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Representation of a gauge group as motions
of a Hilbert space

Clara Lucía Aldana Domínguez

Abstract

This is a survey article based on the author’s Master thesis1 on
affine representations of a gauge group. Most of the results presented
here are well-known to differential geometers and physicists familiar
with gauge theory. However, we hope this short systematic presenta-
tion offers a useful self-contained introduction to the subject.
In the first part we present the construction of the group of motions of
a Hilbert space and we explain the way in which it can be considered
as a Lie group. The second part is about the definition of the gauge
group, GP , associated to a principal bundle, P . In the third part we
present the construction of the Hilbert space where the representation
takes place. Finally, in the fourth part, we show the construction of
the representation and the way in which this representation goes to
the set of connections associated to P .

1 Group of Motions of a Hilbert Space

In this section we want to study the group of motions of a Hilbert space H
considering it as a Banach Lie group. A general account of the theory of
infinite dimensional Lie groups and their structure can be found in [13], [14],
[16], [20] and [21]. The group of motions of a Hilbert space is defined as the
semi-direct product of the group of translations of H and the Hilbert group
Hilb(H) associated to H, (if H is real Hilb(H) is the orthogonal group O(H),
if H is complex Hilb(H) is the unitary group U(H)).

Let H be a Hilbert space over R or C. We consider L(H,H), the set of
all bounded linear operators defined on H. It is well known that L(H,H)

1‘Group of Motions of a Hilbert Space and Unitary Representations of Gauge Groups’.
Universidad de los Andes. Work partially supported by Colciencias NSF Grant 1101-05-
11-445.

131



Clara Aldana

is a Banach Lie algebra with norm and Lie bracket given by the following
equations:

‖A‖ = sup
‖x‖=1

‖Ax‖

[A,B] = AB −BA

with A,B ∈ L(H,H) and x ∈ H. Let GL(H) be the set of all invertible
elements of L(H,H), from elementary functional analysis we know that it is
a group. Since multiplication and inversion operations are smooth functions
in GL(H) we have that it is a Banach Lie group, its exponential function
exp : L(H,H) → GL(H) is given by the series

exp(A) =
∞∑

n=0

An

n!

that converges for all A ∈ L(H,H). Furthermore if A ∈ L(H,H) is close to
the identity I, the series

log(A) =
∞∑

n=1

(−1)n+1(A− I)n

n

converges, see [15], chapter VII, section 2.
If A ∈ Sk(H), Sk(H) the skew-symmetric algebra of H, then exp(A) ∈

Hilb(H) and exp is an analytic diffeomorphism of the open unit ball of
0 ∈ Sk(H) onto the open unit ball at I ∈ Hilb(H). Since Hilb(H) is a
closed submanifold of GL(H), the last results allow us to consider U(H) as
a Banach Lie Group with associated Banach Lie algebra Sk(H).

Semi-direct Product of Lie Groups and its Lie Algebra. The general
construction of the semi-direct product of two Lie groups and its correspon-
ding Lie algebra can be found in [5], [11] and [17], in the infinite dimensional
case of regular Lie groups it can be found in [13], section 38.9. Here we
consider the semi-direct product in the particular case when H = (H,+),
the additive group of the Hilbert space H, and G = (GL(H), ◦), where ‘◦’
denotes the composition of linear operators. Let η : GL(H) → Aut(H),
A 7→ A, where Aut(H) is the group of automorphism of H as an additive
group. η can be thought of as an action η : GL(H)×H → H, (A, x) 7→ Ax.
From the definition of the norm we have that

‖Ax‖ ≤ ‖A‖‖x‖
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Representation of a gauge group

for any A ∈ L(H,H) and for all x ∈ H, thus η is continuous and the semi-
direct product

Aff(H) := H×η GL(H) = Ho GL(H)

is a Lie group. It is called the affine group, its elements are the functions
(x,A) : H → H that are composition of invertible linear maps and transla-
tions, if w ∈ H

(x,A)w = Aw + x.

The group operation in Aff(H) is given by

(x,A)(y,B) = (x+ Ay,AB) ∈ Aff(H).

and it corresponds to the well known composition of affine transformations.

Definition 1.1: The group of motions M(H) of a Hilbert space H is defined
as the semi-direct product Ho Hilb(H), where Hilb(H) is the Hilbert group
of H.

M(H) is a subgroup of the affine group, it is called the group of motions
of H because its elements can be interpreted as the physical motions of rigid
objects lying in H; if there is a rigid object in H the classical way in which it
can move is by rotations, translations and compositions of these two; these
are precisely the elements of M(H). Every element of M(H) is an isometry of
H, but it is important to note that the whole set of isometries is not M(H).

In the following part we describe the Lie algebra associated to Aff(H).
In order to do that we identify H with its Lie algebra, h = T0(H), since H is
an additive commutative Lie group its Lie algebra has a trivial Lie bracket,
see [22], chapter 1, section 2.

