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A Mathematical model for Resin Transfer

Molding
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. Abstract

The known pseudo-concentration model is a generalization of the
classical model of two immiscible fluids when the interface between

the two fluids is not a sufficiently regular curve. Besides, it provides
efficient and robust numerical methods. The aim of this article is to

prove existence of solutions to a mathematical model, based on the
pseudo-concentration function model, for the filling of shallow molds
with polymers. Numerical methods and numerical simulations with
comparison with experimental results have been presented in [6]; [7].
The proposed model is 2-D, the chemical reactivity of the fluid is

accounted with the conversion rate satisfying a Kamal-Sourour model,
and the temperature is not considered. We prove the existence of a
renormalized solution to the mathematical model, and an analysis of
time stability is carried out illustrating that the proposed model is
suitable for describing the polymer state.

1 Introduction

Resin Transfer Molding (R.T.M.) is a very fast industrial process for di-
rect production of thin components of complex shapes from low viscosity
monomers or oligomers. It consists in low pressure injection of a reactive

lThe first author is partially supported by by a Action intégrée CNR-CNRS
grant AI 95/0845

2The second author is partially supported by Action intégrée CNR-CNRS
grant AI 95/0845

3The third author is partially supported by Action intégrée CNR-CNRS grant
AI 95/0845
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compound in a hot shallow mold. The shallow mold will be represented by
a bounded open space S2 of R2 which is its projection on a mean plan in
the third direction, and T will be the time required for a complete filling,
II denoting the domain ]0, T[ 03A9. The reader is referred to [6] for a justi-
fication of the domain reduction. As time ellipse domain Q will be split in
sub-domains and S22(t) separated by the interface and such that

03A91(t) ~ 03A92 (t) = 0393l(t) and SZ = 03A91(t)03A92(t)0393l(t) which can be schematically
represented by the following figure:

Figure 1

The domain represents the mold fraction filled with injected reactive
fluid and 02(t) is the mold fraction still full of air. It is experimentally
well known that in mold process inertia terms are negligible compared to
viscous terms in the equations describing fluid flow (see [1] or [6] for a formal
justification issued from a perturbation development). In each domain flk(t)
, for k=1,2 , the fluid flow speed uk and the fluid pressure pk satisfy Stokes
law of viscous flows for viscosity ~~ for any t E [0, T] . Thus r~I is the viscosity
of the compound being injected and r~2 the viscosity of the air. In this simple
mathematical model temperature variations are not taken into account and
chemical reactions are represented by the conversion rate a (see [8] for a

justification). Note that the function a is defined only in domain S~i (t), and a
function of pseudo-concentration S (see [1]) such that {(t, y) E TI / S(t, y) =
1 } will be used as characteristic of domain and ~ (t, y) E II / S(t, y) =
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0~ of domain !12(t). We apply the result of Nouri and Poupaud [10] to the
mathematical model for proving existence. To determine the speed u and
pressure p for the R.T.M. process, solutions of a Stokes problem, but also
the pseudo-concentration function S, solution of a transport equation, and
the conversion rate function a solution of a differential equation have to be
considered. We will study firstly the existence and stability of the solution
of this differential equation and, the existence of a fixed point solution of the
coupled problem. In the case where domains 03A91(t) and 03A92(t) are smoothly
variable (the interface separating and S~2 (t) is a curve), the model
proposed becomes equivalent to the classical model with a free boundary. The
cornerstone for proving the existence is to deal with renormalized solutions
for the transport equation.
The outline of this work is the following. Firstly, we introduce the functional
spaces and hypotheses needed. Then in section 2, we describe the proposed
mathematical model to be investigated. Some results required for the study
of the model are quoted. And in section 3, we show the result of existence
of the proposed problem.

1.1 Functional spaces

Let S~ be an open bounded of R2 the boundary of which is piecewise Cl. The
space of the continuous functions of compact support indefinitely differen-
tiable on Q is designated as D(03A9) or C~0(03A9) and D’(03A9) is the distributions
space. If

H1(03A9) = {u / u ~ L2(03A9) and 
~u ~xi 

~ L2(03A9); i = 1,2 }

with ~u ~xi the derivative in distributional sense the trace application from

H1(03A9) on H1 2 (~03A9) is denoted, and the following spaces are defined

= { U e = 0~x E ~03A9}.
Then the space V = { ~ (D(03A9))2 / div03C6 = 0 } is considered,
and we write H = 03BD(L2(03A9))2 and V’ - 03BD(H1(03A9))2. Then V = ( 03C6 ~
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(H10(03A9))2/div03C6 = 0 } and space H is equipped with the usual scalar product
of (L2(S2))2 denoted (., .). The norm associated to this scalar product is

denoted [ . I. Space V is equipped with the following scalar product where

Diju = 1 2(~ui ~xj + ~uj ~xi) for any u, v E V

((u, v)) = / DijuDijv dx.S2

We denote = 

i~i~2 
and we also write

1~j~2

((u, v)) = 03A9 ~(u) : dx .

