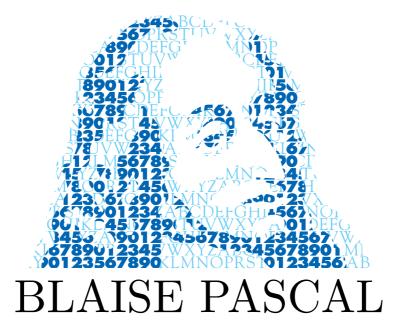
ANNALES MATHÉMATIQUES



FARES GHERBI AND TAREK ROUABHI

Hyper–(Abelian–by–finite) groups with many subgroups of finite depth

Volume 14, nº 1 (2007), p. 17-28.

<http://ambp.cedram.org/item?id=AMBP_2007__14_1_17_0>

 $\ensuremath{\textcircled{C}}$ Annales mathématiques Blaise Pascal, 2007, tous droits réservés.

L'accès aux articles de la revue « Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

> Publication éditée par le laboratoire de mathématiques de l'université Blaise-Pascal, UMR 6620 du CNRS Clermont-Ferrand — France

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

Hyper–(Abelian–by–finite) groups with many subgroups of finite depth

Fares Gherbi Tarek Rouabhi

Abstract

The main result of this note is that a finitely generated hyper-(Abelian-by-finite) group G is finite-by-nilpotent if and only if every infinite subset contains two distinct elements x, y such that $\gamma_n(\langle x, x^y \rangle) = \gamma_{n+1}(\langle x, x^y \rangle)$ for some positive integer n = n(x, y) (respectively, $\langle x, x^y \rangle$ is an extension of a group satisfying the minimal condition on normal subgroups by an Engel group).

Groupes hyper-(Abelien-par-fini) ayant beaucoup de sous-groupes de profondeur finie

Résumé

Le principal résultat de cet article est qu'un groupe G hyper-(Abélien-parfini) de type fini est fini-par-nilpotent si, et seulement si, toute partie infinie de Gcontient deux éléments distincts x, y tels que $\gamma_n(\langle x, x^y \rangle) = \gamma_{n+1}(\langle x, x^y \rangle)$ pour un certain entier positif n = n(x, y) (respectivement, $\langle x, x^y \rangle$ est une extension d'un groupe vérifiant la condition minimale sur les sous-groupes normaux par un groupe d'Engel).

1. Introduction and results

Let \mathcal{X} be a class of groups. Denote by (\mathcal{X}, ∞) (respectively, $(\mathcal{X}, \infty)^*$) the class of groups G such that for every infinite subset X of G, there exist distinct elements $x, y \in X$ such that $\langle x, y \rangle \in \mathcal{X}$ (respectively, $\langle x, x^y \rangle \in \mathcal{X}$). Note that if \mathcal{X} is a subgroup closed class, then $(\mathcal{X}, \infty) \subseteq (\mathcal{X}, \infty)^*$.

In answer to a question of Erdös, B.H. Neumann proved in [16] that a group G is centre-by-finite if and only if G is in the class (\mathcal{A}, ∞) , where \mathcal{A} denotes the class of Abelian groups. Lennox and Wiegold showed in [13]

Keywords: Infinite subsets, finite depth, Engel groups, minimal condition on normal subgroups, finite-by-nilpotent groups, finitely generated hyper-(Abelian-by-finite) groups. Math. classification: 20F22, 20F99.

that a finitely generated soluble group is in the class (\mathcal{N}, ∞) (respectively, (\mathcal{P}, ∞)) if and only if it is finite-by-nilpotent (respectively, polycyclic), where \mathcal{N} (respectively, \mathcal{P}) denotes the class of nilpotent (respectively, polycyclic) groups. Other results of this type have been obtained, for example in [1]–[3], [4]–[6], [7], [8], [13], [14]–[16], [21], [22] and [23].

We say that a group G has finite depth if the lower central series of G stabilises after a finite number of steps. Thus if $\gamma_n(G)$ denotes the n^{th} term of the lower central series of G, then G has finite depth if and only if $\gamma_n(G) = \gamma_{n+1}(G)$ for some positive integer n. Denote by Ω the class of groups which has finite depth. Moreover, if k is a fixed positive integer, let Ω_k denotes the class of groups G such that $\gamma_k(G) = \gamma_{k+1}(G)$.

