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Hyper–(Abelian–by–finite) groups with many
subgroups of finite depth

Fares Gherbi
Tarek Rouabhi

Abstract

The main result of this note is that a finitely generated hyper-(Abelian-by-
finite) group G is finite-by-nilpotent if and only if every infinite subset contains
two distinct elements x, y such that γn(〈x, xy〉) = γn+1(〈x, xy〉) for some positive
integer n = n(x, y) (respectively, 〈x, xy〉 is an extension of a group satisfying the
minimal condition on normal subgroups by an Engel group).

Groupes hyper-(Abelien-par-fini) ayant beaucoup de sous-groupes
de profondeur finie

Résumé
Le principal résultat de cet article est qu’un groupe G hyper-(Abélien-par-

fini) de type fini est fini-par-nilpotent si, et seulement si, toute partie infinie de G
contient deux éléments distincts x, y tels que γn(〈x, xy〉) = γn+1(〈x, xy〉) pour un
certain entier positif n = n(x, y) (respectivement, 〈x, xy〉 est une extension d’un
groupe vérifiant la condition minimale sur les sous-groupes normaux par un groupe
d’Engel).

1. Introduction and results

Let X be a class of groups. Denote by (X ,∞) (respectively, (X ,∞)∗) the
class of groups G such that for every infinite subset X of G, there exist
distinct elements x, y ∈ X such that 〈x, y〉 ∈ X (respectively, 〈x, xy〉 ∈ X ).
Note that if X is a subgroup closed class, then (X ,∞) ⊆ (X ,∞)∗.

In answer to a question of Erdös, B.H. Neumann proved in [16] that a
group G is centre-by-finite if and only if G is in the class (A,∞), where A
denotes the class of Abelian groups. Lennox and Wiegold showed in [13]

Keywords: Infinite subsets, finite depth, Engel groups, minimal condition on normal sub-
groups, finite-by-nilpotent groups, finitely generated hyper-(Abelian-by-finite) groups.
Math. classification: 20F22, 20F99.
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that a finitely generated soluble group is in the class (N ,∞) (respectively,
(P,∞)) if and only if it is finite-by-nilpotent (respectively, polycyclic),
where N (respectively, P) denotes the class of nilpotent (respectively,
polycyclic) groups. Other results of this type have been obtained, for ex-
ample in [1]—[3], [4]—[6], [7], [8], [13], [14]—[16], [21], [22] and [23].

We say that a group G has finite depth if the lower central series of
G stabilises after a finite number of steps. Thus if γn(G) denotes the nth

term of the lower central series of G, then G has finite depth if and only
if γn(G) = γn+1(G) for some positive integer n. Denote by Ω the class of
groups which has finite depth. Moreover, if k is a fixed positive integer,
let Ωk denotes the class of groups G such that γk(G) = γk+1(G).

Clearly, any group in the class FN is of finite depth, where F de-
notes the class of finite groups. From this and the fact that FN is a
subgroup closed class, we deduce that finite-by-nilpotent groups belong to
(Ω,∞)∗. Here we shall be interested by the converse. In [5], Boukaroura
has proved that a finitely generated soluble group in the class (Ω,∞) is
finite-by-nilpotent. We obtain the same result when (Ω,∞) is replaced by
(Ω,∞)∗and soluble by hyper-(Abelian-by-finite). More precisely we shall
prove the following result.

Theorem 1.1. Let G be a finitely generated hyper-(Abelian-by-finite) group.
Then, G is in the class (Ω,∞)∗ if, and only if, G is finite-by-nilpotent.

Note that Theorem 1.1 improves the result of [12] which asserts that
a finitely generated soluble-by-finite group whose subgroups generated by
two conjugates are of finite depth, is finite-by-nilpotent.

It is clear that an Abelian group G in the class (Ω1,∞)∗ is finite. For
if G is infinite, then it contains an infinite subset X = G\{1}. Therefore
there exist two distinct elements x, y (6= 1) in X such that γ1(〈x, xy〉) =
γ2(〈x, xy〉) = 1; so x = 1, which is a contradiction. From this it follows
that a hyper-(Abelian-by-finite) group G in the class (Ω1,∞)∗ is hyper-
(finite) as (Ω1,∞)∗ is a subgroup and a quotient closed class. But it is not
difficult to see that a hyper-(finite) group is locally finite [17, Part 1, page
36]. So G is locally finite. Now if G is infinite, then it contains an infinite
Abelian subgroup A [17, Theorem 3.43]. Since A is in the class (Ω1,∞)∗,
it is finite; a contradiction and G, therefore, is finite. As consequence of
Theorem 1.1, we shall prove other results on the class (Ωk,∞)∗.