The associated norm of this scalar product is denoted ~~ . ~~ and is equivalent
to the norm of (H=(S2))2 as derived from Poincare inequality

3 c(03A9) such that |u | ~ c(03A9) ~u~H1(03A9) du E H10(03A9).

Note that V C H C V’ with compact and continuous injections. Moreover
for any 1  p  oo and for any Hilbert space B, we set

= {v: : (O,T) -> B ; v is measurable and E Lp(0,T)}.

Then for any Uo given in (H2 (8S2))2 such that ~03A9 u0.n d03C3 = 0 where n is

the normal to ~03A9, we consider the following space U
Lf = {u ~ L~(0,T;(H1(03A9))2) / div(u) = 0 , 

= u0}.

If moreover it is assumed that 03A9 has a Lipschitz continuous boundary and
that this one is comprised of three connected components 0393e, 03930 and 0393s, then
it is possible to define the following space T:

T = f ~ E = 0, d2 E r9, dt E (0, T)}.
The polymerization reaction is represented by a function f : R+ x R+ --~ R
verifying the hypotheses:
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H1) ~ 1  p and 3 1  k, odd such that the function z ~ f (t, z) E
Vt E R+. Moreover, 3 0  ao  1 such that f(t,O) =

f (t, ao) = 0 dt E R+; 0  f (t, z) if 0  z  ao and f (t, z)  0 if Go  z
Vt E R+. Furthermore, ao) E Ll (0, T) with 8z f (t, ao)  ~c  0
on [0, T] and ~mz f (t, ao) = 0 ~m E {l, 2, ..., k - 1}.

H2) f is continuous and azf is bounded on bounded subsets of R+ x R+
A function Uo E L°°(0, +~; (C10(IR2))2) verifying the following hypothesis
will also be needed:

r divUo = 0;
U0.n  0 if x ~ 0393e and t ~ 0;

H3) U0.n = 0 if x ~ 03930 and t ~ 0;
U0.n > 0 if x ~ 0393s and t ~ 0.

Hypotheses (J~i), (H2) are related to the function f of the conversion rate
and are limiting conditions but are satisfied by the Kamal-Sourour model
for instance. The function Uo is needed for extending the inside and outside
speeds on re and on TS which is crucial for defining renormalized solutions
to the transport problem with a trace on rs.

2 Mathematical Model

The mathematical model we propose for representing the process of filling
the mold leads to the coupled following problem:

for u0 , 03B20 , S0 and f given, find (u, p, S, a) verifying:
divx(~(t,x)~(u(t,x))) = ~p in 03A9;

{ divx(u) = 0 in 03A9; (2.1)03B3(u) = u0 on ~03A9;

~tS(t,x) + (.x)S(t,x) = 0~(t, x) ~ 03A0;
S(0, x) - E 03A9; (2.2)
S(t, x) - 1~t ~]0, T[; dx ~ 0393e;

~t03B1 = f(t,03B1)S(t,
x) t ~]0, T]; 

(2.3)
03B1(0,x) = 03B20.
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Let 0  m  M be two constants, and let g E C°((0, 1~ x R+; (m, M]) be
given such that

g(u,v) = ~2 if u = 0; for all v ~ R+. (2.4)~1 if u = 1

The viscosity of the mixture in domain II is described with the function 1} :
n -3 defined by 1](t, x) = g(S(t, x), a(t)). By setting gl(.) = g(i, .)
we will assume that gi is a boundeckincreasing function. This last hypothesis
expresses that during the polymerization process, ~71 the polymer viscosity is a
continuous increasing function with respect to a such that r~l (t) = g(1, a(t))
for any t E [0, T]. The air viscosity r~2 is a constant. Please remark that
similar problems to problem (1)-(2) settled in JR2 are considered as quasi-
stationary problems in [10]. The main result we obtained for solutions (see
(3.32) for a definition) to Problem (1) - (3) is given by :

