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A Classical Olivier’s Theorem and Statistical
Convergence

Tibor Šalát
Vladimír Toma

Abstract

L. Olivier proved in 1827 the classical result about the speed of
convergence to zero of the terms of a convergent series with positive
and decreasing terms. We prove that this result remains true if we
omit the monotonicity of the terms of the series when the limit op-
eration is replaced by the statistical limit, or some generalizations of
this concept.

Résumé. L. Olivier démontrait en 1827 un résultat classique sur
la vitesse de convergence vers zéro d’une série convergente à termes
positifs décroissants. Nous démontrons que ce résultat reste valable
si nous omettons la monotonie des termes de la série, en remplaçant
l’opération limite par la limite statistique ou encore par des générali-
sations de ce concept.

1 Introduction

The above mentioned result of L. Olivier was published in [7] p. 39 (see also

[5] p. 125) and claims that if an ≥ an+1 > 0, (n = 1, 2, . . . ) and
∞∑

n=1

an < +∞

then lim
n→∞

nan = 0. Simple examples show that without the monotonicity con-
dition an ≥ an+1, (n = 1, 2, . . . ), the sequence (nan)n≥1 need not converge
to zero.

Example 1. Let an = 1
n

if n is a square i.e. n = k2, (k = 1, 2, . . . ),

and an = 1
n2 otherwise. Then an > 0 (n = 1, 2, . . . ),

∞∑
n=1

an < +∞, but

lim
n→∞

nan 6= 0 since k2ak2 = 1, (k = 1, 2, . . . ).
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Remark: As the unknown referee pointed out the example can be strength-
ened taking an = log n

n
if n = k2, in which case the sequence (nan)n≥1 is not

bounded.

The notion which allows us to describe the behavior of the sequence
(nan)n≥1 is the notion of statistical convergence introduced in paper [2], (see
also [3], [10], and [9])

Definition: We say that a sequence (xn)n≥1 (of real or complex numbers)
statistically converges to a number L, and we write lim-stat xn = L, if for
each ε > 0 the set A(ε) := {n : |xn − L| ≥ ε} has zero asymptotic density,
i.e. the limit

d(A(ε)) := lim
n→∞

1

n

n∑
k=1

χA(ε)(k)

exists and is equal to zero. Here χA is the characteristic function of a set A.

In what follows we will show that the sequence (nan)n≥1 statistically
converges to 0 if

∑∞
n=1 an < +∞, (an > 0, n = 1, 2, . . . ) without the mono-

tonicity assumption on the sequence (an)n≥1.
The notion of statistical convergence was generalized using the concept

of an admissible ideal = of subsets of positive integers N = {1, 2, . . . }, that
is = ⊆ P(N) and = is additive (i.e. A, B ∈ = ⇒ A∪B ∈ =), hereditary (i.e.
B ⊂ A ∈ = ⇒ B ∈ =), containing all singletons and not containing N.

Definition: (See [6].) We say that a sequence (xn)n≥1 =-converges to a num-
ber L and we write =-lim xn = L, if for each ε > 0 the set A(ε) := {n :
|xn − L| ≥ ε} belongs to the ideal =.

An admissible ideal is for example:

=f := {A ⊆ N : A is finite set}.

Let us note that =f -lim xn = L means the same as lim
n→∞

xn = L. Some
admissible ideals can be obtained using various concepts of density of sets
A ⊆ N. Using the asymptotic density defined above we obtain the ideal

=d := {A ⊆ N : d(A) = 0}.

Obviously =d -convergence means the statistical convergence. Another type
of density is the logarithmic density defined by means of lower and upper
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logarithmic density of a set A ⊆ N:

δ(A) := lim inf
n→∞

∑n
k=1 χA(k) 1

k

log n
, δ(A) := lim sup

n→∞

∑n
k=1 χA(k) 1

k

log n
.

If δ(A) = δ(A) =: δ(A) the number δ(A) is called the logarithmic density of
the set A. Using the logarithmic density we can define the ideal

=δ := {A ⊆ N : δ(A) = 0}.

A little bit more complicated is the concept of the uniform density. For any
A ⊆ N, t ≥ 0, s ≥ 1 denote by A(t + 1, t + s) the number of elements of the
set A ∩ [t + 1, t + s]. Put

βs := lim inf
t→∞

A(t + 1, t + s), βs := lim sup
t→∞

A(t + 1, t + s).