Corollary 1.2. Let k be a positive integer and let G be a finitely generated
hyper-(Abelian-by-finite) group. We have:
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(i) If G is in the class (Ωk,∞)∗, then there exists a positive integer
c = c(k), depending only on k, such that G/Zc(G) is finite.

(ii) If G is in the class (Ω2,∞)∗, then G/Z2(G) is finite.
(iii) If G is in the class (Ω3,∞)∗, then G is in the class FN (2)

3 , where
N (2)

3 denotes the class of groups whose 2-generator subgroups are nilpotent
of class at most 3.

Let k be a fixed positive integer, denote by M, Ek and E respectively
the class of groups satisfying the minimal condition on normal subgroups,
the class of k-Engel groups and the class of Engel groups. Using Theorem
1.1, we will prove the following results concerning the classes (ME ,∞)∗

and (MEk,∞)∗

Theorem 1.3. Let G be a finitely generated hyper-(Abelian-by-finite) group.
Then, G is in the class (ME ,∞)∗ if, and only if, G is finite-by-nilpotent.

Note that this theorem improves Theorem 3 of [23] (respectively, Corol-
lary 3 of [5]) where it is proved that a finitely generated soluble group in
the class (CN ,∞)∗ (respectively, (XN ,∞)) is finite-by-nilpotent, where C
(respectively, X ) denotes the class of Chernikov groups (respectively, the
class of groups satisfying the minimal condition on subgroups).

Corollary 1.4. Let k be a positive integer and let G be a finitely generated
hyper-(Abelian-by-finite) group. We have:

(i) If G is in the class (MEk,∞)∗, then there exists a positive integer
c = c(k), depending only on k, such that G/Zc(G) is finite.

(ii) If G is in the class (MA,∞)∗, then G/Z2(G) is finite.
(iii) If G is in the class (ME2,∞)∗, then G is in the class FN (2)

3 .

Note that these results are not true for arbitrary groups. Indeed, Golod
[9] showed that for each integer d > 1 and each prime p, there are infinite
d-generator groups all of whose (d− 1)-generator subgroups are finite p-
groups. Clearly, for d = 3, we obtain a group G which belongs to the class
(F ,∞)∗. Therefore, G belongs to the classes (Ω,∞)∗, (Ωk,∞)∗, (ME ,∞)∗

and (MEk,∞)∗, but it is not finite-by-nilpotent.
Acknowlegments: The authors would like to thank their supervisor

Dr. N. Trabelsi for his help and encouragement while doing this work
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2. Proofs of Theorem 1.1 and Corollary 1.2

Let E (∞) the class of groups in which every infinite subset contains two
distinct elements x, y such that [x,n y] = 1 for a positive integer n =
n(x, y). In [15], it is proved that a finitely generated soluble group in the
class E (∞) is finite-by-nilpotent. We will extend this result to finitely
generated hyper-(Abelian-by-finite) groups (Proposition 2.5).

Our first lemma is a weaker version of Lemma 11 of [23], but we include
a proof to keep our paper reasonably self contained.

Lemma 2.1. Let G be a finitely generated Abelian-by-finite group. If G
is in the class (FN ,∞), then it is finite-by-nilpotent.

Proof. Let G be a finitely generated infinite Abelian-by-finite group in the
class (FN ,∞). Hence there is a normal torsion-free Abelian subgroup A
of finite index. Let x be a non trivial element in A and let g in G. Then
the subset

{
xig : i a positive integer

}
is infinite, so there are two positive

integers m,n such that 〈xmg, xng〉 is finite-by-nilpotent, hence 〈xr, xng〉 is
finite-by-nilpotent where r = m−n. Thus there are two positive integers c

and d such that [xr,c xng]d = 1. The element x being in A which is Abelian
and normal in G, we have [xr,c xng] = [xr,c g] = [x,c g]r; so [x,c g]r.d = 1.
Now [x,c g] belongs to the torsion-free group A, so [x,c g] = 1. It follows
that x is a right Engel element of G. Since G is Abelian-by-finite and
finitely generated, it satisfies the maximal condition on subgroups; so the
set of right Engel elements of G coincides with its hypercentre which is
equal to Zi (G), the (i + 1)-th term of the upper central series of G, for
some integer i > 0 [17, Theorem 7.21]. Hence, A ≤ Zi (G); and since A
is of finite index in G, G/Zi (G) is finite. Thus, by a result of Baer [10,
Theorem 1], G is finite-by-nilpotent. �

Lemma 2.2. Let G be a finitely generated Abelian-by-finite group. If G
is in the class E (∞), then it is finite-by-nilpotent.

