thus, G has a normal torsion-free nilpotent subgroup N of finite index. Let x be a non-trivial element of G. Since N is finitely generated, $\langle N, x \rangle$ is a finitely generated hyper-(Abelian-by-finite) group in the class $(\Omega, \infty)^*$. Furthermore, $\langle N, x \rangle/N$ is cyclic. Therefore, by Lemma 2.8, $\langle N, x \rangle$ is in the class \mathcal{FN}. Consequently, there is a finite normal subgroup H of $\langle N, x \rangle$ such that $\langle N, x \rangle/H$ is nilpotent. Therefore $\gamma_{k+1}(\langle N, x \rangle) \leq H$ for some positive integer k; so $\gamma_{k+1}(\langle N, x \rangle)$ is finite. Hence, there is a positive integer m such that $[g, x]^m = 1$, for all $g \in N$. Since $[g, x]$ is an element of the torsion-free group N, we get that $[g, x] = 1$. Thus, g is a right Engel element of G; so $N \subseteq R(G)$,
where \(R(G) \) denotes the set of right Engel elements of \(G \). Moreover, since \(G \) is a finitely generated nilpotent-by-finite group, it satisfies the maximal condition on subgroups. Therefore, from Baer [17, Theorem 7.21], \(R(G) \) coincides with the hypercentre of \(G \) which equal to \(Z_n(G) \) for some positive integer \(n \). Thus \(N \leq Z_n(G), \) so \(Z_n(G) \) is of finite index in \(G \). It follows, by a result of Baer [10, Theorem 1], that \(G \) is in the class \(\mathcal{F}N^\ast \).

Proof of Corollary 1.2. (i) Let \(G \) be a finitely generated hyper-(Abelian-by-finite) group in the class \((\Omega_k, \infty)^*\); from Theorem 1.1, \(G \) is in the class \(\mathcal{F}N \). Let \(H \) be a normal finite subgroup of \(G \) such that \(G/H \) is nilpotent. It is clear that \(G/H \) is in the class \((\Omega_k, \infty)^*\). Let \(X \) be an infinite subset of \(G/H \); there are therefore two distinct elements \(\bar{x} = xH, \bar{y} = yH \) \((x, y \in G)\) of \(X \) such that \(\langle \bar{x}, \bar{x}^y \rangle \subseteq \Omega_k \), so \(\gamma_k(\langle \bar{x}, \bar{x}^y \rangle) = \gamma_k(\langle \bar{x}, \bar{x}^y \rangle) \). Now, since \(\langle \bar{x}, \bar{x}^y \rangle \) is nilpotent, there is an integer \(i \) such that \(\gamma_i(\langle \bar{x}, \bar{x}^y \rangle) = 1 \); so \(\gamma_k(\langle \bar{x}, \bar{x}^y \rangle) = 1 \). Since \(\langle \bar{x}, \bar{x}^y \rangle = \langle [\bar{y}, \bar{x}], \bar{x} \rangle \), we have \(\gamma_k(\langle [\bar{y}, \bar{x}], \bar{x} \rangle) = 1 \) and thus \([\bar{y}, \bar{x}] = 1 \). Consequently, \(G/H \) is in the class \(\mathcal{E}_k(\infty) \) of groups in which every infinite subset contains two distinct elements \(g, h \) such that \([g, k, h] = 1 \). The group \(G/H \), being a finitely generated soluble group in the class \(\mathcal{E}_k(\infty) \); it follows by a result of Abdollahi [2, Theorem 3], that there is an integer \(c = c(k) \), depending only on \(k \), such that \((G/H)/Z_c(G/H) \) is finite. By a result of Baer [10, Theorem 1], \(\gamma_{c+1}(G/H) = \gamma_{c+1}(G)H/H \) is finite; and since \(H \) is finite, \(\gamma_{c+1}(G) \) is finite. According to a result of P. Hall [10, 1.5], \(G/Z_c(G) \) is finite.

(ii) If \(G \) is in the class \((\Omega_2, \infty)^*\), then by Theorem 1.1 \(G \) is finite-by-nilpotent. Therefore, \(G \) has a finite normal subgroup \(H \) such that \(G/H \) is nilpotent. Since \(G/H \) is in the class \((\Omega_2, \infty)^*\), it is in the class \(\mathcal{E}_2(\infty) \). Hence, by Abdollahi [1, Theorem], \((G/H)/Z_2(G/H) \) is finite, so \(\gamma_3(G/H) \) is finite. Since \(H \) is finite, \(\gamma_3(G) \) is finite. It follows, by P. Hall [10, 1.5], that \(G/Z_2(G) \) is finite.