Then there exist

u(A) := lim
s→∞

βs

s
, u(A) := lim

s→∞

βs

s

called the lower and upper uniform density of A, respectively. We prove the
existence of lims→∞

βs

s
only, since the proof for lims→∞

βs

s
is similar. Let us

choose a fixed p ∈ N. Then for any s ∈ N there exists ts ≥ 1 such that
βs = A(ts + 1, ts + s) and simultaneously βp ≤ A(t + 1, t + p) for every
t ≥ ts. For any s ∈ N there exist unique integer numbers ks, rs ≥ 0 such
that s = ksp + rs with 0 ≤ rs ≤ p − 1. Then we have (with the convention
A(x, y) = 0 if y < x)

βs

s
=

1

ksp + rs

A(ts + 1, ts + ksp + rs) =

=
1

ksp + rs

[
ks∑
i=1

A(ts + 1 + (i− 1)p, ts + ip) + A(ts + ksp + 1, ts + ksp + rs)]

Hence βs

s
≥ ksβp

ksp+rs
and when s →∞ then also ks →∞ and so for fixed p we

have limks→∞
ksβp

ksp+rs
= βp

p
. Therefore u(A) = lim inf

s→∞
βs

s
≥ βp

p
and consequently

u(A) ≥ sup
p≥1

βp

p
. Since obviously lim sup

s→∞

βs

s
≤ sup

p≥1

βp

p
, we can conclude that

there exists the limit lims→∞
βs

s
= sup

p≥1

βp

p
. If u(A) = u(A) =: u(A) then the
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common value u(A) is called the uniform density of A (cf.[1]). Using the
uniform density we can define the admissible ideal

=u := {A ⊆ N : u(A) = 0}.

To compare the above defined ideals let us remember the lower and upper
asymptotic density defined by

d(A) := lim inf
n→∞

1

n

n∑
k=1

χA(k), d(A) := lim sup
n→∞

1

n

n∑
k=1

χA(k).

The following relations between these densities can be verified (cf.[1],[4]):

0 ≤ u(A) ≤ d(A) ≤ δ(A) ≤ δ(A) ≤ d(A) ≤ u(A) ≤ 1.

Consequently we get the chain of inclusions for the above defined ideals:

=f ⊆ =u ⊆ =d ⊆ =δ. (1.1)

The ideal which will play an important role in the main theorem is the
following one

=c := {A ⊆ N :
∑
a∈A

a−1 < +∞}.

It is well known (see [8]) that
∑
a∈A

a−1 < +∞ implies d(A) = 0. So the

following inclusion holds
=c ⊆ =d. (1.2)

2 Main Results

The above mentioned Olivier’s result can be formulated in the terms of =f -
convergence as follows. If

an > 0 (n = 1, 2, . . . ),
∞∑

n=1

an < +∞

and
a1 ≥ a2 ≥ · · · ≥ an ≥ an+1 ≥ . . .
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then
=f -lim nan = 0.

In the sequel we are going to study the ideals = with the following property:

If an > 0 (n = 1, 2, . . . ),
∞∑

n=1

an < +∞ then =-lim nan = 0. (2.1)

From Example 1 we can conclude that the ideal =f does not have the property
2.1. Let us denote by S(T ) the class of all admissible ideals =, with the
property 2.1. So we have that =f /∈ S(T ). The following theorem claims a
more useful fact.

Theorem 2.1: Ideal =c is an element of S(T ).

Proof: We proceed by contradiction. Let

=c := {A ⊆ N :
∑
a∈A

a−1 < +∞} /∈ S(T ).

Then there exist numbers an > 0 (n = 1, 2, . . . ) with
∞∑

n=1

an < +∞ such

that the equality =c-lim nan = 0 does not hold. This means that there exists
ε0 > 0 for which A(ε0) = {n : nan ≥ ε0} /∈ =c. Hence from the definition of
the ideal =c we get

∑
n∈A(ε0)

n−1 = +∞. For n ∈ A(ε0) we have nan ≥ ε0 and

so
an ≥

ε0

n
for every n ∈ A(ε0).

Using this and the comparison criterion for infinite series we get∑
n∈A(ε0)

an ≥ ε0

∑
n∈A(ε0)

n−1 = +∞.

So it must be also
∞∑

n=1

an = +∞ and this is a contradiction.

The claim in the following lemma is a trivial fact about preservation of
the limit.

Lemma 2.2: Let =1,=2 be admissible ideals such that =1 ⊆ =2. If =1- lim xn =
L, then also =2-limxn = L.

An obvious consequence of Lemma 2.2 is the following theorem.
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Theorem 2.3: If =1 ⊆ =2 are two admissible ideals and =1 ∈ S(T ) then
=2 ∈ S(T ).

Corollary 2.4: If = is an admissible ideal and = ⊇ =c then = ∈ S(T ).

Theorem 2.5: The ideal =c is the smallest element in the class S(T ) par-
tially ordered by inclusion.

Proof: Let = ∈ S(T ). We prove that for any set M = {m1 < m2 < . . . } ∈
=c we have M ∈ =. We can suppose that M is an infinite set because if it
were finite it belongs to = as it is an admissible ideal, hence contains all finite
sets. Since M ∈ =c following the definition of the ideal =c we have

∞∑
k=1

1

mk

< +∞

Let us define numbers an (n = 1, 2, . . . ) as follows

amk
=

1

mk

(k = 1, 2, . . . ),

an =
1

n2 + n
for n ∈ N \M.