Proof. Let G be an infinite finitely generated Abelian-by-finite group in
E (∞), and let A be an Abelian normal subgroup of finite index in G.
It is clear that all infinite subsets of G contains two different elements
x, y such that xA = yA; so y = xa for some a in A and 〈x, y〉 = 〈x, a〉.
Thus 〈x, y〉 is a finitely generated metabelian group in the class E (∞). It
follows by the result of Longobardi and Maj [15, Theorem 1], that 〈x, y〉
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is finite-by-nilpotent. Hence G is in the class (FN ,∞). Now, by Lemma
2.1, G is finite-by-nilpotent; as required. �

Lemma 2.3. A finitely generated hyper-(Abelian-by-finite) group in the
class E (∞) is nilpotent-by-finite.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in
the class E (∞). Since E (∞) is a quotient closed class of groups and since
finitely generated nilpotent-by-finite groups are finitely presented, we may
assume that G is not nilpotent-by-finite but every proper homomorphic
image of G is in the class NF . Since G is hyper-(Abelian-by-finite), G con-
tains a non-trivial normal subgroup H such that H is finite or Abelian; so
we have G/H is in NF . If H is finite then G is nilpotent-by-finite, a con-
tradiction. Consequently H is Abelian and so G is Abelian-by-(nilpotent-
by-finite) and therefore it is (Abelian-by-nilpotent)-by-finite. Hence, G is
a finite extension of a soluble group; there is therefore a normal soluble
subgroup K of G of finite index. Now, K is a finitely generated solu-
ble group in the class E (∞); it follows, by the result of Longobardi and
Maj [15, Theorem 1], that K is finite-by-nilpotent. By a result of P. Hall
[10, Theorem 2], K is nilpotent-by-finite and so G is nilpotent-by-finite, a
contradiction. Now, the Lemma is shown. �

Since finitely generated nilpotent-by-finite groups satisfy the maximal
condition on subgroups, Lemma 2.3 has the following consequence:

Corollary 2.4. Let G be a finitely generated hyper-(Abelian-by-finite)
group in the class E (∞). Then G satisfies the maximal condition on sub-
groups.

Proposition 2.5. A finitely generated hyper-(Abelian-by-finite) group in
the class E (∞) is finite-by-nilpotent.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in
E (∞). According to Corollary 2.4, G satisfies the maximal condition on
subgroups. Now, since E (∞) is a quotient closed class, we may assume that
every proper homomorphic image of G is in FN , but G itself is not in
FN . Our group G being hyper-(Abelian-by-finite), contains a non-trivial
normal subgroup H such that H is finite or Abelian; so by hypothesis
G/H is in the class FN . If H is finite, then G is finite-by-nilpotent, a
contradiction. Consequently H is Abelian and so G is in the class A (FN ),
hence G is in (AF)N . Now, since G satisfies the maximal condition on

21



F. Gherbi and T. Rouabhi

subgroups, it follows from Lemma 2.2, that G is in (FN )N , so it is in
F (NN ). Consequently, there is a finite normal subgroup K of G such
that G/K is soluble. The group G/K, being a finitely generated soluble
group in the class E (∞), is in FN , by the result of Longobardi and Maj
[15, Theorem 1]. So G is in the class FN , which is a contradiction and
the Proposition is shown. �

The remainder of the proof of Theorem 1.1 is adapted from that of
Lennox’s Theorem [11, Theorem 3]

Lemma 2.6. Let G be a finitely generated hyper-(Abelian-by-finite) group
in the class (Ω,∞)∗. If G is residually nilpotent, then G is in the class
FN .