In the general case, let G and H be Lie groups with Lie algebras g and h,
respectively and let e ∈ H denote the neutral element in H. The semi-direct
product of G and H is determined by an action η : G→ Aut(H). Let g ∈ G,
the derivative of η(g) : H → H at e ∈ H, Tη(g)e : Te(H) → Te(H), is an
automorphism of h. If we denote Tη(g)e by τg, we have that τ : G→ Aut(h),
g 7→ τg satisfies

τg1g2 = τg1 ◦ τg2 .

In this way, τ is a homomorphism of groups, where Aut(h) is considered as:

Aut(h) = {A ∈ GL(h)|A([Y1, Y2]) = [A(Y1), A(Y2)], for Y1, Y2 ∈ h}.
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Aut(h) is a group with the usual composition of linear operators. Therefore
we have a representation of the group G on the vector space h. To this
representation there corresponds a linear representation of the Lie algebra g

in h given by the formula:

τ̃X(Y ) =
d

dt
τexp(tX)(Y )

∣∣∣∣
t=0

(1.1)

with X ∈ g and Y ∈ h. Since τ̃X satisfies

τ̃X([Y1, Y2]) = [τ̃X(Y1), Y2] + [Y1, τ̃X(Y2)] (1.2)
τ̃[X1,X2] = τ̃X1 ◦ τ̃X2 − τ̃X2 ◦ τ̃X1 (1.3)

for X,X1, X2 ∈ g and for Y1, Y2 ∈ h, we have that τ̃X is a derivation. Thus
τ̃ : g → Der h, where Der h is the set of all derivations of h, is a Lie algebra
homomorphism.
The semi-direct product of Lie algebras can be defined in the following way.
Let g and h be Lie algebras, and let π : g → Der h, be a Lie algebra homo-
morphism, the vector space h×g becomes a Lie algebra with structure given
by the equation:

[(Y1, X1), (Y2, X2)] = ([Y1, Y2] + π(X1)(Y2)− π(X2)(Y1), [X1, X2]). (1.4)

This Lie algebra is called the semi-direct product of the Lie algebras h and
g by the homomorphism π and it is denoted by h×π g.

Proposition 1.2: With the notation introduced above we have that the Lie
algebra given by h×τ̃ g is the Lie algebra associated to the Lie group H×ηG.
See [17], appendix 5, section 5, and [11], chapter I, section 12.

In our particular case equations (1.2) and (1.3) take the form

A([y1, y2]) = [A(y1), y2] + [y1, A(y2)] = 0 + 0 = 0

[A1, A2](y) = A1(A2y)− A2(A1y),

for y, y1, y2 ∈ H and A,A1, A2 ∈ L(H,H). The Lie bracket in H× L(H,H),
given by equation (1.4), is now

[(y1, A1), (y2, A2)] = (A1(y2)− A2(y1), [A1, A2]).

134



Representation of a gauge group

Thus, the Lie algebra associated to Aff(H) is HoL(H,H) := L(H.H)× τ̃ H.
In H× L(H,H) we can also define a norm by

‖(x,A)‖ =
√
‖x‖2 + ‖A‖2.

With this norm H×L(H,H) is a Banach space and HoL(H,H) is a Banach
Lie Algebra. The group of motions M(H) is a Lie group and its Lie algebra
is given by Sk(H)×τ̃ H.

2 The gauge group associated to a principal
bundle

The theory of gauge groups has been widely studied and there are many
references related to this topic, see for example [3], pages 539 and 546, [4],
section 5.6, [13], chapter IX section 44, and [18], section 5. In this section
we consider M a compact Riemannian manifold without boundary and G a
compact semi-simple Lie group with Lie algebra g.

2.1 Principal Bundles and Connections

Let M be a manifold and G be a Lie group with identity e. We consider here
only the finite dimensional case. The theory presented here can be found,
among others, in [12], sections II.5 and III.1, [4], chapter 4, [18], sections 2
and 3, and [19], chapter 3.

Definition 2.1: A differentiable principal fiber bundle over M with group
G consists of a differentiable manifold P and a right action Θ of G on P that
satisfy the following conditions:

1. The action of G on P is free, that is Θ(p, g) = p for some p ∈ P , implies
that g = e.

2. M is the quotient space P/G and π : P →M is differentiable.

3. P is locally trivial. This is, for each x ∈M there exist U a neighborhood
of x, U ∈ Vx, and ψ : π−1(U) → U × G such that ψ(p) = (π(p), ϕ(p))
where ϕ : π−1(U) → G satisfies ϕ(p · a) = ϕ(p) · a, for all p ∈ π−1(U),
and a ∈ G.
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A principal bundle is denoted by P (M,G, π) or just by P (M,G) or P . The
manifold P is called the total space, M is the base space, G is the structural
group and π is the projection. The fiber at x ∈ M , π−1(x), is denoted by
Px.