Clearly, any group in the class \mathcal{FN} is of finite depth, where \mathcal{F} denotes the class of finite groups. From this and the fact that \mathcal{FN} is a subgroup closed class, we deduce that finite-by-nilpotent groups belong to $(\Omega, \infty)^*$. Here we shall be interested by the converse. In [5], Boukaroura has proved that a finitely generated soluble group in the class (Ω, ∞) is finite-by-nilpotent. We obtain the same result when (Ω, ∞) is replaced by $(\Omega, \infty)^*$ and soluble by hyper-(Abelian-by-finite). More precisely we shall prove the following result.

Theorem 1.1. Let G be a finitely generated hyper-(Abelian-by-finite) group. Then, G is in the class $(\Omega, \infty)^*$ if, and only if, G is finite-by-nilpotent.

Note that Theorem 1.1 improves the result of [12] which asserts that a finitely generated soluble-by-finite group whose subgroups generated by two conjugates are of finite depth, is finite-by-nilpotent.

It is clear that an Abelian group G in the class $(\Omega_1, \infty)^*$ is finite. For if G is infinite, then it contains an infinite subset $X = G \setminus \{1\}$. Therefore there exist two distinct elements $x, y \ (\neq 1)$ in X such that $\gamma_1(\langle x, x^y \rangle) =$ $\gamma_2(\langle x, x^y \rangle) = 1$; so x = 1, which is a contradiction. From this it follows that a hyper-(Abelian-by-finite) group G in the class $(\Omega_1, \infty)^*$ is hyper-(finite) as $(\Omega_1, \infty)^*$ is a subgroup and a quotient closed class. But it is not difficult to see that a hyper-(finite) group is locally finite [17, Part 1, page 36]. So G is locally finite. Now if G is infinite, then it contains an infinite Abelian subgroup A [17, Theorem 3.43]. Since A is in the class $(\Omega_1, \infty)^*$, it is finite; a contradiction and G, therefore, is finite. As consequence of Theorem 1.1, we shall prove other results on the class $(\Omega_k, \infty)^*$.

Corollary 1.2. Let k be a positive integer and let G be a finitely generated hyper-(Abelian-by-finite) group. We have:

(i) If G is in the class $(\Omega_k, \infty)^*$, then there exists a positive integer c = c(k), depending only on k, such that $G/Z_c(G)$ is finite.

(ii) If G is in the class $(\Omega_2, \infty)^*$, then $G/Z_2(G)$ is finite.

(iii) If G is in the class $(\Omega_3, \infty)^*$, then G is in the class $\mathcal{FN}_3^{(2)}$, where $\mathcal{N}_3^{(2)}$ denotes the class of groups whose 2-generator subgroups are nilpotent of class at most 3.

Let k be a fixed positive integer, denote by \mathcal{M} , \mathcal{E}_k and \mathcal{E} respectively the class of groups satisfying the minimal condition on normal subgroups, the class of k-Engel groups and the class of Engel groups. Using Theorem 1.1, we will prove the following results concerning the classes $(\mathcal{M}\mathcal{E}, \infty)^*$ and $(\mathcal{M}\mathcal{E}_k, \infty)^*$

Theorem 1.3. Let G be a finitely generated hyper-(Abelian-by-finite) group. Then, G is in the class $(\mathcal{ME}, \infty)^*$ if, and only if, G is finite-by-nilpotent.

Note that this theorem improves Theorem 3 of [23] (respectively, Corollary 3 of [5]) where it is proved that a finitely generated soluble group in the class $(\mathcal{CN}, \infty)^*$ (respectively, (\mathcal{XN}, ∞)) is finite-by-nilpotent, where \mathcal{C} (respectively, \mathcal{X}) denotes the class of Chernikov groups (respectively, the class of groups satisfying the minimal condition on subgroups).

Corollary 1.4. Let k be a positive integer and let G be a finitely generated hyper-(Abelian-by-finite) group. We have:

(i) If G is in the class $(\mathcal{ME}_k, \infty)^*$, then there exists a positive integer c = c(k), depending only on k, such that $G/Z_c(G)$ is finite.

(ii) If G is in the class $(\mathcal{MA}, \infty)^*$, then $G/Z_2(G)$ is finite.

(iii) If G is in the class $(\mathcal{ME}_2, \infty)^*$, then G is in the class $\mathcal{FN}_3^{(2)}$.