Theorem 1 Let 03A9 be a Lipschitz continuous open bounded subset included
in 1R2 the boundary of which consists in three connected parts r e, 03930 and rs
such that there exist two open sets Qe and ns verifying re C Qe, rs C S2S
and 03A9e ~ 03A9S = 0.
Let Uo E L°°(0, +00; Co (1t~2)) be a function satisfying (H3). . Let So E {0,1~);
0  /3o be given and let f : lt~+ x R+ -~ R be a function verifying (HI) and
(HZ). Then Problem (1~ ; (2) and (3) has at least a solution (u, p, S, a) in
L°°(O,T; (Hl(S2))2) x L°°(O,T; (Lo(S2)) x L~[(0,T) x 03A9] x C°(O,T; L~(03A9)).
The proof will be given in section 3, and requires to solve independently
Problem (1), Problem (2) and Problem (3) which is the issue of the following
sections.

2.1 Stokes Problem (1)
In this subsection, we give a formulation of Stokes problem over the complete
domain S2. Assume ~7 to be a continuous function with respect to time,
positive bounded from above and from below, measurable with respect to x
and let t to be fixed. While t is fixed we still denote the function ~(t, .) by ~.

For given uo find u E (Hl(O))2 and p E Lo(52) verifying:

div(~~(u)) = ~p in (D’(03A9))2;
~ div(u) = 0 a. e. in S2; (2.5)( = u0 in (H1 2(~03A9))2
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To give a weak formulation of problem (2.5) we have to extend the boundary
conditions in the domain S2.

Lemma 1 The following proposal are equivalent:

i)u0 E (H1 2 (~03A9))2 and u0.n d03C3 = 0.

ii)There exists U0 ~ (H1(03A9))2 such that 03B3(U0) = u0 and divU0 = 0 .

Proposition 2.1 Let r~ : S2 -~ lf8 be a measurable function such that there
exist two rn and NI reals verifying 0 G m  ~ G M. Let uo E (11 z (r7S2))2
such that ~03A9 u0.n do = 0 and U0 as defined by lemma 1 Then problem (2.5)
is equivalent to the following

Find v E V such that v = u - Uo and for all w E V;

{03A9 ~~(v) : ~(w) dx + J ~~(U0) : ~(w) dx = 0. (2.6)

For the existence of solutions to problem (2.6) we have the classical following
result:

Proposition 2.2 Within the hypotheses of proposition 2.1, problem (2.6)
has a unique solution v such that u = v + Uo is the unique solution to (2.5).
Moreover we have: 

~u~  (2M m c(03A9) + 1)~U0~

where c(S2) is the poincaré constant.

Now we deal with a function ~ which is a measurable function defined in
II = (0, T) x S2 such that 0  ~  NI a. e. in II. Then a weak solution
to Problem (1) is a couple (u, p) E U x Loo(O, T; Lo(52)) such that v = u - Uo
verifying for all w E V

03A9 ~~(v) : e(w) dx + J ~~(U0) : ~(w) dx = 0 a. e.t E (0, T). (2.7)

For 0  n, let pn be the classical mollifier function, we defined the regularized
function ~7~ by convolution

Vt E [0, T], ~n(t, x) _ (rl(’, x) * 03C1n)(t) for a. e.x E S2.
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We have, ~n --> ~ in L1(II) when n goes to infinity. We define un as the
solution to problem (2.6) when 7y is replaced by Propositions (2.1), (2.2)
apply, and for every t E [0, T] we get, the existence and uniqueness and a
uniform bound with respect to n for u" in L°°(O,T; verifying

T0 03A9 03C6(t)~n(t,x)~(un(t, x)) : ~(w(x)) dtdx _ (2.8)T0 03A9 f(t, dtdx, 03C6 E D((0, z’)); Vw E v. 
’

Since u" is uniformly bounded with respect to n in we

deduce the existence of u E L°°(O, T; such that, up to a subse-
quence un ~ u in weak star. Since 03C6~n(t,x)~(w(x)) -

03C6~(t, x)~(w(x)) in we pass to the limit in the previous equa-
tion and we get

p2(t) ~(t, x)~(u(t, x)) : e(w(x)) - fw(x) dx) dt = 0
for all cp E D((0, T)) and w E V. From this we get that (u, P) is a weak

solution to Problem (1). The uniqueness of weak solution is straightforward
from its definition. Thus we deduce the existence of u E 
such that, up to a subsequence un -3 u in weak star.

We have proved that propositions (2.1), (2.2) are still valid when problem
(2.6) is replaced by problem (2.7) for which t E (0, T) and equations (2.5) by
equations (2.1).

