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Harmonic functions on annuli of graphs

Sébastien Blachère

ANNALES MATHEMATIQUES BLAISE PASCAL, VOL. 8, N° 2. PP 47-59 (2001)

Abstract

In this paper, we prove the "relative connectedness" of graphs
which satisfy a polynomial volume growth and a Poincare-type in-
equality on balls. By "relative connectedness", we mean that every
two vertices at distance R from a vertex x can be joined by a path
within an annulus A(x, aR) We apply this result first to con-
trol the behavior of harmonic functions outside a ball and then, in the
case of Cayley graph of groups having polynomial volume growth, to
obtain a Poincare-type inequality on the annuli.

1 Introduction

Let r be an infinite undirected connected graph and note that we call r both
the graph and its set of vertices when there is no ambiguity. Let two vertices
x and y be neighbors (denoted y) when r has an edge between them.
We also suppose the graph to be locally uniformly finite, which means:

~K > 0, ~x ~ 0393 #{y ~ 0393 : y ~ x} ~ K .

Let d(x, y) be the natural distance on r, that is the minimal number of edges
between x and y. Then we denote S(x, R) = {y E r : d(x, y) = jR} and
B(x, R) = { y E r : d(x, y)  R~ the sphere and the ball of radius R,
centered at x.

We say that the spheres of r (with respect to d) are relatively con-
nected if there exist constants Ro > 0 and a > 1 such that: for any R > Ro
and any vertex x E r, every two vertices in the sphere S(x, R) can be joined
by a path within the annulus a-I R, aR) = B(x, aR) 1 B (x, .

We suppose that F has polynomial volume growth of exponent D:

C-1RD  #B(x, R)  CRD. . (1.1)
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Our aim is first to prove the relative connectedness of the spheres of r (Propo-
sition 2.1) when it satisfies (1.1) and a D~Poincar~-type inequality on
balls: there is a constant C(D) such that for any function u on r,

~ >

yEB(x,R) yeB(x,2R)

(1.2)
where UB = #B 03A3y~B u(y) for any set R, and

= ~ .

y~x

The method is adapted from [5, Prop. 4.5] to our discrete setting. We will
give the whole proof for the sake of completeness. Note that, for instance, the
above assumptions are satisfied for Cayley graphs of groups with polynomial
growth of exponent D > 2 [7, Th. 4.1].

Then, we extend to annuli (Theorem 3.1) the elliptic Harnack inequality
on balls obtained by Delmotte [2] under (1.2) and the doubling of the volume
(implied by (1.1)). From this inequality, we deduce a control on the behavior
of harmonic functions outside a finite set (Theorem 3.2), by comparison with
the behavior of the Green function. Finally, when r is the Cayley graph of a
group having polynomial volume growth, we deduce Poincare-type inequali-
ties on annuli (Theorem 3.3)..

2 Relative connectedness of the spheres

Proposition 2.1 Let r be an infinite, locally uniformly finite, undirected
connected graph which satisfies (I.1) and (1.~~. Then, the spheres of T are
relatively connected.

PROOF: First, note that the definition (1.2) of the D-Poincare-type inequal-
ity differs from the one in [5], which is, under the same conditions,

/ Bi/D

1 #B(x,R) 03A3 |u(y) - u B(x,R) I -  C(D) ) ( £ |~u(y)|D) . . (2.3)#B~~~ yEB(x,2R) /
Indeed, (2.3) is a consequence of (1.2) and Holder inequality, and will be used
below. Actually, (1.2) and (2.3) are equivalent (see [5]).
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Let x E r and R E N* be large enough. Let zi, x2 be two vertices on

S{x, R) and take a > 21. If d(x1, x2)  then they can be joined within
A(x, a-I R, aR). So we only need to consider x2) > Let Fi (resp.
F2) be a path from zi (resp. 2:2) to S(x, R/2) of length R/2. We suppose
there is no path between Fi and F2 within A(x, aR), and will prove
that this becomes impossible for large a.

Let u be a function on aR) such that u == 0 on Fl and u(y) > 1
for y E F2. Suppose uB(x,R) ~ 1/2 and let y E F2, then > 1/2.