Note that these results are not true for arbitrary groups. Indeed, Golod [9] showed that for each integer d > 1 and each prime p, there are infinite d-generator groups all of whose (d-1)-generator subgroups are finite p-groups. Clearly, for d = 3, we obtain a group G which belongs to the classs $(\mathcal{F}, \infty)^*$. Therefore, G belongs to the classes $(\Omega, \infty)^*$, $(\Omega_k, \infty)^*$, $(\mathcal{ME}, \infty)^*$ and $(\mathcal{ME}_k, \infty)^*$, but it is not finite-by-nilpotent.

Acknowlegments: The authors would like to thank their supervisor Dr. N. Trabelsi for his help and encouragement while doing this work

2. Proofs of Theorem 1.1 and Corollary 1.2

Let $\mathcal{E}(\infty)$ the class of groups in which every infinite subset contains two distinct elements x, y such that [x, y] = 1 for a positive integer n = n(x, y). In [15], it is proved that a finitely generated soluble group in the class $\mathcal{E}(\infty)$ is finite-by-nilpotent. We will extend this result to finitely generated hyper-(Abelian-by-finite) groups (Proposition 2.5).

Our first lemma is a weaker version of Lemma 11 of [23], but we include a proof to keep our paper reasonably self contained.

Lemma 2.1. Let G be a finitely generated Abelian-by-finite group. If G is in the class (\mathcal{FN}, ∞) , then it is finite-by-nilpotent.

Proof. Let G be a finitely generated infinite Abelian-by-finite group in the class (\mathcal{FN}, ∞) . Hence there is a normal torsion-free Abelian subgroup A of finite index. Let x be a non trivial element in A and let q in G. Then the subset $\{x^i g : i \text{ a positive integer}\}$ is infinite, so there are two positive integers m, n such that $\langle x^m g, x^n g \rangle$ is finite-by-nilpotent, hence $\langle x^r, x^n g \rangle$ is finite-by-nilpotent where r = m - n. Thus there are two positive integers c and d such that $[x^r, cx^n g]^d = 1$. The element x being in A which is Abelian and normal in *G*, we have $[x^{r}, x^{n}g] = [x^{r}, g] = [x, g]^{r}$; so $[x, g]^{r, d} = 1$. Now [x, cg] belongs to the torsion-free group A, so [x, cg] = 1. It follows that x is a right Engel element of G. Since G is Abelian-by-finite and finitely generated, it satisfies the maximal condition on subgroups; so the set of right Engel elements of G coincides with its hypercentre which is equal to $Z_i(G)$, the (i+1)-th term of the upper central series of G, for some integer i > 0 [17, Theorem 7.21]. Hence, $A \leq Z_i(G)$; and since A is of finite index in G, $G/Z_i(G)$ is finite. Thus, by a result of Baer [10, Theorem 1], G is finite-by-nilpotent.

Lemma 2.2. Let G be a finitely generated Abelian-by-finite group. If G is in the class $\mathcal{E}(\infty)$, then it is finite-by-nilpotent.

Proof. Let G be an infinite finitely generated Abelian-by-finite group in $\mathcal{E}(\infty)$, and let A be an Abelian normal subgroup of finite index in G. It is clear that all infinite subsets of G contains two different elements x, y such that xA = yA; so y = xa for some a in A and $\langle x, y \rangle = \langle x, a \rangle$. Thus $\langle x, y \rangle$ is a finitely generated metabelian group in the class $\mathcal{E}(\infty)$. It follows by the result of Longobardi and Maj [15, Theorem 1], that $\langle x, y \rangle$

is finite-by-nilpotent. Hence G is in the class (\mathcal{FN}, ∞) . Now, by Lemma 2.1, G is finite-by-nilpotent; as required.

Lemma 2.3. A finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$ is nilpotent-by-finite.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$. Since $\mathcal{E}(\infty)$ is a quotient closed class of groups and since finitely generated nilpotent-by-finite groups are finitely presented, we may assume that G is not nilpotent-by-finite but every proper homomorphic image of G is in the class \mathcal{NF} . Since G is hyper-(Abelian-by-finite), G contains a non-trivial normal subgroup H such that H is finite or Abelian; so we have G/H is in \mathcal{NF} . If H is finite then G is nilpotent-by-finite, a contradiction. Consequently H is Abelian and so G is Abelian-by-(nilpotentby-finite) and therefore it is (Abelian-by-nilpotent)-by-finite. Hence, G is a finite extension of a soluble group; there is therefore a normal soluble subgroup K of G of finite index. Now, K is a finitely generated soluble group in the class $\mathcal{E}(\infty)$; it follows, by the result of Longobardi and Maj [15, Theorem 1], that K is finite-by-nilpotent. By a result of P. Hall [10, Theorem 2], K is nilpotent-by-finite and so G is nilpotent-by-finite, a contradiction. Now, the Lemma is shown. \square

Since finitely generated nilpotent-by-finite groups satisfy the maximal condition on subgroups, Lemma 2.3 has the following consequence:

Corollary 2.4. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$. Then G satisfies the maximal condition on sub-groups.