Remark 2.1 If the domains S2k have Lipschitz continuous boundaries, defin-
ing now the domains

IIl = { (t, x) E 03A0/x E S21 (t) };

IIZ = {(t, x) E 03A0/x E 03A92(t)};
L= {(t,x) E 0393l(t)},

we have IT = L U IIi U 03A02. For 1  k  2 , we set:

_ {p |03A0k /; p E L2(0, T; L2(03A9))};

V1(03A0k) _ {u |03A0k ~ L~(0,T; (H1(03A9))2)}.
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The weak formulation of the Stokes problem, over the complete domain S2 is
equivalent to the weak formulation of the Stokes problem in each sub-domains
03A9k(1  k  2) with matching conditions on the interface 0393l(cf [10]). In each
domain IIk ((1  k  2)) , the speed uk E V1(03A0k) and pressure pk E V0(03A0k)
verify for a. e. t in the interval (0, T] :

{ 
div(~k(t,x)~(uk(t, x))) - ~pk (t, x) E 03A9k(t);
div(uk) = 0(t, x) E 03A9k(t); (2.9)
03B3(uk) - u0(t, x) E ~03A9k(t) B 0393l(t) .

And we have also the linking conditions at the interface 0393l(t). The constraint
tensor 03C3k is defined by 03C3k = ~k~(uk) - pkId and we set Uk = (1,uk)T and
Ek = then the continuity conditions for the constraints tensor, the
speed trace continuity and immiscibility over L are:

Ei.N = over L; (2.10)

ui = u2 over rl; ; (2.11)

Ui.N = U2.N = 0 over L, (2.12)
where N is normal to L defined by N = Nl = -N2 and Nk for k = 1, 2 , , is

the normal to ~03A0k B 852.

2.2 The transport problem (2)
In the following, S2 is assumed to be an open domain bounded and that

boundary is made of three connected Lipschitz continous components 03930 ,
0393e and 0393s. Let U0 E L~(0, +~, (C10(IR2))2) be a function verifying the
hypotheses given by (H3). The transport problem is defined by: for given
u E U, So E L°°(S2), find S E L°°(II) verifying:

{ 
~tS(t, x) + (.x)S(t, x) - Od(t, E II;
S(0, x) - S0(x)~x E SZ; (2.13)
S(t, x) - 1~t ~]0, T[; bx ~ 0393e.

Definition 1 If u E U, then a weak solution of (2.13) is a function S E L~(II)
such that:

T003A9 S(t, x) (~t03C6 + .03C6)(t, x) dx dt = J 0 T 
J S0(x)03C6(0, x) dx, for any p E {03B4 E D(R3)/03B4(t, x) = 0 x E rs; Vt E [0, T]}.
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Definition 1 If u E U then a renormalized solution of (2.13) is a function
S E L~(II) such that for any function 03B2 E C1(R) ; 03B2(S) is a weak solution
of (2.13) with ,3(So) and ,Q(1) as initial and boundary conditions.
Theorem 2 Let S2 be an open bounded domain with Lipschitz continuous
boundary of R2 and that its boundary consists in three connected components
To, re and Ts, and let So E L°°(S2) and u E U. Then the transport problem
(2.13) has a unique renormalized solution S with a trace Sr, over rs which
belongs to L~((0,T) x 0393s) and verifying:

T0 03A9 S(t, x)(~t03C6 + (u.~)03C6)(t, x) dxdt + 0393e 03C6(t, x)I |U0.n| d03C3(x)dt =

T00393s Srs(t, x)03C6(t, x)|U0.n| d03C3(x)dt - J n x) dx. 
(2.14)

for any p E D([0,T] x R2). Moreover

J /’ T J S2(t, x) r dx + J ° 
T 

(T - (t, x) I |U0.n| d03C3(x)dt = 
(2.15)

J o (T - t) J |U0.n| d03C3(x)dt + T J dx,

and s E L~(03A0; {0, 1}) if so E {0, 1}). o

The method used for proving existence of solutions to Transport problem
consists in introducing solutions to the problem extended to R2 and apply-
ing the results of Diperna-Lions to the transport equation. For a proof of
theorem (2) the reader is referred to [10] or to [9].
Remark 2.2 It is important to consider the renormalized solutions to get
uniqueness for Equation (2.13) (which will be crucial to obtain strong con-
vergence) and to get solutions with values in {0,1}. Renormalized solutions
have a trace in |U0.n|d03C3); which is not valid for the weak solutions of
problem (2.13) ( cf (3J). p