Example 2.2: The bundle of orthonormal linear frames on R2. We consider
the set:

P = {ux|ux is an orthonormal frame in Tx(R2), x ∈ R2},

and the projection π : P → R2, ux 7→ x. O(2) acts on the right of P as
follows: if ux ∈ P , ux = (v1, v2) with v1, v2 ∈ R2, let A ∈ O(2), the action is
given by

ux · A = (v1 v2)A,

which is just the usual matrix multiplication. It is clear that O(2) acts freely
on P , if uxA = ux then taking ux = (v1, v2) we have (v1 v2)A = (v1 v2), then
(v1 v2)

−1(v1 v2)A = I, A = I. The action is also transitive because given
u1, u2 ∈ P , we take A = (u−1

2 )u1 and we have that u1 = u2A. Note that
R2 = P/O(2). Then we have that P (R2, O(2)) is a principal bundle. If we
take U = B1(x) ⊆ R2 the trivializations are given by:

ψ : π−1(U) → U ×O(2), uy 7→ (y, (v1 v2))

where uy = (v1 v2). P is a manifold of dimension 3.

Let x ∈ M , u ∈ P , such that π(u) = x, π∗u : Tu(P ) → Tx(M), and we
define Vu = ker(π∗u) ⊂ Tu(P ).

The Lie algebra g can be considered either as the tangent space to G at
the identity e or as the space of left invariant vector fields over G. If we
consider g as the space of left invariant vector fields, then exp(tX) is the
one-parametric group associated to the left invariant vector field X, that is,
exp(0) = e and d

dt
exp(tX)

∣∣
t=0

= X.

Definition 2.3: For A ∈ g and p ∈ P we define the fundamental vector field
over P corresponding to A as:

A∗(p) =
d

dt
p · exp(tA)

∣∣∣∣
t=0

.
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Representation of a gauge group

The application σ : g → X (P ), A 7→ σ(A) = A∗ is a homomorphism of
Lie algebras. If A ∈ g, A∗

p is tangent to the fibre in each p ∈ P , that is,
π∗(A

∗) = 0. If A is not zero then A∗ is also different from zero. Thus, we
have that the function σ : g → Vu, A 7→ A∗

u is a linear isomorphism that
satisfies (Ra)∗A

∗ = (Ad(a−1)A)∗.
When a principal bundle is given it carries a notion of verticality in its

tangent space but there is not an intrinsic notion of horizontality associated
to it. To give a connection on P is to give a horizontal subspace of the
tangent space in each point of P .

Definition 2.4: A connection Γ on P is an assignment of a subspace Hu of
Tu(P ) to each u ∈ P such that

1. Tu(P ) = Vu ⊕Hu (direct sum).

2. Hu·a = (Ra)∗Hu, for each a ∈ G.

3. Hu depends differentiably on u.

Definition 2.5: A connection form over P is a g-valued 1-form over P ,
ω : T (P ) → g, that satisfies:

1. (Ra)
∗ω = Ad(a−1)ω, for each, (ω is equivariant), and

2. ω(A∗) = A, for each A ∈ g.

It is well known that to have a connection on P is equivalent to have a
connection form on P . See [12], chapter II, section 1. The correspondence
between a connection Γ and its connection form ω is given as follows: Given
Γ a connection on P , for each u ∈ P , X ∈ Tu(P ), ω(X) = A, where A is
the unique vector in g such that A∗

u = Xv, Xv the vertical component of X.
Conversely, given a connection form the distribution of horizontal spaces is
defined by Hu = kerωu ⊆ Tu(P ).

Example 2.6: Let P = R×S1 be a trivial principal bundle over R with fibre
and group S1, S1 acts on itself by the usual multiplication. The Lie algebra
associated to S1 is iR and the exponential function is given by exp : iR → S1,
iλ 7→ eiλ. The tangent space to P at the point (x, z) is given by

T(x,z)P = TtR⊕ TzS
1 ∼= R⊕ ziR (2.1)
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because TzS
1 = Lz∗(T1S

1) = Lz∗(iR). Then a tangent vector at (x, z) is
given by X(x,z) = (r, izs) with r, s ∈ R. From equation (2.1) it follows that
the vertical space at p = (x, z), determined by the structure of the principal
bundle, is V(x,z) = ziR.

Given a vector A in the Lie algebra of S1, A = ia with a ∈ R, the
corresponding fundamental vector field in P is given by

A∗
(x,z) =

d

dt
(x, z) · exp(iat)

∣∣∣∣
t=0

=
d

dt
(x, z exp(iat))

∣∣∣∣
t=0

= (0, zia).

Now we want to define a nontrivial connection on P . We can do it by
defining first a distribution of horizontal spaces at each point. Let X =
(r, zis) be a tangent vector to P at (x, z), let us define the corresponding
projections,

ph : TtR⊕ TzS
1 → H(x,z) , ph((r, zis)) = (r, zis)h := (r, zir)

pv : TtR⊕ TzS
1 → ziR , pv((r, zis)) = (r, zis)v = (0, zi(s− r))

clearly ph and pv are projections and TtR ⊕ TzS
1 = H(x,z) ⊕ V(x,z). We also

have to check that the distribution is right invariant, that is, that it satisfies
Ra∗(H(x,z)) = H(x,za) for all a ∈ S1. Let a ∈ S1 and X ∈ T(x,z)P , then
Ra∗(X

h) = Ra∗((r, zir)) = (r, (za)ir) ∈ H(x,za).
The connection form ω associated with the distribution is given by

ω(x,z) : T(x,z)P → g, (r, zis) 7→ ω(x,z)(r, zis) = i(s− r),

since (i(s− r))∗(x,z) = (0, zi(s− r)) , the connection is well defined. In a
similar way other connections on P can be obtained.