Proposition 2.5. A finitely generated hyper-(Abelian-by-finite) group in the class $\mathcal{E}(\infty)$ is finite-by-nilpotent.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in $\mathcal{E}(\infty)$. According to Corollary 2.4, G satisfies the maximal condition on subgroups. Now, since $\mathcal{E}(\infty)$ is a quotient closed class, we may assume that every proper homomorphic image of G is in \mathcal{FN} , but G itself is not in \mathcal{FN} . Our group G being hyper-(Abelian-by-finite), contains a non-trivial normal subgroup H such that H is finite or Abelian; so by hypothesis G/H is in the class \mathcal{FN} . If H is finite, then G is finite-by-nilpotent, a contradiction. Consequently H is Abelian and so G is in the class $\mathcal{A}(\mathcal{FN})$, hence G is in $(\mathcal{AF})\mathcal{N}$. Now, since G satisfies the maximal condition on

subgroups, it follows from Lemma 2.2, that G is in $(\mathcal{FN})\mathcal{N}$, so it is in $\mathcal{F}(\mathcal{NN})$. Consequently, there is a finite normal subgroup K of G such that G/K is soluble. The group G/K, being a finitely generated soluble group in the class $\mathcal{E}(\infty)$, is in \mathcal{FN} , by the result of Longobardi and Maj [15, Theorem 1]. So G is in the class \mathcal{FN} , which is a contradiction and the Proposition is shown.

The remainder of the proof of Theorem 1.1 is adapted from that of Lennox's Theorem [11, Theorem 3]

Lemma 2.6. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $(\Omega, \infty)^*$. If G is residually nilpotent, then G is in the class \mathcal{FN} .

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $(\Omega, \infty)^*$ and assume that G is residually nilpotent. Let X be an infinite subset of G, there are two distinct elements x and y of X such that $\langle x, x^y \rangle \in \Omega$. It follows that there exists a positive integer k such that $\gamma_k(\langle x, x^y \rangle) = \gamma_{k+1}(\langle x, x^y \rangle)$. The group $\langle x, x^y \rangle$, being a subgroup of G, is residually nilpotent, so $\bigcap_{i \in \mathbb{N}} \gamma_i(\langle x, x^y \rangle) = 1$. Hence $\gamma_k(\langle x, x^y \rangle) =$ $\bigcap_{i \in \mathbb{N}} \gamma_i(\langle x, x^y \rangle) = 1$. Since $\langle x, x^y \rangle = \langle [y, x], x \rangle$; $\gamma_k(\langle [y, x], x \rangle) = 1$, thus $[y,_k x] = 1$. We deduce that G is a finitely generated hyper-(Abelian-byfinite) group in the class $\mathcal{E}(\infty)$. It follows, by Proposition 2.5, that G is in the class \mathcal{FN} , as required. \Box

Lemma 2.7. If G is a finitely generated hyper-(Abelian-by-finite) group in the class $(\Omega, \infty)^*$, then it is nilpotent-by-finite.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in $(\Omega, \infty)^*$. Since finitely generated nilpotent-by-finite groups are finitely presented and $(\Omega, \infty)^*$ is a quotient closed class of groups, by [17, Lemma 6.17], we may assume that every proper quotient of G is nilpotent-by-finite, but G itself is not nilpotent-by-finite. Since G is hyper-(Abelian-by-finite), it contains a non-trivial normal subgroup K such that K is finite or Abelian; so G/K is in \mathcal{NF} . In this case, K is Abelian and so G is in the class $\mathcal{A}(\mathcal{NF})$ and therefore it is in the class $(\mathcal{AN})\mathcal{F}$. Consequently, G has a normal subgroup N of finite index such that N is Abelian-by-nilpotent. Moreover, N being a subgroup of finite index in a finitely generated group, is itself finitely generated, and so N is a finitely generated Abelian-by-nilpotent group. It follows, by a result of Segal [19,

Corollary 1], that N has a residually nilpotent normal subgroup of finite index. Thus, G has a residually nilpotent normal subgroup H, of finite index. Therefore, H is residually nilpotent and it is a finitely generated hyper-(Abelian-by-finite) group in the class $(\Omega, \infty)^*$. So, by Lemma 2.6, H is in the class \mathcal{FN} , hence H is in the class \mathcal{NF} . Thus G is in the class \mathcal{NF} , a contradiction which completes the proof.