Let Bi = B(y, 22~~R) and C be a constant whose value may change from
one line to another. Then by (1.1), as B{x, R) C B1,

1  uB1| I + u(y) I
oo

 UBI + 03A3 |uBi+1 - uBi I

~ 2C 03A31 #Bi 03A3|u(z) - uBi|.

i=l ~ ’ 
xEB~

So, using (2.3), we obtain

oc / B1/D

|uB(x,R)-u(y)| ~ C03A3( 03A3 |~u(z)|D ) 
lID

 CR1/D sup r 1 03A3 |~u(z)|D ) 1/D 2(2-i)/D.
r4R zEB(y,r) ~ i= 0

So, there is a constant C depending on D and the constants from (1.1) and
(1.2), such that for each y E F2, there is a radius r(y)  4R with

E Cr{y)I R .
z~B(y,r(y))

By the covering Lemma [5, Th. 14.12], among all the B(y, r(y)), there is
a sub-collection of balls r(yi)) (yi E F2), pointwise disjoint, such that
F2 C As a consequence, by definition of F2, we must have
~= > R/20. So,

E |~u(z)|D > C’
z~B(x,5R) i z~B(yi,r(yui))
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1/2, then taking Fl instead of F2 leads to the same result. Finally

E > C’ . (2.4)
zEB(x,5R)

As C’ does not depend on a, the aim is to choose u such that the left hand
side of (2.4) tends to 0 as a goes to infinity.

Let g(z) = (In when z E A(x, aR) and 0 elsewhere.
We define the function .-

. 

u(z) = inf L g(y) >

where the 03B3z’s are the paths from z to Fl. Then u m 0 on F1 and, assuming
that Fi and F2 cannot be joined within A(x, aR), any path between
them must leave the annulus. If it does so through its exterior boundary,
the path should go from S(x, R) to S(x, aR) and come back. Likewise, if
the path exits the annulus through its interior boundary, it should go from
S(x, R/2) to S(x, and come back. Then, for y E F2, we obtain

u(y) ~ min {(ln 03B1)-12k-1, (ln 03B1)-12 k-1} ~ 1.

For any z E A(x, aR) and z’ ~ z, we easily see that

u(z’)~ ~ ~9(z) ~ .

So,  where K is a uniform bound for the number of

neighbors.
Then, to prove that (2.4) leads to a contradiction it is suflicient to obtain

sup ~ g(z)D ---~ 0. (2.5)
R 

z~B(x,5R) 
03B1~~

Taking the supremum over R gives the uniformity in R of the constant a.
Using the definition of g, we obtain

E (ln a) D E d(x, z)-D

 (In a)-D (~21og2 a] + 1) C2D .
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The last inequality uses #A(x,2i03B1-1R,2i+103B1-1R)  C(2i+103B1-1R)D. Since

g = 0 on B(x, 03B1-1 R) and D > 1, we obtain (2.5) and then the result. p

Remark: In the hypothesis of Proposition 2.1, if we replace D by p > D
in the Poincare-type inequality, the result fails. Indeed, take r the graph
made of two copies of the two-dimensional lattice joined by a single edge.
This graph, with polynomial volume growth of exponent 2, satisfies the
above assumptions, but not a 2-Poincare-type inequality, whereas the rel-
ative connectedness clearly fails. Conversely, the p-Poincare-type inequality
with 1  p  D is stronger than the D-Poincare-type inequality.

In the sequel, we will always denote a and Ro the constants related to the
relative connectedness of the spheres. Now, we give a control of the length
of the path between two vertices of a sphere of r, within the annulus defined
in Proposition 2.1. .

Proposition 2.2 Under the hypothesis of Proposition ~.1, there exists a po-
sitive constant a such that, for all R > Ro and all x1, x2 on the sphere S(x, R)
of r, there is a path from xl to x2, within the annulus A(x, (2a)-1R, 2aR),
of length at most ~R.

PROOF: By Proposition 2.1, we can pick one path between xl and X2 within
A(x, 03B1-1R, aR). Let us take a sequence (vi) of vertices on this path oriented
from Xl to 2:2? by the following rules:

. ~i >

. Given vi, is the last vertex along this path at distance 03B1-1R/2
(the lowest greater integer) from v;,

. We stop at i = 7 when x2 belongs to the ball jB(f/, 03B1-1R/2).