Given two connections ω, ω′ , their difference ω−ω′ is a horizontal equiv-
ariant 1-form with values in g, where by horizontal we mean (ω−ω′

)(X) = 0,
for all X vertical.

2.2 The Group Bundle and the Adjoint Bundle

Let P (M,G) be a principal bundle. In order to construct the desired repre-
sentation and to define the gauge group associated to P we need to define
the group and the adjoint bundles. These bundles are associated bundles to
P , see [12], and are defined as follows:
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Representation of a gauge group

Definition 2.7: Consider the left action of G on itself given by γa(g) =
a g a−1, for a, g ∈ G. This gives rise to the right action of G on P × G,
Θ : (P ×G)×G→ (P ×G) given by

Θ((u, g), a) = (u · a, γa−1(g)) = (u · a, a−1 g a)

The group bundle G is the bundle (P,M,G, πG, G) associated to P . It looks
locally like M ×G and its elements are the equivalence classes:

[(u, g)] = {(u · a, a−1 g a)|a ∈ G}.

The set of smooth section of G is denoted by Γ(G), that is

Γ(G) = {σ : M → G | σ is smooth and πG ◦ σ = idM}.

Definition 2.8: Consider the left action of G on g given by Ad : G×g → g,
(a,X) 7→ Ad(a)X. This gives rise to the action of G on the right of P × g

given by

Θ̃((u,X), a) = (u · a,Ad(a−1)(X)) = (u · a, (Ra)∗(X))

The adjoint bundle P (g) is the bundle (P,M, g, πP (g), G) associated to P . It
looks locally like M × g and its elements are the equivalence classes:

[(u,X)] = {(u · a,Ad(a−1)X)|a ∈ G}.

The set of all smooth sections of P (g) over M is denoted by Γ(P (g)) or
by A0(g).

Example 2.9: If P is trivial, that is, if P = M × G, then G ∼= M × G
and P (g) ∼= M × g. The isomorphism in the last case is given by the map
[(x, a,X)] 7→ (x,Ad(a)X), for x ∈M , a ∈ G and X ∈ g.
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2.3 Description of the Gauge Group
In this section we will construct the gauge group associated to a principal
bundle P . As we mentioned before, some good references for this topic are
[3], [4], [13], and [18].

Let Aut(P ) be the group of all equivariant diffeomorphisms of P , that is,

Aut(P ) = {α ∈ diff(P ) | α(p · g) = α(p) · g, for all p ∈ P, g ∈ G},

where diff(P ) denotes the set of all diffeomorphism of P as a manifold. Now
we define:

Definition 2.10: The gauge group, GP , of P is the group

GP = {α ∈ Aut(P )|π ◦ α = π}.

If we consider the correspondence between Aut(P ) and diff(M) given by
the following commutative diagram:

P
α−−−→ P

π

y yπ

M
ρ̃(α)−−−→ M ,

where ρ̃ : Aut(P ) → diff(M), we have that GP = ker(ρ̃) = ρ̃−1{idM}.

Let C∞
G (P,G) be given by

C∞
G (P,G) = {f ∈ C∞(P,G)| f(p · g) = g−1f(p)g, for p ∈ P, g ∈ G }.

Then we have the following proposition:

Proposition 2.11: The groups GP , C∞
G (P,G), and Γ(G) are isomorphic as

groups.

Proof: Let α ∈ GP and p ∈ P . Since α(p) ∈ Pπ(p), there exists g̃ ∈ G
such that α(p) = p · g̃. Let us define f : P → G by f(p) = g̃, where g̃
satisfies α(p) = p · g̃. f is well defined because the action of G on P is free
and transitive in the fibres. For α ∈ GP and g ∈ G,

α(p · g) = α(p) · g = p · f(p)g.
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Representation of a gauge group

On the other hand,

α(p · g) = (p · g) · (f(p · g)) = p · gf(p · g).

Thus we have that
p · f(p)g = p · gf(p · g),

therefore f(p)g = gf(p · g), which implies that, f(p · g) = g−1f(p)g. Thus,
f ∈ C∞

G (P,G).
To show that C∞

G (P,G) ⊆ Γ(G), let f ∈ C∞
G (P,G), x ∈ M and p ∈ P

with π(p) = x. We define σ(x) = [p, f(p)] in Γ(G). To see that σ is well
defined, let q ∈ P such that π(q) = x, then q = p · g, and f(q) = f(p · g) =
g−1f(p)g. Therefore [q, f(q)] = [p ·g, g−1f(p)g] = [p, f(p)]. Since f is smooth
it follows that σ is smooth too and σ ∈ Γ(G).

Finally, if σ ∈ Γ(G) and x ∈M , then σ(x) = [p(x), g(x)] with [p(x), g(x)] =
[p(x) · h, h−1g(x)h], for every h ∈ G. But for every q ∈ Px, there exists a
unique h̃ ∈ G such that q = p · h̃. Thus, we can define f(q) = f(p · h̃) =
h̃−1g(x)h̃, then f ∈ C∞

G (P,G). This function f induces an automorphism
α : P → P , α(q) = q · f(q) = q · h̃−1g(x)h̃ = p · g(x)h̃. It is clear from
definition that π ◦ α = α. Therefore α ∈ GP .