Remark 2.3 When the interface 0393l is a curve, one can prove that Transport
problem(2.13) and immiscibility condition U.N = 0 over 0393l are equivalent
(see [10]). When the boundaries of domains S2k are not Lipschitz continuous,
Transport problem(2.13~ is a generalization of the immiscibility condition. ~
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2.3 The polymerization Problem (3)
It is assumed that the polymerization rate of the monomer is derived from
empirical model such as Kamal-Sourour (8], i.e. there exists a function f : :
R+ x 1~+ --~ R satisfying hypotheses (Hl) and (H2) and such that for
,Qo E R+ given the function a(.) : [0, T] C II ~ R+ verifies

"(°) " f(
t, Q); t E] 0, T]; 

(2.16)
03B1(0) = 03B20. 

(2.16)

The function a does not depend on x. This means that the polymerization
reaction starts at the beginning of the filling process. We study the stability
and the asymptotic stability of the solutions to Problem (2.16). Stability
of the solutions to mathematical model is important for asserting that this
model represents correctly the physical process of RTM.
The results which are going to be derived for Problem (2.16) still remain valid
for Problem (3), since function S E thus the function z H f (~, z)S(~, x) is
continuous and locally Lipschitz continuous with respect to z independently
of time and space. So the required hypotheses of Caratheodory Theorem are
satisfied, the fact that t, z, x ~ f (t, z)S(t, x) is not continuous with respect
to time is not a restriction.
For Problem (3) we use the theorem of caratheodory (see remark p. 60 of [5J
or [4]) and we get the existence. For the uniqueness we use Theorem 3.6 p.
64 of [5] which is still valid in the case where the function f, the right hand
side of the ordinary differential equation is not a continuous function with
respect to time (in the proof of the theorem 3.6 of ~5j, integrate the equation
verified by We have existence and uniqueness ofae L°° (j o, Tx[ 03A9, R*+),
continuous with respect to time, a weak solution to Problem (3) defined by

a(t, x) = 03B20 + t0 f (s, a(s, x))S(s, x) ds Vt E [0, Tx] and a. e. x E 03A9.

(2.17)
Finally, accounting for the asymptotic stability results of the lemma 2.3, we
get that a defined by (2.17) verifies Q; E L~(03A0,R*+).
In order to be more readable, the results concerning the stability are not given
with the function f (t, z)S(t, x) but only with the function f (t, z). Neverthe-
less, these results are still valid for the functionj(t, z)S(t, x). The main result
of this sub-section is given by:
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Proposition 2.3 Let f : R+ x R+ ~ R be a function verifying hypotheses
(Hl) and (H2) and let Qo a non negative constant given. Then Problem

(2.16) has a unique maximal solution a continuous with respect to time. The
function a called a weak solution of Problem (2.16) is defined by

a(t) = ~o + it f(s, a(s)) ds for t E ~0, TJ. ~~ -. i~~

Moreover, ao the solution at equilibrium of the differential equation (2.16)
over [0, +oo(, as defined by hypothesis (Hl), is asymptotically stable, whereas
0 the other solution at equilibrium of the equation (,~.1 B~ is not asymptotically
stable.

Proof. The theorem (3.1) of (5~ brings us to assert that Problem (2.16) has a
unique continuous in time solution over a given interval [0, tl~ for any initial
condition /3o at time 0.

In order to demonstrate that this solution is maximal and study its sta-

bility and asymptotic stability, we start by the verification of these properties
for the solution of the following associated problem to (2.16).

d dt03B1l = ~kzf(t, 03B10) k! (03B1l - 03B10)k ; 

(2.19)

03B1l(0) = 03B20.
With y = 03B1l - 03B10 and y0 = 03B20 - 03B10 problem (2.19) becomes:

aty 
- 

= yo. 
ao) k. 

(2.20)

y(0) = y0.
Lemma 2 If f : ~ R is a function verifying hypotheses (Hl), (H2)
and yo E R*+ the initial condition, Problem (2.20) has a unique solution which
is maximal y and the solution at equilibrium 0 is asymptotically stable. More-
over if 0  Yo, then 0  y :::; Yo and if y0  0 then y0 ~ y  0.