Such a sequence exists and is finite. Note that all the balls a-iR/4) are
disjoint by construction. Recall the constant C in (1.1). All these balls are
included in B(x, (a+a-1/2)R), whose volume is less than /2)DRD.
On the other hand
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Hence we must have I  + 03B1-1/2)D(403B1)D. Note also that all the

B(vi, are included in Then, within this an-
nulus, there are paths from Vi to of length ~a-1R/2~ . . So, the annulus
A(x, (2a)"1R, 2aR) contains a path between x and y of length less than AR
with A = 4C2(a + 0

3 Behavior of harmonic functions outside a ball

We always suppose r to be an infinite, locally uniformly finite, undirected
connected graph which satisfies (1.1) and (1.2). A function f on r is called
harmonic on a set of vertices E if

for all x E E, = ~( f (x) - fey)) = 0 .
y~x

Likewise we call a function sub-harmonic (resp. super-harmonic) 
0 (resp. 0 f (x) > 0).

Let u be a non-negative function defined on r, harmonic on an annulus
A(z, s, t) = B(z, t)BB(z, s). We write A(s, t) for A(z, s, t). Recall the con-
stant a from Proposition 2.1. First we extend to annuli an elliptic Harnack
inequality on balls.

Theorem 3.1 Assume that s > Ra (R0 > 0 large enough), and t/a >
4sa. Let u be a non-negative function defined on r, harmonic on A(s, t). .
Then u satisfies an elliptic Harnack inequality on the annulus A(2sa, t/(2a)),
namely:

max u ~ c(t/s) min u,

A(2s03B1,t/(203B1)) A(2s03B1,t/(203B1))

where c(t/s) is a constant depending only on t/s and the graph.
PROOF: Let x, y be in A(2sa, t/(2a)). By. Proposition 2.1, there is a path
between x and y within A(2s, t/2). We first take a sequence of vertices vi
(i == 1 to I ) along this path, as in the proof of Proposition 2.2, with ~s/3~
instead of for the distance between two successive vertices. Then,
we obtain that I  c(t/s)D where D is the constant in (1.1).

With (1.1) and (1.2), Delmotte [2] has proved that an harmonic function
on a ball B(x, 2n) satisfies an elliptic Harnack inequality on B(x, n) whose
constant is independent of x and r:
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We can apply this result for u on all the balls B(vi, s/6), because their doubles
B(vi, s/3) are all included in A(s, t). Moreover we can write the Harnack
inequality on the union of all these balls, putting the constant to the power
I depending only on t/s. The result follows. 0

We have an immediate corollary.

Corollary 3.1 Let u be a non-negative function defined on r, harmonic
outside a ball B(z, N) (z E rand N > 0). There exists N0 ~ N such that u
satisfies an elliptic Harnack inequality on all the dyadic annuli A(z, 2n, 2n+1)
(2n > No) with the same constant Ch.

Now, we take the hypothesis of the previous corollary, and we study the
asymptotic behavior of such a function u. We begin by an analysis made by
Moser in [6] about its oscillations on the spheres. Since the center z is fixed,
we denote Ixl = d(z, x). We define:

M(r) = max u(x) and m(r) = min .

|x|=r |x|=r

Suppose Ajf(r) has two relative minima, say ri and r2 (r2 > ri). Then, in
the annulus r2), M(r) attains his maximum inside the domain, so does
u. This contradicts the maximum principle. So we are left with two cases:
either M(r) has one relative minimum at f and so M(r) is increasing for
r > r. Or M(r) has no relative minimum and so it is decreasing.

Likewise we see that m(r) has at most one relative maximum r. Therefore
either m(r) is decreasing for r > r, or m(r) is increasing. Finally, for r bigger
than some ro, M(r) and m(r) are both monotone, and we have four cases:

. Case 1: M(r) ~ and m(r) B

. Case 2: M(r) ~ and m(r) ~’

. Case 3: M(r) j~ and m(r) ~

. Case 4: M(r) B and m(r) ~

We denote osc(r) =1lI (r) the oscillations of u on the sphere of radius
r. The following proposition mimics [6, Th 4,5].