We need to check now that these are group isomorphisms. Let α, β ∈ GP ,
f, g ∈ C∞

G (P,G), and σ, ς ∈ Γ(G) be in the correspondence described above,
that is, for p ∈ P , x ∈M , π(p) = x, we have α(p) = p · f(p), σ(x) = [p, f(p)]
and β(p) = p ·g(p), ς(x) = [p, g(p)]. Since the group operation in GP is given
by composition we have

(α·β)(p) = α(β(p)) = α(p·g(p)) = α(p)·g(p) = (p·f(p))·g(p) = p·(f(p)g(p)),

(σ · ς)(x) = [p, f(p)] · [p, g(p)] := [p, f(p)g(p)].

Thus the isomorphisms are group isomorphisms, and the proof is com-
plete.

Example 2.12: If P is trivial, since G ∼= M × G, we have that the gauge
group is Γ(G) ∼= C∞(M,G).

We want to consider Γ(G) with a topology that makes it into a Lie group,
then we use the isomorphisms given in Proposition 2.11 to endow GP and
C∞

G (P,G) with topologies that allow us to consider these three spaces as the
same. For this, let S be the set

S = {{f ∈ Ck(M,G)|jl(f) ⊂ O}| O ⊂ J l(M,G) is open for 0 ≤ l ≤ k}
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where Jk(M,G) is the jet bundle and jl(f) : M → J l(M,G), p 7→ jl(f)(p) ∈
J l(M,G)p,f(p). (See [23] page 55 and [4] page 77). The set S forms a sub-
basis for a topology in Ck(M,G), this topology is called the Ck-Whitney
topology. Now we assume that M is compact and we take

C∞(M,G) =
∞⋂

k=0

Ck(M,G),

the C∞-Whitney topology over Γ(G) is the coarsest topology among all
topologies on Γ(G) for which the canonical injections:

ik : C∞(M,G) → Ck(M,G)

are continuous, k = 0, 1, . . .

3 Construction of the Hilbert Space of the
Representation

Let us consider the set of p-forms on M with values in P (g).

Ap(g) = Ωp(M,P (g)) ∼= Γ(Λp(M)⊗R P (g)) (3.1)

where Ω(M) is the set of scalar p-forms over M . For p = 0 this notation
agrees with our previous definition of A0(g) = Γ(P (g)).
Since P (g) is a bundle of Lie algebras, A0(g) becomes a Fréchet Lie algebra
under pointwise operations, a Fréchet Lie algebra is a Lie algebra that also
is Fréchet space, (we refer the reader to [13], [21], [25] and [26] for Fréchet
structures). Let σ1, σ2 ∈ A0(g), for x ∈ M , without lost generality we can
consider σ1(x) = [p(x), X(x)], σ2(x) = [p(x), Y (x)], then the Lie bracket in
A0(g) is defined as

[σ1, σ2](x) = [[p(x), X(x)], [p(x), Y (x)]] = [p(x), [X(x), Y (x)]]

We can consider the elements of Ap(g) to be of the form γ⊗σ, with γ ∈ Ωp(M)
and σ ∈ A0(g) but is important to keep in mind that their real form is∑n

i=1 γi ⊗ σi, with γi ∈ Ωp(M) and σi ∈ A0(g), 1 ≤ i ≤ n, n ∈ N.
Using the facts that M is a Riemannian compact manifold and that G

is a compact semi-simple Lie group we can define an inner product in A1(g)
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in the following way: In the Lie algebra g the Killing form is given by the
equation:

B(X, Y ) = Tr(ad(X) ◦ ad(Y )),

with X, Y ∈ g; since G is semi-simple, the Killing form is negative-definite;
then the equation

〈X, Y 〉 = −B(X, Y )

gives an inner product on g, see for example [6], sections XXI.5 and XXI.6.
We can lift this inner product to P (g) fibrewise putting, for [p,X], [p, Y ] ∈
P (g),

〈[p,X], [p, Y ]〉 = 〈X, Y 〉, (3.2)

it follows from the invariance of Killing form that last equation determines
a well defined inner product in P (g). Let ς1, ς2 ∈ A1(g) be given by ς1(x) =
α(x)⊗[p(x), X(x)], ς2(x) = β(x)⊗[q(x), Y (x)] = β(x)⊗[p(x),Ad(g(x))Y (x)];
let us define a function 〈ς1, ς2〉 ∈ C∞(M) in the following way:

〈ς1, ς2〉(x) = 〈α(x), β(x)〉 · 〈X(x),Ad(g(x))Y (x)〉,

where the first term in the product of the right hand is the inner product
in the cotangent space of M induced by the Riemannian metric of M . We
can extend this operation to the whole space A1(g)×A1(g) by bilinearly and
then define an inner product in A1(g) by the equation:

〈ς1, ς2〉 =

∫
M

〈ς1, ς2〉(x)dµ(x) =

∫
M

〈α(x), β(x)〉 · 〈X(x),Ad(g(x))Y (x)〉 dµ(x)

(3.3)
where µ(x) is the measure in M induced by the Riemannian metric. Thus
A1(g) has a well defined inner product and it can be completed to a Hilbert
space, this is the space that we will use as representation space of the affine
representation of the gauge group GP , we will denote the completation of
A1(g) by H.