Lemma 2.8. Let G be a finitely generated group in the class $(\Omega, \infty)^*$ which has a normal nilpotent subgroup N such that G/N is a finite cyclic group. Then G is in the class \mathcal{FN} .

Proof. We prove by induction on the order of G/N that G is in the class \mathcal{FN} . Let n = |G/N|; if n = 1, then G = N and G is nilpotent. Now suppose that n > 1 and let q be a prime dividing n. Since G/N is cyclic, it has a normal subgroup of index q. Thus G has a normal subgroup H of index q containing N. Since |H/N| < |G/N|, then by the inductive hypothesis, H is in the class \mathcal{FN} . Let T be the torsion subgroup of H. Since H is finitely generated, T is finite. So H/T is a finitely generated torsion-free nilpotent group. Therefore, by Gruenberg [18, 5.2.21], H/T is residually a finite q-group for all primes p and hence, in particular, H/T is residually a finite q-group. But H has index q in G from which we get that G/T is residually a finite q-group [20, Exercise 10, page 17]. This means that G/T is residually nilpotent. It follows, by Lemma 2.6, that G/T is in the class \mathcal{FN} .

Proof of Theorem 1.1. Let G be a finitely generated hyper-(Abelian-byfinite) group in the class $(\Omega, \infty)^*$. Hence, by Lemma 2.7, G is in the class \mathcal{NF} . Let K be a normal nilpotent subgroup of G such that G/K is finite. Since K is a finitely generated nilpotent group, it has a normal torsion-free subgroup of finite index [18, 5.4.15 (i)]. Thus, G has a normal torsion-free nilpotent subgroup N of finite index. Let x be a non-trivial element of G. Since N is finitely generated, $\langle N, x \rangle$ is a finitely generated hyper-(Abelianby-finite) group in the class $(\Omega, \infty)^*$. Furthermore, $\langle N, x \rangle / N$ is cyclic. Therefore, by Lemma 2.8, $\langle N, x \rangle$ is in the class \mathcal{FN} . Consequently, there is a finite normal subgroup H of $\langle N, x \rangle$ such that $\langle N, x \rangle / H$ is nilpotent. Therefore $\gamma_{k+1}(\langle N, x \rangle) \leq H$ for some positive integer k; so $\gamma_{k+1}(\langle N, x \rangle)$ is finite. Hence, there is a positive integer m such that $[g_{,k} x]^m = 1$, for all $g \in N$. Since $[g_{,k} x]$ is an element of the torsion-free group N, we get that $[g_{,k} x] = 1$. Thus, g is a right Engel element of G; so $N \subseteq R(G)$,

where R(G) denotes the set of right Engel elements of G. Moreover, since G is a finitely generated nilpotent-by-finite group, it satisfies the maximal condition on subgroups. Therefore, from Baer [17, Theorem 7.21], R(G) coincides with the hypercentre of G which equal to $Z_n(G)$ for some positive integer n. Thus $N \leq Z_n(G)$, so $Z_n(G)$ is of finite index in G. It follows, by a result of Baer [10, Theorem 1], that G is in the class \mathcal{FN} .