Proposition 3.1 Let Ch be the constant of Corollary 3..I, then:
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(i) Case 1 implies that osc(r) tends to infinity at least like a power p of r,
and

(ii) Cases 2, 3, 4 imply that osc(r) tends to zero. Hence:

lim u(x) = u~ exists.
|x|~~

Remark:

; As the four cases cover all possibilities, (i) and (ii) correspond respec-
tively to u unbounded and u bounded.

. For case 2, the proof of Moser gives also that osc(r) tends to zero at
most like a power p’ = log2((Ch - 1)/(Ch + 1)) of r.

For cases 2,3,4, we want to bound u~| by an explicit power of |x|
which depends only on the constant D.

Theorem 3.2 Suppose r has exponent D > 2. Let u be a bounded (by say
U) function on r, harmonic outside a ball B(z, N) (z E r and N > 0), then:

lim u (x) = u~ exists,
|x|~~

and

|u(x) - u~ | ~ cND-2U|x|2-D,

where c is a positive constant depending only on r.

PROOF: First note that we can restrict ourselves to the non-constant func-

tions. To apply Corollary 3.1, we need to consider only the x’s such that
~x~ > No with some No large enough. Actually, we only need No = C’N
with C’ a constant depending on F. Then, when |x|  No, we obtain
|u(x) - u~|  2U  2U(C’N/|x|)D-2, and so the result still holds. As

u is bounded below, we can look at the behavior of u + U which has the
same speed of convergence. Hence we can use the previous analysis for non-
negative functions.

If u corresponds to case 4, then -u + U corresponds to case 3 and has
the san~e speed of convergence. So we just deal with cases 2, 3.
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Let f be a non-negative function on r, sub-harmonic outside the ball
B(z, N) and vanishing at infinity. We denote Gz(x) the Green’s function
rooted at z, i.e. the unique solution of ~~c = ~z which vanishes at infinity.
Under (1.2) and (1.1) with exponent D > 2, there exists a constant c such
that (see [3])

for every x ~ z, Gz(x)  .

With No = C’N E N, we denote

a = min Gz(x) and b = max f .
S(z,No)

Then (b/a)Gz > f on S(z, No). (b/a)Gz - f is a super-harmonic function
therefore we can use the minimum principle. Since (bla)Gz - f vanishes at
infinity and is non-negative on S(z, No), this function remains non-negative
out of B(z, No). Otherwise it should have a local minimum, which would
contradict the minimum principle. Hence for all x ~ B(z, No),

f(x)  (b/a)Gz(x)  . (3.6)

For case 3, f = u~ - u is a non-negative function on F, sub-harmonic
outside the ball B(z, N) and vanishing at infinity. So, by the above argument,
the claim follows. For case 2, the sign of f = u-u~ may change since M(r) is
decreasing and m(r) is increasing, both tending to u~ at infinity. We denote
11 = max(0, f ) and f 2 = max(o, - f ). These are non-negative functions and
we easily see that they are sub-harmonic outside B(z, N). As they vanish at
infinity, we obtain (3.6) for 11 and f 2 and the result is also true..
Example: Let be the simple random walk on 0393 started at x, and B(z,N)
be the hitting time of B(z, N). Then, the function u(x) = Px{B(z,N)  ~}
is harmonic outside B(z, N), bounded by 1 and tends to 0 when ~x~ goes to
infinity. Then Theorem 3.2 gives

 00} ~ ’

3.1 Poincare-type inequality on annuli

Here, r is the Cayley graph of a finitely generated group G, associated with
a symmetric finite generating set S: its vertices are the elements of G, and
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there is an edge between x and y when yx-1 E S. We assume the poly-
nomial volume growth (1,1), then (see [1, 7]) r satisfies (1.2), and so the
relative connectedness of the spheres. On this kind of graph, the proof of
the Poincaré-type inequality on balls relies on the construction of a partic-
ular path 03B3x,y between each pair of vertices x, y in a ball B(z, R) (z E r,
R > 0). The set of these paths should have the property to pass "not too
often" through any edge in B(z, 2R). To obtain the same type of inequality
on annuli we will need to define the path in a way adapted to our set-
ting. Recall the constants a and .Re from Theorem 2.1. The Poincaré-type
inequalities on annuli are the following.