Proof. If 0  yo the solution of (2.20) y is given by:
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for any t > 0. And if yo  0 the solution of (2.20) y is given by:

for any t > 0.

o
Now it is possible to give a similar result for the non-linear problem(2.16).
Lemma 3 If f : R+ x R+ ~ R is a function verifying hypotheses (H1),

and if 03B20 ~ R*+ are given then the Problem (2.16) has a unique maximal
solution a over ~0, +oo(. Moreover if ao  ~io then ao  a  ~io and if
03B20  03B10 then 03B20 ~ a  03B10.

Proof. If a is the solution of Problem (2.16) that the proposition (2.3) con-
firms the existence and uniqueness over [0, T] , as a is continuous, that shows
that there exists Ti E]0, T[ such that ao  a and due to the sign of f i. e.

(H2) a  /~o for any t E [0, Ti] if /30 belongs to a neighborhood of ao with
ao  ~3o and a  ao for any t E [0, Ti] if /3o belongs to a neighborhood of ao
with /30  ao..
Now considering the stable point 0. If we take as initial condition 03B20 close to
0 with 0  ,Qo then a(t)  ao for any t E (0, t1]. Effectively supposing that
there exists a real Tl such that Ti E]0, tl( and ao  a(Ti) then there exists a
real 6 such that 03B1(T1) > b > 03B10 > 03B20 and there exists a real t2 ~]0, T1[ such
that 03B1(t2) = b. Thus a is strictly increasing after a given time t3 E [t2, T1[.
Considering the differential equation:

d dtz = f(t, z) over (t2, T1]; (2.21)z(t2) = 03B4,
where a is strictly increasing solution over [t3, T1]. We have for all t and t
such that t3  t  t

-zt - f(s, Z(S)) dS (2.22)

which is contradictory with (H2) (f(., z)  0 ao  z). Since we have estab-
lished that a E (0, max (03B10, 03B20)] we deduce that the solution can’t blow up,
so it is a maximal solution.
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o
The stability result for Problem (2.16) can be written as:

Lemma 4 Let f : R+ x R+ - 1EF be a function verifying hypotheses (H1),
and /~o a non negative constant, then the solution at equilibrium ao of

the differential equation (2.16) over [0, +oo( is asymptotically stable whereas
the solution at equilibrium 0 of the differential equation (2.16) over [0, +oc~
is not asymptotically stable.

Proof. If 0  e then for any initial condition /?o such that 1/30 - ao~ I  e
the solution a of problem (2.16) given by lemma 3 with the initial condition
/~o verifies Ja(t) - ao)  e for any t E (0,+00~. Thus the equilibrium
solution a = ao of (2.16) over [0,-}-oo[ is stable. Moreover as f(t, a) in the
neightbourhood of ao is written as:

f (t, a) = [~kzf(t, 03B10) k! 
+ (03B1 - 03B10)pR(t, 03B1, 03B10)] (03B1 - 03B10)k 1 ~ p,

if 0  v is fixed it can be noted that if sup a, 03B10)| I = 0
Os

Problem (2.16) is reduced to problem (2.20).
1

If we set eo = 
2 sup ( (where is defined at hypothesis

0~s

|03B1-03B10|~v

(Hl) by ao)    0 ) then there exists a real 0  6 (6 = min (v, eo)
from the proof of lemma 3) such that if |03B20 - 03B10|  8, then a verifies la(t) -
03B10|  b for any t E [0, +~[. And thus for any condition 0  03B20 such that

ao  b we get:

ao) + (a - ao )PR( t, a, ao )  2
for any t e [0, +~o(. For a given Po we set y(t) = a(t) - ao, then (2.16) can
be written:

d dt y = [~kzf(t, 03B10) k! + ypR(t, 03B1, 03B10)]yk; (2.23)
( y(0) = 03B20 - 03B10 = y0.
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The solution of (2.23) is given by:

As moreover (t 0) _ (1 k) + a, ds

for any t E [0, +oo[, the result is that lim a(t) = ao and the solution at
t~+~

equilibrium a = ao is asymptotically stable for any initial condition 0  /?o
in a neighborhood of ao.
If now we set 0  ,8o initial condition close to 0 then just as the solution a of
(2.16) over [0, +oo[ verifies a(t)  ao; for any t E [0, +oo[ we have lim a(t)t~+~

exists and verifies 0  03B20 ~ lim a(t)  03B10. Then 0  lim a(t) and there
t~+~

is not asymptotic stability in this case. D
D

3 Fixed point and existence result

Two functions So E ~0, l~); f : : l~+ x RT --~ R verifying hypotheses
and (H2), and ,~o E ~8+ are given. Let Uo E L°°(o, T, (Ca (S~))2) be

such that divx(Uo) = 0. We set = uo over (0, T) x 8~. Introduce the
following set C

C = {cp E .L2((o, T) x S~) / ~   1 a. e.~.
Obviously C is a close convex bounded of L2 ( (o. T) x S~) .
Before the proof of Theorem I , concerning existence of a solution (u, p, S, a)
of the three coupled problems (1); (2); and (3) recalled here below:
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we give an intermediate result related to eonvergence of solutions to Problem
(25). For any o  E, let SE be a sequence of functions with ~~SE~~L~(n~  1.