Proof of Corollary 1.2. (i) Let G be a finitely generated hyper-(Abelianby-finite) group in the class $(\Omega_k, \infty)^*$; from Theorem 1.1, G is in the class \mathcal{FN} . Let H be a normal finite subgroup of G such that G/H is nilpotent. It is clear that G/H is in the class $(\Omega_k, \infty)^*$. Let X be an infinite subset of G/H; there are therefore two distinct elements $\bar{x} = xH, \bar{y} = yH \ (x, y \in G)$ of \bar{X} such that $\langle \bar{x}, \bar{x}^{\bar{y}} \rangle \in \Omega_k$, so $\gamma_k(\langle \bar{x}, \bar{x}^{\bar{y}} \rangle) = \gamma_{k+1}(\langle \bar{x}, \bar{x}^{\bar{y}} \rangle)$. Now, since $\langle \bar{x}, \bar{x}^{\bar{y}} \rangle$ is nilpotent, there is an integer *i* such that $\gamma_i(\langle \bar{x}, \bar{x}^{\bar{y}} \rangle) = 1$; so $\gamma_k(\langle \bar{x}, \bar{x}^{\bar{y}} \rangle) = 1$. Since $\langle \bar{x}, \bar{x}^{\bar{y}} \rangle = \langle [\bar{y}, \bar{x}], \bar{x} \rangle$, we have $\gamma_k(\langle [\bar{y}, \bar{x}], \bar{x} \rangle) = 1$ and thus $[\bar{y}_{k}, \bar{x}] = 1$. Consequently, G/H is in the class $\mathcal{E}_{k}(\infty)$ of groups in which every infinite subset contains two distinct elements q, h such that $[q_{k}h] = 1$. The group G/H, being a finitely generated soluble group in the class $\mathcal{E}_k(\infty)$; it follows by a result of Abdollahi [2, Theorem 3], that there is an integer c = c(k), depending only on k, such that $(G/H)/Z_c(G/H)$ is finite. By a result of Baer [10, Theorem 1], $\gamma_{c+1}(G/H) = \gamma_{c+1}(G)H/H$ is finite; and since H is finite, $\gamma_{c+1}(G)$ is finite. According to a result of P. Hall $|10, 1.5|, G/Z_c(G)$ is finite.

(*ii*) If G is in the class $(\Omega_2, \infty)^*$, then by Theorem 1.1 G is finite-bynilpotent. Therefore, G has a finite normal subgroup H such that G/His nilpotent. Since G/H is in the class $(\Omega_2, \infty)^*$, it is in the class $\mathcal{E}_2(\infty)$. Hence, by Abdollahi [1, Theorem], $(G/H)/Z_2(G/H)$ is finite, so $\gamma_3(G/H)$ is finite. Since H is finite, $\gamma_3(G)$ is finite. It follows, by P. Hall [10, 1.5], that $G/Z_2(G)$ is finite.

(*iii*) Now if G is in the class $(\Omega_3, \infty)^*$, then by Theorem 1.1 G has a finite normal subgroup H such that G/H is nilpotent. Since G/H is in the class $(\Omega_3, \infty)^*$, it is in the class $\mathcal{E}_3(\infty)$. Hence, by Abdollahi [2, Theorem 1] G/H is in the class $\mathcal{FN}_3^{(2)}$; consequently G is in the class $\mathcal{FN}_3^{(2)}$.

3. Proofs of Theorem 1.3 and Corollary 1.4

We start by showing a weaker version of Theorem 1.3:

Lemma 3.1. A finitely generated hyper-(Abelian-by-finite) group in the class $(\mathcal{MN}, \infty)^*$ is finite-by-nilpotent.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $(\mathcal{MN}, \infty)^*$, and let X be an infinite subset of G. There are therefore two distinct elements x, y of X such that $\langle x, x^y \rangle$ is in the class \mathcal{MN} , so there exists a normal subgroup N of $\langle x, x^y \rangle$ such that N is in \mathcal{M} and $\langle x, x^y \rangle / N$ is nilpotent. Now, $\gamma_{i+1}(\langle x, x^y \rangle) \leq N$ for some positive integer i, therefore $\gamma_{i+1}(\langle x, x^y \rangle) \geq \gamma_{i+2}(\langle x, x^y \rangle) \geq \dots$ is an infinite descending sequence of normal subgroups of N; however N is in \mathcal{M} , therefore there exists a positive integer $n \geq i+1$ such that $\gamma_n(\langle x, x^y \rangle) = \gamma_{n+1}(\langle x, x^y \rangle)$. Hence, G is in the class $(\Omega, \infty)^*$; it follows, by Theorem 1.1, that G is finite-by-nilpotent.

Lemma 3.2. A finitely generated hyper-(Abelian-by-finite) group in the class $(\mathcal{ME}, \infty)^*$ is nilpotent-by-finite.