Then obviously an > 0 (n = 1, 2, . . . ) and
∑∞

n=1 an < +∞ by the definition
of numbers an. Since = ∈ S(T ) we have

=-lim nan = 0.

This implies that for each ε > 0 we have

A(ε) = {n : nan ≥ ε} ∈ =,

specifically M = A(1) ∈ =.

The problem of characterization of the class of all ideals having the prop-
erty 2.1 was formulated orally by the second author in a discussion in the
Seminar on real functions theory in Bratislava. The above results allow us
to give such a characterization.

Theorem 2.6: The class S(T ) consists of all admissible ideals = ⊆ P(N)
such that = ⊇ =c.
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Proof: 1) If = ∈ S(T ) then after Theorem 2.5 we have = ⊇ =c.
2) Let = be an admissible ideal and =c ⊆ =. Due to Theorem 2.1 we have
=c ∈ S(T ) and the Corollary 2.4 yields = ∈ S(T ).

Remark: Referring to inclusions 1.1 and 1.2 we can claim that S(T ) contains
as elements the ideals =d and =δ. Since the =d-convergence is in fact the
statistical convergence we get

∞∑
n=1

an < +∞, (an > 0) =⇒ lim-stat nan = 0.

In connection with Theorem 2.6 it is important to know how many ideals
have the property 2.1 and how many don’t have this property. We know yet
that the ideal =f which yields usual convergence is not an element of S(T ).
We give some more such examples.

Example 2. For every integer j ≥ 0 let Dj := {2j(2n + 1) : n = 0, 1, . . . };
then obviously

∞⋃
j=0

Dj = N. Let =] be the set of all A ⊆ N which intersect

only finite number of the sets D0, D1, . . . . Then =] is obviously an ideal
which does not contain the set A = {1, 2, 22, . . . , 2j, . . . } since A meets every
Dj but A is obviously an element of =c. Hence =c 6⊆ =].

Example 3. The ideal =u := {A ⊂ N : u(A) = 0} where u(A) is the uniform
density of the set A, is not an element of the class S(T ). To prove this let

us choose A =
∞⋃

k=1

Ak with Ak = {22k + 1, . . . , 22k + 2k}, (k = 1, 2, . . . ).

Obviously A ∈ =c. To prove that A /∈ =u let us determine the upper uniform
density of the set A (see [1]). To this end, consider the sets A ∩ [t + 1, t + s]
with t ≥ 0, s ∈ N. If we take tk = 22k, sk = 2k, (k = 1, 2, . . . ), then A(tk +
1, tk + sk) = sk, (k = 1, 2, . . . ) and β(sk) := lim sup

t→∞
A(t + 1, t + sk) = sk and

consequently u(A) = limk→∞
β(sk)

sk
= 1. So we have proved that A /∈ =u and

hence =c 6⊆ =u

The next two propositions give an idea of how many admissible ideals are
appropriate for the analog of Olivier’s theorem and how many can not be
used to obtain this analog.
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Proposition 2.7: There are infinitely many admissible ideals which are not
elements of the class S(T ).

Proof: For any infinite set M ⊆ N we enlarge the ideal =f by adjunction
of the set M defining a new ideal =M := {A ∪ B : A ∈ =f , B ⊆ M}. If we
choose M such that N\M is also infinite then =M is an admissible ideal. We
can choose moreover M such that

∑
m∈M m−1 < +∞ and then =M ⊂ =c.

Applying Theorem 2.5 we conclude that =M is not an element of S(T ). To
see that there are infinitely many ideals of the type =M it is sufficient to
observe that =M 6= =M ′ if and only if the symmetric difference M4M ′ is an
infinite set.

Remark: P. Kostyrko observed that for each q, 0 < q < 1, the admissible
ideal =(q)

c := {A ⊆ N :
∑

a∈A a−q < +∞} is a proper subset of the ideal =c.
So we get again by Theorem 2.5 infinitely many admissible ideals that do
not belong to S(T ).

Proposition 2.8: There are infinitely many admissible ideals which are
elements of the class S(T ).

Proof: Let us take a set M with
∑

m∈M

m−1 = +∞ such that N \ M is

infinite. Then the ideal

=∗M = {A ∪B : A ∈ =c, B ⊆ M}

is an admissible ideal such that =c ⊂ =∗M and consequently =∗M ∈ S(T ). To
see that there are infinitely many such ideals =∗M let us write M = {m1 <

m2 < . . . } with
∞∑

k=1

m−1
k = +∞. Then by comparison test we have also

∞∑
k=1

m−1
2k−1 = +∞ =

∞∑
k=1

m−1
2k . If we take M ′ = {m2k−1 : k = 1, 2 . . . } then

=c ⊂ =∗M ′ ⊂ =∗M and in this way we construct a decreasing chain of infinitely
many admissible ideals of the class S(T ).
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