(iii) Now if \(G \) is in the class \((\Omega_3, \infty)^*\), then by Theorem 1.1 \(G \) has a finite normal subgroup \(H \) such that \(G/H \) is nilpotent. Since \(G/H \) is in the class \((\Omega_3, \infty)^*\), it is in the class \(\mathcal{E}_3(\infty) \). Hence, by Abdollahi [2, Theorem 1] \(G/H \) is in the class \(\mathcal{F}N_3^\ast \); consequently \(G \) is in the class \(\mathcal{F}N_3^\ast \). \(\square \)

3. Proofs of Theorem 1.3 and Corollary 1.4

We start by showing a weaker version of Theorem 1.3:
Lemma 3.1. A finitely generated hyper-(Abelian-by-finite) group in the class \((\mathcal{MN}, \infty)^*\) is finite-by-nilpotent.

Proof. Let \(G\) be a finitely generated hyper-(Abelian-by-finite) group in the class \((\mathcal{MN}, \infty)^*\), and let \(X\) be an infinite subset of \(G\). There are therefore two distinct elements \(x, y\) of \(X\) such that \(\langle x, x^y \rangle\) is in the class \(\mathcal{M}\), so there exists a normal subgroup \(N\) of \(\langle x, x^y \rangle\) such that \(N\) is in \(\mathcal{M}\) and \(\langle x, x^y \rangle/N\) is nilpotent. Now, \(\gamma_{i+1}(\langle x, x^y \rangle) \leq N\) for some positive integer \(i\), therefore \(\gamma_{i+1}(\langle x, x^y \rangle) \geq \gamma_{i+2}(\langle x, x^y \rangle) \geq ...\) is an infinite descending sequence of normal subgroups of \(N\); however \(N\) is in \(\mathcal{M}\), therefore there exists a positive integer \(n \geq i + 1\) such that \(\gamma_n(\langle x, x^y \rangle) = \gamma_{n+1}(\langle x, x^y \rangle)\). Hence, \(G\) is in the class \((\Omega, \infty)^*\); it follows, by Theorem 1.1, that \(G\) is finite-by-nilpotent. \(\Box\)

Lemma 3.2. A finitely generated hyper-(Abelian-by-finite) group in the class \((\mathcal{ME}, \infty)^*\) is nilpotent-by-finite.

Proof. Let \(G\) be a finitely generated hyper-(Abelian-by-finite) group in the class \((\mathcal{ME}, \infty)^*\). Since \((\mathcal{ME}, \infty)^*\) is a closed quotient class of groups and since finitely generated nilpotent-by-finite groups are finitely presented, we may assume that \(G\) is not nilpotent-by-finite, but every proper homomorphic image of \(G\) is nilpotent-by-finite. Since \(G\) is hyper-(Abelian-by-finite), there exists a non-trivial normal subgroup \(H\) of \(G\) such that \(H\) is finite or Abelian; so we have \(G/H\) is nilpotent-by-finite. If \(H\) is finite then \(G\) is nilpotent-by-finite, a contradiction. Consequently \(H\) is Abelian and so \(G\) is Abelian-by-(nilpotent-by-finite) and therefore it is \((\text{Abelian-by-nilpotent})\)-by-finite. Hence, \(G\) is a finite extension of a soluble group. Let \(K\) be a normal soluble subgroup of \(G\) of finite index. Clearly, \(K\) is in \((\mathcal{ME}, \infty)^*\), and since all soluble Engel group coincides with its Hirsch-Plotkin radical which is locally nilpotent [17, Theorem 7.34], we deduce that \(K\) is in the class \((\mathcal{MN}, \infty)^*\); it follows by Lemma 3.1 that \(K\) is finite-by-nilpotent. According to a result of P. Hall [10, Theorem 2], \(K\) is nilpotent-by-finite. Thus, \(G\) is nilpotent-by-finite, a contradiction. The proof is now complete. \(\Box\)

Since finitely generated nilpotent-by-finite groups satisfy the maximal condition on subgroups, Lemma 3.2 has the following consequence:

Corollary 3.3. Let \(G\) be a finitely generated hyper-(Abelian-by-finite) group in the class \((\mathcal{ME}, \infty)^*\). Then \(G\) satisfies the maximal condition on subgroups.
Proof of Theorem 1.3. It is clear that all finite-by-nilpotent groups are in the class \((\mathcal{ME}, \infty)^*\). Conversely, let \(G\) be a finitely generated hyper-
(Abelian-by-finite) group in \((\mathcal{ME}, \infty)^*\). According to Corollary 3.3, \(G\) satisfies the maximal condition on subgroups. Since Engel groups satisfying the maximal condition on subgroups are nilpotent \([18, 12.3.7]\), we deduce that \(G\) is in the class \((\mathcal{MN}, \infty)^*\). It follows, by Lemma 3.1, that \(G\) is in the class \(\mathcal{FN}\); as required. \(\square\)

Proof of Corollary 1.4. (i) Let \(G\) be a finitely generated hyper-
(Abelian-by-finite) group in the class \(\mathcal{F\!N} \ldots\); from Theorem 1.3, \(G\) is in the class \(\mathcal{FN}\). Let \(N\) be a normal finite subgroup of \(G\) such that \(G/N\) is nilpotent. Since \(G/N\) is nilpotent and finitely generated, its torsion subgroup \(T/N\) is finite, so \(T\) is finite and \(G/T\) is a torsion-free nilpotent group. Clearly, the property \((\mathcal{ME}, \infty)^*\) is inherited by \(G/T\), and since \(G/T\) is torsion-free and soluble, it belongs to \((\mathcal{E}, \infty)^*\) \([17, \text{Theorem } 5.25]\). Let \(\bar{X}\) be an infinite subset of \(G/T\); there are therefore two distinct elements \(\bar{x} = xT, \bar{y} = yT \ (x, y \in G)\) of \(\bar{X}\) such that \(\langle \bar{x}, \bar{x}^{-1}\bar{y}\rangle\) is a \(k\)-Engel group. Since \(\langle \bar{x}, \bar{x}^{-1}\bar{y}\rangle = \langle [\bar{y}, \bar{x}], \bar{x}\rangle\), we have \([\bar{y}, \bar{x}], k \bar{x}] = 1\). Hence, \(G/T\) is in the class \(\mathcal{E}_{k+1}(\infty)\). The group \(G/T\), being a finitely generated soluble group in the class \(\mathcal{E}_{k+1}(\infty)\); it follows by a result of Abdollahi \([2, \text{Theorem } 3]\), that there is an integer \(c = c(k)\), depending only on \(k\), such that \((G/T)/Z_c(G/T)\) is finite. By a result of Baer \([10, \text{Theorem } 1]\), \(\gamma_{c+1}(G/T) = \gamma_{c+1}(G)T/T\) is finite; and since \(T\) is finite, \(\gamma_{c+1}(G)\) is finite. According to a result of P. Hall \([10, 1.5]\), \(G/Z_c(G)\) is finite.

(ii) If \(G\) is in the class \((\mathcal{MA}, \infty)^* = (\mathcal{ME}_1, \infty)^*\), then by Theorem 1.3, \(G\) is finite-by-nilpotent. We proceed as in (i) until we obtain that \(G/T\) is in the class \(\mathcal{E}_2(\infty)\). Hence, by Abdollahi \([1, \text{Theorem } 1]\), \((G/T)/Z_2(G/T)\) is finite, so \(\gamma_3(G/T)\) is finite. Since \(T\) is finite, \(\gamma_3(G)\) is finite. It follows, by P. Hall \([10, 1.5]\), that \(G/Z_2(G)\) is finite.

(iii) Now if \(G\) is in the class \((\mathcal{ME}_2, \infty)^*\), we proceed as in (i) until we obtain that \(G/T\) is in the class \(\mathcal{E}_3(\infty)\). Hence, by Abdollahi \([2, \text{Theorem } 1]\) \(G/T\) is in the class \(\mathcal{F\!N}^{(2)}_3\); consequently \(G\) is in the class \(\mathcal{F\!N}^{(2)}_3\). \(\square\)

References

A condition on infinite subsets

F. Gherbi and T. Rouabhi

Fares Gherbi
Department of Mathematics
Faculty of Sciences
Ferhat Abbas University
Setif, 19000
ALGERIA
Gherbi_f@yahoo.fr

Tarek Rouabhi
Department of Mathematics
Faculty of Sciences
Ferhat Abbas University
Setif, 19000
ALGERIA
rtarek5@yahoo.fr