Proof. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $(\mathcal{ME}, \infty)^*$. Since $(\mathcal{ME}, \infty)^*$ is a closed quotient class of groups and since finitely generated nilpotent-by-finite groups are finitely presented, we may assume that G is not nilpotent-by-finite, but every proper homomorphic image of G is nilpotent-by-finite. Since G is hyper-(Abelian-byfinite), there exists a non-trivial normal subgroup H of G such that His finite or Abelian; so we have G/H is nilpotent-by-finite. If H is finite then G is nilpotent-by-finite, a contradiction. Consequently H is Abelian and so G is Abelian-by-(nilpotent-by-finite) and therefore it is (Abelianby-nilpotent)-by-finite. Hence, G is a finite extension of a soluble group. Let K be a normal soluble subgroup of G of finite index. Clearly, K is in $(\mathcal{ME}, \infty)^*$, and since all soluble Engel group coincides with its Hirsch-Plotkin radical which is locally nilpotent [17, Theorem 7.34], we deduce that K is in the class $(\mathcal{MN}, \infty)^*$; it follows by Lemma 3.1 that K is finite-by-nilpotent. According to a result of P. Hall [10, Theorem 2], K is nilpotent-by-finite. Thus, G is nilpotent-by-finite, a contradiction. The proof is now complete.

Since finitely generated nilpotent-by-finite groups satisfy the maximal condition on subgroups, Lemma 3.2 has the following consequence:

Corollary 3.3. Let G be a finitely generated hyper-(Abelian-by-finite) group in the class $(\mathcal{ME}, \infty)^*$. Then G satisfies the maximal condition on subgroups.

Proof of Theorem 1.3. It is clear that all finite-by-nilpotent groups are in the class $(\mathcal{ME}, \infty)^*$. Conversely, let G be a finitely generated hyper-(Abelian-by-finite) group in $(\mathcal{ME}, \infty)^*$. According to Corollary 3.3, G satisfies the maximal condition on subgroups. Since Engel groups satisfying the maximal condition on subgroups are nilpotent [18, 12.3.7], we deduce that G is in the class $(\mathcal{MN}, \infty)^*$. It follows, by Lemma 3.1, that G is in the class \mathcal{FN} ; as required.

Proof of Corollary 1.4. (i) Let G be a finitely generated hyper-(Abelianby-finite) group in the class $(\mathcal{ME}_k, \infty)^*$; from Theorem 1.3, G is in the class \mathcal{FN} . Let N be a normal finite subgroup of G such that G/N is nilpotent. Since G/N is nilpotent and finitely generated, its torsion subgroup T/N is finite, so T is finite and G/T is a torsion-free nilpotent group. Clearly, the property $(\mathcal{ME}_k, \infty)^*$ is inherited by G/T, and since G/T is torsion-free and soluble, it belongs to $(\mathcal{E}_k, \infty)^*$ [17, Theorem 5.25]. Let X be an infinite subset of G/T; there are therefore two distinct elements $\bar{x} = xT, \ \bar{y} = yT \ (x, y \in G) \text{ of } \bar{X} \text{ such that } \langle \bar{x}, \bar{x}^{\bar{y}} \rangle \text{ is a } k\text{-Engel group.}$ Since $\langle \bar{x}, \bar{x}^{\bar{y}} \rangle = \langle [\bar{y}, \bar{x}], \bar{x} \rangle$, we have $[\bar{y}_{,k+1} \bar{x}] = [[\bar{y}, \bar{x}]_{,k} \bar{x}] = 1$. Hence, G/T is in the class $\mathcal{E}_{k+1}(\infty)$. The group G/T, being a finitely generated soluble group in the class $\mathcal{E}_{k+1}(\infty)$; it follows by a result of Abdollahi [2, Theorem 3], that there is an integer c = c(k), depending only on k, such that $(G/T)/Z_c(G/T)$ is finite. By a result of Baer [10, Theorem 1], $\gamma_{c+1}(G/T) = \gamma_{c+1}(G)T/T$ is finite; and since T is finite, $\gamma_{c+1}(G)$ is finite. According to a result of P. Hall [10, 1.5], $G/Z_c(G)$ is finite.

(*ii*) If G is in the class $(\mathcal{MA}, \infty)^* = (\mathcal{ME}_1, \infty)^*$, then by Theorem 1.3, G is finite-by-nilpotent. We proceed as in (i) until we obtain that G/T is in the class $\mathcal{E}_2(\infty)$. Hence, by Abdollahi [1, Theorem], $(G/T)/Z_2(G/T)$ is finite, so $\gamma_3(G/T)$ is finite. Since T is finite, $\gamma_3(G)$ is finite. It follows, by P. Hall [10, 1.5], that $G/Z_2(G)$ is finite.