Using the results of subsection 2.3, for a. e. x E Sl the existence and
uniqueness of aE continuous with respect to time verifying

~t03B1~ = f(t, 03B1~)S~(t, x) t ~]0, T];
(3.27)~ x) = ao~ ,

is demonstrated. Moreover  max po ~ ) . .

Lemma 5 If S in L~(03A0, {0,1}), f verifying hypotheses (H1) and (H2), 03B20 E
R+ are given and if S~ is 03B1 sequence o f functions such that  1
and verifying

sE ~ s in L2(03A0).
E --~ o

Then the sequence 03B1~ of the solutions of problem (3.27) is converging in
L2 (03A0; R*+), , towards

03B1(t) = 03B20 + t0 f (r, 03B1(s))S(r, x) dr (3.28)

a weak solution to problem (~5~.
PROOF: Writing aE solution of problem (3.2’l) in the following way for all
t E (0, ~’~ and for a.e. x E S~:

t

a~(t) = ~o + / f (r? x) dr. (3.29)

Let us show that aE is converging towards a in L2 (03A0; IR*+). Using hypothesis
(H2) and L~-estimate for S~ and denoting by

Kl = sup |~zf (t, z)|; m = sup |f (ta z)) )
t~[0,T] t~[0,T]

z~[0,max (03B10,03B20)] z~[0,max (03B10,03B20)]
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we get for all t E [0,T] and for a.e. x E S2

~a‘1 (t) - af2 (t) ~  Kl J ~(r~)-~(r,:r)~. .
Jo Jo

Gronwall’s lemma implies that for all t E [0, T] and for a.e. x E 52:

|03B1~1(t) - 03B1~2(t)|  m 
t 

S~2(03B8, x)|d03B8dr.
.Jo Jo

The conclusion of this inequality is that aE is a Cauchy sequence in L2(03A0; R*+)
since SE is a Cauchy sequence.

In the same way for almost the complete (t, :r) E II there is:

~a‘~t) - ~/~o + 

m t0 t0 e-K1(03B8-r)|S~(03B8,x) - S(03B8,x)|d03B8dr .

and it follows that

|03B1~(t) - (03B20 + J o x)dr)| -> 0 in L2(03A0). (3.30)

Lemma 5 is demonstrated. 0
In what following an operator F defined over C with values in C is built such
that the solution of problem (1)-(2)-(3) is a fixed point of F in C. To prove
that F admits a fixed point, the sequential compactness of F as an operator
from (C, ~~ ~ ~~tz~n~) onto itself is used.

Building an operator F over C:

The operator can be defined by use of the results of subsection 2.3

-~ L2~n)
.? ~r = a defined by (2.17).

With proposition 2.2 it is possible to define :

stokes : L~(03A0; R+ n {m  z  ~ u

~ ~ stokes(~) = u a
solution to problem (1).
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With theorem 2 it is possible to introduce the operator:

Atrans : ~ --~ L2(II; ~0,1 ~); I
u ~--~ Atrans (u) = S solution to problem (2)defined in Theorem 2.

For a given S E C, then a; ~; u and S are defined by:

03B1 
= polym(S) ~ = g(S, 03B1) ( where g is defined by (4)) (3.31)u = stokes(~) and finally S = Atrans ( u ) (3.31)

The operator F is defined by

F : C --~ C associates S to S.

A solution of problem (1)-(2)-(3) will be a quadruplet (u, p, S, a) with u E
L2 [0, T ; (H1(03A9))2], a p E L2(0, T; L20(03A9)), S E L2((0, T) a E T; L~(03A9))
such that

03B1 = polym(S) ; ~ = g(S, 03B1) ; u = stokes(~); F(S) = S, (3.32)
and p is defined by proposition 2.1.
The existence of a solution to problem (1)-(2)-(3) is then derived of the
existence of a fixed point of F in C. Let us begin with a technical result
concerning the sequence of renormalized solutions of problem (3). .