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in
the class (Ω,∞)∗ and assume that G is residually nilpotent. Let X be an
infinite subset of G, there are two distinct elements x and y of X such
that 〈x, xy〉 ∈ Ω. It follows that there exists a positive integer k such
that γk (〈x, xy〉) = γk+1(〈x, xy〉). The group 〈x, xy〉, being a subgroup
of G, is residually nilpotent, so ∩

i∈N
γi(〈x, xy〉) = 1. Hence γk(〈x, xy〉) =

∩
i∈N

γi(〈x, xy〉) = 1. Since 〈x, xy〉 = 〈[y, x] , x〉; γk(〈[y, x] , x〉) = 1, thus

[y,k x] = 1. We deduce that G is a finitely generated hyper-(Abelian-by-
finite) group in the class E (∞). It follows, by Proposition 2.5, that G is
in the class FN , as required. �

Lemma 2.7. If G is a finitely generated hyper-(Abelian-by-finite) group
in the class (Ω,∞)∗, then it is nilpotent-by-finite.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in
(Ω,∞)∗. Since finitely generated nilpotent-by-finite groups are finitely pre-
sented and (Ω,∞)∗ is a quotient closed class of groups, by [17, Lemma
6.17], we may assume that every proper quotient of G is nilpotent-by-
finite, but G itself is not nilpotent-by-finite. Since G is hyper-(Abelian-
by-finite), it contains a non-trivial normal subgroup K such that K is
finite or Abelian; so G/K is in NF . In this case, K is Abelian and so
G is in the class A(NF) and therefore it is in the class (AN )F . Con-
sequently, G has a normal subgroup N of finite index such that N is
Abelian-by-nilpotent. Moreover, N being a subgroup of finite index in a
finitely generated group, is itself finitely generated, and so N is a finitely
generated Abelian-by-nilpotent group. It follows, by a result of Segal [19,
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Corollary 1], that N has a residually nilpotent normal subgroup of finite
index. Thus, G has a residually nilpotent normal subgroup H, of finite
index. Therefore, H is residually nilpotent and it is a finitely generated
hyper-(Abelian-by-finite) group in the class (Ω,∞)∗. So, by Lemma 2.6,
H is in the class FN , hence H is in the class NF . Thus G is in the class
NF , a contradiction which completes the proof. �

Lemma 2.8. Let G be a finitely generated group in the class (Ω,∞)∗

which has a normal nilpotent subgroup N such that G/N is a finite cyclic
group. Then G is in the class FN .

Proof. We prove by induction on the order of G/N that G is in the class
FN . Let n = |G/N |; if n = 1, then G = N and G is nilpotent. Now
suppose that n > 1 and let q be a prime dividing n. Since G/N is cyclic,
it has a normal subgroup of index q. Thus G has a normal subgroup H
of index q containing N . Since |H/N | < |G/N |, then by the inductive
hypothesis, H is in the class FN . Let T be the torsion subgroup of H.
Since H is finitely generated, T is finite. So H/T is a finitely generated
torsion-free nilpotent group. Therefore, by Gruenberg [18, 5.2.21], H/T is
residually a finite p-group for all primes p and hence, in particular, H/T is
residually a finite q-group. But H has index q in G from which we get that
G/T is residually a finite q-group [20, Exercise 10, page 17]. This means
that G/T is residually nilpotent. It follows, by Lemma 2.6, that G/T is in
the class FN . So G itself is in FN . �

Proof of Theorem 1.1. Let G be a finitely generated hyper-(Abelian-by-
finite) group in the class (Ω,∞)∗. Hence, by Lemma 2.7, G is in the class
NF . Let K be a normal nilpotent subgroup of G such that G/K is finite.
Since K is a finitely generated nilpotent group, it has a normal torsion-free
subgroup of finite index [18, 5.4.15 (i)]. Thus, G has a normal torsion-free
nilpotent subgroup N of finite index. Let x be a non-trivial element of G.
Since N is finitely generated, 〈N,x〉 is a finitely generated hyper-(Abelian-
by-finite) group in the class (Ω,∞)∗. Furthermore, 〈N,x〉 /N is cyclic.
Therefore, by Lemma 2.8, 〈N,x〉 is in the class FN . Consequently, there
is a finite normal subgroup H of 〈N,x〉 such that 〈N,x〉 /H is nilpotent.
Therefore γk+1(〈N,x〉) ≤ H for some positive integer k; so γk+1(〈N,x〉)
is finite. Hence, there is a positive integer m such that [g,k x]m = 1, for
all g ∈ N . Since [g,k x] is an element of the torsion-free group N , we get
that [g,k x] = 1. Thus, g is a right Engel element of G; so N ⊆ R(G),
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where R(G) denotes the set of right Engel elements of G. Moreover, since
G is a finitely generated nilpotent-by-finite group, it satisfies the maximal
condition on subgroups. Therefore, from Baer [17, Theorem 7.21], R(G)
coincides with the hypercentre of G which equal to Zn(G) for some positive
integer n. Thus N ≤ Zn(G), so Zn(G) is of finite index in G. It follows,
by a result of Baer [10, Theorem 1], that G is in the class FN . �

Proof of Corollary 1.2. (i) Let G be a finitely generated hyper-(Abelian-
by-finite) group in the class (Ωk,∞)∗; from Theorem 1.1, G is in the class
FN . Let H be a normal finite subgroup of G such that G/H is nilpotent.
It is clear that G/H is in the class (Ωk,∞)∗. Let X̄ be an infinite subset of
G/H; there are therefore two distinct elements x̄ = xH, ȳ = yH (x, y ∈ G)
of X̄ such that 〈x̄, x̄ȳ〉 ∈ Ωk, so γk(〈x̄, x̄ȳ〉) = γk+1(〈x̄, x̄ȳ〉). Now, since
〈x̄, x̄ȳ〉 is nilpotent, there is an integer i such that γi(〈x̄, x̄ȳ〉) = 1; so
γk(〈x̄, x̄ȳ〉) = 1. Since 〈x̄, x̄ȳ〉 = 〈[ȳ, x̄] , x̄〉, we have γk(〈[ȳ, x̄] , x̄〉) = 1 and
thus [ȳ,k x̄] = 1. Consequently, G/H is in the class Ek(∞) of groups in
which every infinite subset contains two distinct elements g, h such that
[g,k h] = 1. The group G/H, being a finitely generated soluble group in the
class Ek(∞); it follows by a result of Abdollahi [2, Theorem 3], that there
is an integer c = c(k), depending only on k, such that (G/H)/Zc(G/H) is
finite. By a result of Baer [10, Theorem 1], γc+1(G/H) = γc+1(G)H/H is
finite; and since H is finite, γc+1 (G) is finite. According to a result of P.
Hall [10, 1.5], G/Zc (G) is finite.

(ii) If G is in the class (Ω2,∞)∗, then by Theorem 1.1 G is finite-by-
nilpotent. Therefore, G has a finite normal subgroup H such that G/H
is nilpotent. Since G/H is in the class (Ω2,∞)∗, it is in the class E2(∞).
Hence, by Abdollahi [1, Theorem], (G/H)/Z2(G/H) is finite, so γ3(G/H)
is finite. Since H is finite, γ3(G) is finite. It follows, by P. Hall [10, 1.5],
that G/Z2(G) is finite.

(iii) Now if G is in the class (Ω3,∞)∗, then by Theorem 1.1 G has a
finite normal subgroup H such that G/H is nilpotent. Since G/H is in the
class (Ω3,∞)∗, it is in the class E3(∞). Hence, by Abdollahi [2, Theorem
1] G/H is in the class FN (2)

3 ; consequently G is in the class FN (2)
3 . �

3. Proofs of Theorem 1.3 and Corollary 1.4

We start by showing a weaker version of Theorem 1.3:
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Lemma 3.1. A finitely generated hyper-(Abelian-by-finite) group in the
class (MN ,∞)∗ is finite-by-nilpotent.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in the
class (MN ,∞)∗, and let X be an infinite subset of G. There are therefore
two distinct elements x, y of X such that 〈x, xy〉 is in the class MN , so
there exists a normal subgroup N of 〈x, xy〉 such that N is in M and
〈x, xy〉 /N is nilpotent. Now, γi+1(〈x, xy〉) ≤ N for some positive integer
i, therefore γi+1(〈x, xy〉) ≥ γi+2(〈x, xy〉) ≥ ... is an infinite descending
sequence of normal subgroups of N ; however N is in M, therefore there
exists a positive integer n ≥ i + 1 such that γn(〈x, xy〉) = γn+1(〈x, xy〉).
Hence, G is in the class (Ω,∞)∗; it follows, by Theorem 1.1, that G is
finite-by-nilpotent. �

Lemma 3.2. A finitely generated hyper-(Abelian-by-finite) group in the
class (ME ,∞)∗ is nilpotent-by-finite.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in the
class (ME ,∞)∗. Since (ME ,∞)∗ is a closed quotient class of groups and
since finitely generated nilpotent-by-finite groups are finitely presented,
we may assume that G is not nilpotent-by-finite, but every proper homo-
morphic image of G is nilpotent-by-finite. Since G is hyper-(Abelian-by-
finite), there exists a non-trivial normal subgroup H of G such that H
is finite or Abelian; so we have G/H is nilpotent-by-finite. If H is finite
then G is nilpotent-by-finite, a contradiction. Consequently H is Abelian
and so G is Abelian-by-(nilpotent-by-finite) and therefore it is (Abelian-
by-nilpotent)-by-finite. Hence, G is a finite extension of a soluble group.
Let K be a normal soluble subgroup of G of finite index. Clearly, K is
in (ME ,∞)∗, and since all soluble Engel group coincides with its Hirsch-
Plotkin radical which is locally nilpotent [17, Theorem 7.34], we deduce
that K is in the class (MN ,∞)∗; it follows by Lemma 3.1 that K is
finite-by-nilpotent. According to a result of P. Hall [10, Theorem 2], K
is nilpotent-by-finite. Thus, G is nilpotent-by-finite, a contradiction. The
proof is now complete. �

Since finitely generated nilpotent-by-finite groups satisfy the maximal
condition on subgroups, Lemma 3.2 has the following consequence:

Corollary 3.3. Let G be a finitely generated hyper-(Abelian-by-finite)
group in the class (ME ,∞)∗. Then G satisfies the maximal condition on
subgroups.
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Proof of Theorem 1.3. It is clear that all finite-by-nilpotent groups are
in the class (ME ,∞)∗. Conversely, let G be a finitely generated hyper-
(Abelian-by-finite) group in (ME ,∞)∗. According to Corollary 3.3, G sat-
isfies the maximal condition on subgroups. Since Engel groups satisfying
the maximal condition on subgroups are nilpotent [18, 12.3.7], we deduce
that G is in the class (MN ,∞)∗. It follows, by Lemma 3.1, that G is in
the class FN ; as required. �

Proof of Corollary 1.4. (i) Let G be a finitely generated hyper-(Abelian-
by-finite) group in the class (MEk,∞)∗; from Theorem 1.3, G is in the
class FN . Let N be a normal finite subgroup of G such that G/N is nilpo-
tent. Since G/N is nilpotent and finitely generated, its torsion subgroup
T/N is finite, so T is finite and G/T is a torsion-free nilpotent group.
Clearly, the property (MEk,∞)∗ is inherited by G/T , and since G/T is
torsion-free and soluble, it belongs to (Ek,∞)∗ [17, Theorem 5.25]. Let
X̄ be an infinite subset of G/T ; there are therefore two distinct elements
x̄ = xT , ȳ = yT (x, y ∈ G) of X̄ such that 〈x̄, x̄ȳ〉 is a k-Engel group.
Since 〈x̄, x̄ȳ〉 = 〈[ȳ, x̄] , x̄〉, we have [ȳ,k+1 x̄] = [[ȳ, x̄] ,k x̄] = 1. Hence,
G/T is in the class Ek+1(∞). The group G/T , being a finitely generated
soluble group in the class Ek+1(∞); it follows by a result of Abdollahi
[2, Theorem 3], that there is an integer c = c(k), depending only on k,
such that (G/T )/Zc(G/T ) is finite. By a result of Baer [10, Theorem 1],
γc+1(G/T ) = γc+1(G)T/T is finite; and since T is finite, γc+1 (G) is finite.
According to a result of P. Hall [10, 1.5], G/Zc (G) is finite.

(ii) If G is in the class (MA,∞)∗ = (ME1,∞)∗, then by Theorem 1.3,
G is finite-by-nilpotent. We proceed as in (i) until we obtain that G/T is
in the class E2(∞). Hence, by Abdollahi [1, Theorem], (G/T )/Z2(G/T ) is
finite, so γ3(G/T ) is finite. Since T is finite, γ3(G) is finite. It follows, by
P. Hall [10, 1.5], that G/Z2(G) is finite.

(iii) Now if G is in the class (ME2,∞)∗, we proceed as in (i) until we
obtain that G/T is in the class E3(∞). Hence, by Abdollahi [2, Theorem
1] G/T is in the class FN (2)

3 ; consequently G is in the class FN (2)
3 . �
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