Example 3.1: Let P = R× SU(2) be a trivial principal bundle over R with
fibre and group SU(2), SU(2) is a semi-simple Lie group and its Lie algebra
is su(2). A basis of su(2), as real vector space, is:

A1 =
( i 0

0 −i
)
, A2 =

( 0 1
−1 0

)
, A3 =

( 0 i
i 0

)
.
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For X, Y ∈ su(2), with X =
∑3

i=1 xiAi and Y =
∑3

i=1 yiAi, the Killing form
is given by the equation:

B(X, Y ) = Tr(ad(X) ◦ ad(Y )) =
3∑

i,j=1

xiyjB(Ai, Aj)

where B(Ai, Aj) = Tr(ad(Ai) ◦ ad(Aj)), that is, B(Ai, Aj) is the trace of the
matrix whose k-th column, k = 1, 2, 3, is the vector whose components are
the coefficients of

(ad(Ai) ◦ ad(Aj))(Ak),

in the basis {A1, A2, A3}. An easy computation shows that B(Ai, Aj) =
−8δij. Thus the killing form in su(2) has the form:

B(X, Y ) = −8
3∑

i=1

xiyi.

It is clearly negative definite and gives rise to an inner product in A1(su(2)).
Since in this case P is a trivial principal bundle, we have that P (g) ∼=

R× su(2) and A1(su(2)) ∼= Γ(Λ1(R)⊗R (R× su(2))) ∼= su(2).

4 Construction of the Representation
The representation we are going to construct arose as a preliminary step in
the construction of the energy representation of the group of mappings of
a Riemannian manifold into a compact semi-simple Lie group studied in [8]
and [2].

Definition 4.1: Let G be a group, an affine representation of G in a
vector space E is a homomorphism Ψ : G → Aff(E), i.e. an element of
Hom(G,Aff(E)).

We want to construct an affine representation of the gauge group GP in
H, the completation of A1(g) respect to the inner product given by equation
(3.3). We have a natural action of the gauge group on each set Ap(g), the
description of this action is the following: Consider the map G ×M P (g) →
P (g) given by ([p, g], [p,X]) 7→ [p,Ad(g)X]. The corresponding action of
Γ(G) on A0(g) = Γ(P (g)), by the Ω-lemma (see [1], page 101), is given by

Γ(G)× A0(g) → A0(g)

(σ, β) 7→ (σ · β)(x) = [p(x),Ad(g(x))X(x)]
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where σ(x) = [p(x), g(x)], β(x) = [p(x), X(x)]. This action is a left action
that can be easily generalized to Ap(g), for p = 1, 2, . . . , in the following way:
If σ ∈ Γ(G) is given by σ(x) = [p(x), g(x)], and β ∈ Ap(g) is represented by
β(x) = α(x) ⊗ [p(x), X(x)], with α ∈ Ωp(M), that is, α is a scalar p-form
over M , then the action

Γ(G)× Ap(g) → Ap(g)

is given by the equation:

(σ · β)(x) = α(x)⊗ [p(x),Ad(g(x))X(x)]. (4.1)

Let ω be a fixed connection form over P , we consider the operator

dω : C∞
G (P,G) → Ω1(P, g)

that is defined as follows:

Definition 4.2: Given f ∈ C∞
G (P,G), X ∈ X (P ) and p ∈ P , the covariant

left logarithmic derivative of f , dω(f), is a 1-form over P with values on g

and it is given by

dωfp(X) = Lf−1(p)∗(Tωf(X)) = Lf−1(p)∗(f∗(X
h))

where Tωf(X) := f∗(X
h) and Xh is the ω-horizontal component of X.

If f ∈ C∞
G (P,G), then f : P → G and for p ∈ P , f∗p : Tp(P ) → Tf(p)(G),

then for X ∈ Tp(P ), Tωf(X) ∈ Tf(p)(G). As we want a g-valued 1-form
over P we need to translate Tωf(X) to Te(G) = g, we do that by mean of
(Lf−1(p)∗)f(p), thus dωfp(X) ∈ g.

Proposition 4.3: If f ∈ C∞
G (P,G), then dωf is a horizontal and equivariant

1-form over P with values in g.

Proof: Given X ∈ Tp(P ), if X is vertical we have that Xh = 0, therefore
dωf(X) = Lf−1(p)∗(f∗(0)) = 0. Then dωf is horizontal. Now, we have to see
that dωf is equivariant, i.e. we have to prove that (Ra)

∗dωf = Ad(a−1)(dωf),
for every a ∈ G. To do that let a ∈ G, X ∈ Tp(P ) be ω-horizontal, and let
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γ(t) be such that X = d
dt
γ(t)

∣∣
t=0

and γ(0) = p. Then

((Ra)
∗(dωf)p·a)p(Xp) = dωfp·a(Ra ∗ pXp)

= Lf(p·a)−1 ∗

(
d

dt
f(γ(t) · a)

∣∣∣∣
t=0

)
= La−1f(p)−1a ∗

(
d

dt
a−1f(γ(t))a

∣∣∣∣
t=0

)
= La−1 ∗

(
Lf(p)−1 ∗

(
Ra ∗

(
d

dt
f(γ(t))

∣∣∣∣
t=0

)))
= Ad(a−1)

(
Lf(p)−1 ∗

(
d

dt
f(γ(t))

∣∣∣∣
t=0

))
= Ad(a−1)((dωf)p(Xp))

If X is any vector in P , we get the decomposition of X into its horizontal
and vertical parts, X = Xh +Xv, therefore the statement above also works
for X.