Theorem 3.3 Let r be the Cayley graph of a group with polynomial volume
growth of exponent D > I. . Then, for all p > 1, there exists a constant C(p)
such that for all z E r, s, t ~ N (t > s > and any function f on r, we
have

£ - £ 
y~A(z,03B1-1s/3,03B1t+203B1-1s/3)

PROOF: As before, we omit the reference to the center z of the annuli.
We cover the annulus A(03B1-1s, at) by a minimal number I of balls B1 =

such that all the B(vi, a-‘1s~12) are disjoint. We denote ~i =
: 1  i  I} this covering. Then,

r

 

im

which leads, as in Proposition 2.2, to I  c(t/s)D. Let Nz be the number of
balls intersected by Bi. Let us denote them 03B1-1s/6) (k = 1 to Nz).
Remark that

N~

U C B(03C5i,
k=I

and, as all the are disjoint,

Ni

~ (x ls/12) ~ ~~1SI2) .
k=1

So the Ni’s are bounded by say N, which does not depend on s nor t.
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Let x, y E A(s, t). We construct a path from x to y in the spirit of [4, Ex.
2.3]. By Theorem 2.1, there is a path I from x to y within A(03B1-1s, at). We
define an index i(x) associated to x:

i(x) = inf i : d(v;, x) = min d(v;, ~) ~
We remark that x E Likewise, we define i(y).

The path ’Y intersects a sequence of B/s denoted Bi(k) (k = 0 to K)
and we can take i(O) = i(x) and i(K) = i(y) (adding Bi(x) and to the
sequence if necessary). We first construct a sequence of vertices (zn) (n = 0
to 2K + 1), from x to y as follows

z2k = and (3.7)

We denote 3Bi(k) = and 5Bi(k) = 503B1-1s/6). For all
k, Z2k and z2k+I belong to and z2k+2 belongs to 3Bi(k). So, for all n,
d(zn, zn+1)  2a-IS/3. Let g(z-1nzn+1) be a minimal path from e to z-1nzn+1.
We join zn and zn+1 by the translated path zng(z-1n zn+1) which stays within
5Bi([n/2]) (where [.] denotes the integer part). Finally, we obtain a path 03B3x,y
from x to y within A’ = + 5a-ls/6), whose length is bounded
by Cs(t/s)D for some non-negative constant C. Indeed,

2K

(length of  4I03B1-1s/3  Cs(t/ s)D .~ 

n=0

Now, we prove our Poincare-type inequality using the same technique as
the one on balls (see [1, 7]). We denote H(a, b) = # {{x, y} : (a, b) E 03B3x,y},
where (a, b) denotes the edge between two neighbors a and b. 
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To estimate H(a, b), let first write
I I

b) = # {{x,y} ~ A(s, t) : i(x) = i, i(y) = j, (a, b) E 03B3x,y}

Now, suppose i and j fixed. We want to bound the number of pair of vertices
{x, ?/} such that i(x) = i, i(y) = j and (a, b) E Saying that the edge (a, b)
belongs to means that (a, b) belongs to one of the paths zng(z-1nzn+1)
defined above.

We need to obtain a bound Ki for the number of balls in B that could
contain such zn, and likewise, a bound K2 for the number of balls in B that
could contain such zn+i . Then, we want a bound K3 for the number of
elements h E F such that h = z-1nzn+1. Finally, we need a bound K4 for
the number of possible zn. By (3.7), va(E~n+11~2~~, z~, i = i(x) and
j = i(y) fully determine the pair {x, y}, so

H(a, b) _ I2K1K2K3K4 . (3.8)
Since has length less than 2a-ls/3, the vertices a and b should be
at distance less than 503B1-1s/6 from the center of any ball in B that contains
such zn. By definition of the overlapping bound N, for a fixed edge (a, b),
there are at most (N + 1)5 such balls. So, K1 ~ (JV + 1)5 and likewise K2 
(iV + 1)5. As E B(e, 03B1-1s/3), there are, at most, #B(e,03B1-1s/3)
choices for z-1nzn+1, so K3  CsD. Once z-1nzn+1 is fixed, knowing that (a, b)
is one of the edges of leaves 2a-is/3 choices for
the starting point zn, so K4  2a~1s~3.

Finally, plugging these bounds and I  c(t/s)D into (3.8), we obtain

H(a, b)  CI2N10sD+1  C(t/s)2DsD+1.
Therefore, the result follows. r-j
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