Lemma 6 If (un)n~N is a sequence in L2(0, T; (H1(03A9))2) such that un u

weakly in L2(o, T; (H1(03A9))2) with = and divun = 0 for any n,
and such that = tans(un)n~N) is the sequence of solutions to transport
problems associated to un with So E ~0,1}) defined in Theorem 2.
Then the sequence converges in L2 ((o, T) x S~) towards the function
S = tans (u) a renormalized solution of the transport problem associated to
u and given by .Theorem 2.

For a proof the reader is referred to [10] corollary 5.1. The key point for the
strong convergence of (Sn)n~N in LZ is to work with the space

X = L2((0, T) x 03A9) x L2(O, T; |U0.n|d03C3(x)))
and providing l~ of the following norm
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PROOF: [Proof of theorem l~
Let us first establish that the function F is continuous. Let Sn be strongly
convergent in L2(03A0) towards S E L~(03A0, {o,1}). We have to prove that

= converges in C towards F(S). The sequences (03B1n, ~n, un)
are defined by

an = polym(Sn); ~n = 03B1n); I stokes(~n).

Lemma 5 applies and we get that an converges towards a = polym(S) a
weak solution of problem (25). Since is strongly convergent towards
(S, a) in L2(03A0, R*+), neglecting the extraction of a sub-sequence again noted

an) Theorem 4.9 in [2] claims that the sequence is convergent
towards (S, a) almost everywhere in iI. The continuity of g implies that r~n =

an) is convergent almost everywhere towards g(a, S). The function g
defined by (2.4) is bounded, it follows that the sequence r~n is uniformly
bounded. It is deduced of proposition 2.2 that:

~‘ _  

The weak sequential compactness of a reflexive Banach space unit ball leads
to the existence of u E U such that unp - u in L2(0, T; (H1(03A9))2) weak. Let
us show that u is the solution to problem (25) associated to ~ = g(S, a),
~ = ~stokes {~) ~
Let now the subsequences (Snp)p~N of and (03B1np)p~N Of be such

that for any p E N, = stokes(~np) is the solution of Problem (25) associ-
ated to = g(Snp; 03B1np). Set t vnp = unp - U0, which is weakly convergent
towards v 2014 U0 in L2(0, T; V). The function g is continuous and bounded, so
we have for all w E D(0, T; V)

~np~(w) ~ ~~(w) a.e. in 03A0 and ~~np~(w)~L2(03A0 ~ C1M~w~L2(0,T;(H1(03A9))2).
(3.33)

The dominated convergence theorem provides for all w E D(0, T; V)
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when p goes to oo. Then, we deduce for all w E D(0, T; V):

lim p~+~ T0 03A9~np(t,x)~(vnp(t, x)) : E(w) dx dt

+ T0 03A9~np(t,x)~(U0(t,x)) : E(w) dx dt =

T0 03A9~(t, x)~(t, x)) : ~(w) dx dt + x)) : ~(w) dx dt.

But for any p ~ N, and any w E V and a. e. t e (0, T) we have:

x)~(vnp(t, x)) : ~(w) dx + x)~(U0(t, x)) : ~(w) dx = 0 .

Then for any w E V and for almost every t e (0, T) :

x)~(v(t, x)) : ~(w) dx + x)E(Uo(t, x)) : E(w) dx = 0 .

So v is solution of Problem (2.6) and thus u = v + Uo is a solution of (2.5)
then a solution of (1) associated to r~. Moreover u is unique, so it is all the
sequence which converges, and we have u = !~stokes(~ = (~)).
On the other hand, by using Corollary 5.1 of [10] we have that

S = lim F(Sn) = trans(u)

since un weakly converges to u in T; (H1(03A9))2). Thus we have S _
F(S).
Finally let us establish the compactness of F. We start with (Sn)n~N an
arbitrary bounded sequence in C. The weak sequential compactness of the
unit ball of L2(03A0) implies the existence of S E L2(03A0) and of a sub-sequence

Snp  S in L2(03A0) weak. Let an = = stokes(~n = g(Sn, 03B1n))
which is uniformly bounded in (Hl(Q))2). The weak sequential com-
pacity of the unit ball of the Banach space U implies the existence of u E U
and a sub-sequence unp --~ u in (H1(S~))2) weak. Corollary 5.1 of [10]
applies, and we have in L2 (II)..Arguing as before we prove that
Snp converges strongly in toward S = stokes(~ = g(8, a) ) .
Theorem 1 is proven.
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