(*iii*) Now if G is in the class $(\mathcal{ME}_2, \infty)^*$, we proceed as in (i) until we obtain that G/T is in the class $\mathcal{E}_3(\infty)$. Hence, by Abdollahi [2, Theorem 1] G/T is in the class $\mathcal{FN}_3^{(2)}$; consequently G is in the class $\mathcal{FN}_3^{(2)}$.

References

 A. ABDOLLAHI – Finitely generated soluble groups with an Engel condition on infinite subsets, *Rend. Sem. Mat. Univ. Padova* 103 (2000), p. 47–49.

- [2] _____, Some Engel conditions on infinite subsets of certain groups, Bull. Austral. Math. Soc. 62 (2000), p. 141–148.
- [3] A. ABDOLLAHI & B. TAERI A condition on finitely generated soluble groups, *Comm. Algebra* 27 (1999), p. 5633–5638.
- [4] A. ABDOLLAHI & N. TRABELSI Quelques extensions d'un problème de Paul Erdos sur les groupes, Bull. Belg. Math. Soc. 9 (2002), p. 205– 215.
- [5] A. BOUKAROURA Characterisation of finitely generated finite-bynilpotent groups, *Rend. Sem. Mat. Univ. Padova* **111** (2004), p. 119– 126.
- [6] C. DELIZIA, A. H. RHEMTULLA & H. SMITH Locally graded groups with a nilpotence condition on infinite subsets, J. Austral. Math. Soc. (series A) 69 (2000), p. 415–420.
- [7] G. ENDIMIONI Groups covered by finitely many nilpotent subgroups, Bull. Austral. Math. Soc. 50 (1994), p. 459–464.
- [8] _____, Groups in which certain equations have many solutions, *Rend. Sem. Mat. Univ. Padova* **106** (2001), p. 77–82.
- [9] E. S. GOLOD Some problems of Burnside type, Amer. Math. Soc. Transl. Ser. 2 84 (1969), p. 83–88.
- [10] P. HALL Finite-by-nilpotent groups, Proc. Cambridge Philos. Soc. 52 (1956), p. 611–616.
- [11] J. C. LENNOX Finitely generated soluble groups in which all subgroups have finite lower central depth, *Bull. London Math. Soc.* 7 (1975), p. 273–278.
- [12] _____, Lower central depth in finitely generated soluble-by-finite groups, Glasgow Math. J. 19 (1978), p. 153–154.
- [13] J. C. LENNOX & J. WIEGOLD Extensions of a problem of Paul Erdos on groups, J. Austral. Math. Soc. Ser. A 31 (1981), p. 459– 463.
- [14] P. LONGOBARDI On locally graded groups with an Engel condition on infinite subsets, Arch. Math. 76 (2001), p. 88–90.
- [15] P. LONGOBARDI & M. MAJ Finitely generated soluble groups with an Engel condition on infinite subsets, *Rend. Sem. Mat. Univ. Padova* 89 (1993), p. 97–102.

- [16] B. H. NEUMANN A problem of Paul Erdos on groups, J. Austral. Math. Soc. ser. A 21 (1976), p. 467–472.
- [17] D. J. S. ROBINSON Finiteness conditions and generalized soluble groups, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
- [18] _____, A course in the theory of groups, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
- [19] D. SEGAL A residual property of finitely generated abelian by nilpotent groups, J. Algebra 32 (1974), p. 389–399.
- [20] _____, Polycyclic groups, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, 1984.
- [21] B. TAERI A question of P. Erdos and nilpotent-by-finite groups, Bull. Austral. Math. Soc. 64 (2001), p. 245–254.
- [22] N. TRABELSI Finitely generated soluble groups with a condition on infinite subsets, Algebra Collog. 9 (2002), p. 427–432.
- [23] _____, Soluble groups with many 2-generator torsion-by-nilpotent subgroups, Publ. Math. Debrecen 67/1-2 (2005), p. 93–102.

FARES GHERBI Department of Mathematics Faculty of Sciences Ferhat Abbas University Setif, 19000 ALGERIA Gherbi_f@yahoo.fr TAREK ROUABHI Department of Mathematics Faculty of Sciences Ferhat Abbas University Setif, 19000 ALGERIA rtarek5@yahoo.fr