Proposition 4.4: The operator dω satisfies the equations:

1. dω(fg) = Ad(g−1)dω(f) + dω(g); with f, g ∈ C∞
G (P,G).

2. dω(f−1) = −Ad(f)dω(f) = −Rf−1 ∗Tωf ; with f ∈ C∞
G (P,G).

Proof: Let p ∈ P , and X ∈ Tp(P )

dω(fg)(X) = L(f(p)g(p))−1∗((fg)∗ p(X
h))

= Lg(p)−1f(p)−1∗(Rg(p) ∗(f∗(X
h)) + Lf(p) ∗(g∗(X

h)))

= (Lg(p)−1 ∗ ◦ Lf(p)−1 ∗)(Rg(p) ∗(f∗(X
h)) + Lf(p) ∗(g∗(X

h)))

= Ad(g(p)−1)(Lf(p)−1 ∗(f∗(X
h))) + Lg(p)−1 ∗(g∗(X

h))

= Ad(g(p)−1)dωf(X) + dωg(X).

For the second equation we take f = f and g = f−1 in the first one. Then
we have dω(e) = Ad(f)dω(f) + dω(f−1), where e : P → G, p 7→ e. Obviously
e(p · g) = g−1eg = e, and dω(e) = 0, therefore dω(f−1) = −Ad(f)dω(f).

Definition 4.5: Given a connection form ω on P , for f ∈ C∞
G (P,G) we

define the right logarithmic differential of f as,

δωf = dω(f−1) = −Rf−1∗Tωf.
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Proposition 4.6: The right logarithmic differential satisfies the following
equation:

δω(f1f2) = δωf1 + Ad(f1)δωf2, (4.2)

for f1, f2 ∈ C∞
G (P,G).

Relation given by equation (4.2) is important because it allows us to make
the representation of the gauge group in the affine group of H; this equation
has the form of a Maurer-Cartan cocycle, Maurer-Cartan cocycles were used
by Gelfand, Graev, and Vershik in [8] and [9] to define representations of
current groups in L2 spaces.

Now we have a description of the gauge group as a subset of the set of
all horizontal and equivariant g-valued 1-forms over P , but the Hilbert space
that we have as representation space is generated by P (g)-valued 1-forms
over M . Fortunately we have the following theorem:

Theorem 4.7: To every g-valued horizontal and equivariant 1-form β̃ over
P , there corresponds a unique P (g)-valued 1-form, β over M (β ∈ A1(g)).

Proof: Let β̃ ∈ Γ(Λ1(P ) ⊗ g) be horizontal and equivariant. Let x ∈ M ,
we define β : T (M) → P (g) by

βx(Z) = [p, β̃p(Z̃)], where p ∈ P, π(p) = x, and (π∗)p(Z̃) = Zx. (4.3)

To check that β is well defined, let Z̃1, Z̃2 ∈ Tp(P ) be two lifts of Z to P ,
that is, π∗(Z̃1) = π∗(Z̃2) = Z, then π∗(Z̃1− Z̃2) = 0. Thus Z̃1− Z̃2 is vertical
and β̃p(Z̃1 − Z̃2) = 0, therefore β̃p(Z̃1) = β̃p(Z̃2). On the other hand,

βx(Z) = βπ(p)(Z) = [p, β̃p(Z̃)] = [p · g,Ad(g−1)(β̃p(Z̃))] (4.4)

= [p · g, ((Rg)
∗β̃)p(Z̃)] = [p · g, β̃p·g(Z̃)] (4.5)

therefore, β is well defined, does not depend of the choice of p, and satisfies
the conditions required. Then β ∈ A1(g).

Conversely, let β ∈ A1(g), we need to define β̃ a g-valued, horizontal and
equivariant 1-form over P . We have that βx : Tx(M) → π−1

P (g)(x) ⊂ P (g)
then

βx(Z) = [p(x, Z), X(x, Z)] = [p(x, Z) · g,Ad(g−1)X(x, Z)].
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for all g ∈ G. Let Y ∈ X (P ) and q ∈ P with π(q) = x, we define β̃ : T (P ) →
g by

β̃q(Y ) = X(π(q), π∗ q(Y )).

We need to check that β̃ is horizontal and equivariant. If Y is vertical,
π∗(Y ) = 0. Then, X(π(q), π∗ q(Y )) = X(x, π∗ q(0)) = 0. Thus β̃p(Y ) = 0,
i.e., β̃ is horizontal. We have to see now that β̃ is equivariant. Let Y ∈ X (P ),
g ∈ G, such that γ(t) is a curve with γ(0) = q and d

dt
γ(t)

∣∣
t=0

= Yq.

((Rg)
∗β̃)q(Y ) = β̃q·g(Rg ∗ q(Y )) = X(π(q · g), π∗ q·g(Rg ∗ qY ))

= X(x, π∗ q·g(Rg ∗ q

(
d

dt
γ(t)

∣∣∣∣
t=0

)
))

= Ad(g−1)X(x,

(
d

dt
π(γ(t) · g)

∣∣∣∣
t=0

)
)

= Ad(g−1)X(x,

(
d

dt
π(γ(t))

∣∣∣∣
t=0

)
)

= Ad(g−1)X(π(q), π∗ q(Y )) = Ad(g−1)(β̃q(Y ))

Then the correspondence between the horizontal and equivariant elements
β̃, β̃ ∈ Γ(Λ1(P )⊗ g), and the 1-forms β, β ∈ A1(g), is one to one and onto.

Thus, we can consider δω(f), the right logarithmic differential of f ∈
C∞

G (P,G) (i.e. f in the gauge group), as an element in the Hilbert space H
and we can finally define the affine representation of the gauge group: Let ω
be a fixed connection form over P , consider the action of C∞

G (P,G) on A1(g)
given by

Θ : C∞
G (P,G)× A1(g) → A1(g)

(f, β) 7→ Θ(f, β) = Ad(f)β + δωf.

Let us check that the action is well defined:

Θ(f1,Θ(f2, β)) = Θ(f1, δωf2 + Ad(f2)β)

= δωf1 + Ad(f1)(δωf2 + Ad(f2)β)

= δωf1 + Ad(f1)(δωf2) + Ad(f1)(Ad(f2)β)

= δωf1 + Ad(f1)(δωf2) + Ad(f1) Ad(f2)β,

148



Representation of a gauge group

on the other hand we have

Θ(f1f2, β) = δω(f1f2) + Ad(f1f2)β

= δω(f1f2) + Ad(f1) Ad(f2)β

Then, from Proposition 4.6 we have that δω(f1f2) = δωf1 + Ad(f1)δωf2, so
that the action of GP on A1(g) is well defined. If β is in H = A1(g) but not
in A1(g), then the action of f ∈ GP on β is obtained extending the action of
f on A1(g) by continuity. Then the affine representation of GP in H is given
by:

Ψ : C∞
G (P,G) → Aff(H), f 7→ (Ad(f), δωf)

Since Ad(f) is product preserving it follows that Ψ(C∞
G (P,G)) ⊂M(H) and

we get that the representation is in fact on the group of motions of H, M(H).

The affine representation of the gauge group in the Hilbert space H is
interesting because it provides the first step for the construction of a unitary
representation Ψ̃ of the gauge group in the symmetric Fock space Fs(H)

associated to H. The representation Ψ̃ is obtained as the composition of
the affine representation described in this paper and a representation of the
group of motions in Fs(H). Although the description of Ψ̃ is not the purpose
of this paper, let us say something about it: The representation of GP in
Fs(H) is equivalent to a representation of GP in a space L2

µ(H) where µ is
a special measure, see for example [9] and [10]. As we already said, these
kind of representations arose from physics and from the study of current
groups. The study of the irreducibility of these representations involves a
lot of work in measure theory and functional analysis. In the case when the
gauge group is of the form C∞(M,G) this study was developed by Gelfand,
Graev and Vershik ([8] and [9]), Wallach ([27]), Pressley ([24]) and Albeve-
rio ([2]), among others, during the 70s and the 80s and the results depend
strongly on the dimension of the base manifold M : if dim M ≥ 4, then the
representation is irreducible, see [9], but if we consider loop groups, that is,
if M = S1, then the representation is highly reducible, see [24], chapter 9.
The question about the representation of the gauge group in the general case
(when GP is not of the form C∞(M,G)) is still open and we think that the
geometry involved in the representation of GP in M(H) could help to solve
this problem.
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Representation of the gauge group in the set of connections.
The representation of the gauge group in M(H) described above can also
be interpreted as an affine representation of the gauge group in the space
of connections C, thinking of C as an affine space. This interpretation is
important when Yang-Mills theories are considered and it has implications
in this area, see [3], section 3, [7], and [18], section 6; other applications to
physics can be found in [4] and [19]. Now we will describe the action of the
gauge group on the set of connections: As we mentioned above, given two
connections their difference is a horizontal, equivariant 1-form over P with
values in the Lie algebra g. Then for a fixed connection ω, it follows from
theorem 4.7 that C is isomorphic to the affine space ω+A1(g), and the action
of GP on C

Θ̃ : GP × C → C

(α, ω + β) 7→ Θ̃(α, ω + β)

is given by the following equations:

Θ̃(α, ω + β) = α∗(ω + β) (4.6)
= α∗ω + Ad(f−1)β (4.7)
= ω + dωf + Ad(f−1)β (4.8)
= ω + Ad(f−1)β + δωf

−1 (4.9)
= ω + Θ(f−1, β) (4.10)

where α(p) = p · f(p), and β ∈ A1(g).
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