SERGEY V. LUDKOVSKY

Quasi-invariant measures on non-archimedean groups and semigroups of loops and paths, their representations. II

Annales mathématiques Blaise Pascal, tome 7, nº 2 (2000), p. 55-80 http://www.numdam.org/item?id=AMBP 2000 7 2 55 0>

© Annales mathématiques Blaise Pascal, 2000, tous droits réservés.

L'accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Math. Blaise Pascal, Vol. 7, N° 2, 2000, pp 55-80

Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations. II.

Sergey V. Ludkovsky

permanent address: Theoretical Department, Institute of General Physics, Str. Vavilov 38, Moscow, 117942, Russia.

Abstract

Loop groups G as families of mappings of one non-Archimedean Banach manifold M into another N with marked points over the same locally compact field K of characteristic char(K) = 0 are considered. Quasi-invariant measures on them are constructed. Then measures are used to investigate irreducible representations of such groups.

1 Introduction.

In the first part results on loop semigroups were exposed. This part is devoted to loop and path groups, quasi-invariant measures on them and their unitary representations. Results from Part I are used below (see also Introduction of Part I).

Irreducible components of strongly continuous unitary representations of Abelian locally compact groups are one-dimensional by Theorem 22.17 [10]. In general commutative non-locally compact groups may have infinitedimensional irreducible strongly continuous unitary representations, for example, infinite-dimensional Banach spaces over R considered as additive groups (see §2.4 in [1] and §4.5 [9]).

^{*}Mathematics subject classification (1991 Revision) 43A05, 43A65 and 46S10.

In §3 for the investigation of a representation's irreducibility the pseudodifferentiability and some other specific properties of the constructed quasiinvariant measures are used. Besides continuous characters separating points of the loop group (see Theorem 3.3), strongly continuous infinite-dimensional irreducible unitary representations are constructed in §3.2.

The path groups and semigroups are investigated in §4.

In the real case there are known *H*-groups defined with the help of homotopies [18]. A compositon on the *H*-group is defined relative to classes of homotopic mappings. In the non-Archimedean case homotopies are meaningless. A space of mappings $C(\xi, (M, s_0) \rightarrow (N, y_0))$ from one manifold *M* into another *N* preserving marked points (see I. §2.6) is supplied with the composition operation of families of mappings using loop semigroups. It is called a loop *O*-semigroup, since compositions are defined relative to certain equivalence classes, which are closures of families of certain orbits relative to the action of the diffeomorphism group of *M* preserving s_0 . From it a loop *O*-group is defined with the help of the Grothendieck construction. *O*-groups are considered in §5.

In §6 the notation is summarized.

2 Loop groups.

2.1. Note and Definition. For a commutative monoid $\Omega_{\xi}(M, N)$ with the unity and the cancellation property (see Theorem I.2.7 and Condition I.2.7.(5)) there exists a commutative group $L_{\xi}(M, N)$ equal to the Grothendieck group. This group is the quotient group F/B, where F is a free Abelian group generated by $\Omega_{\xi}(M, N)$ and B is a closed subgroup of F generated by elements [f + g] - [f] - [g], f and $g \in \Omega_{\xi}(M, N)$, [f] denotes an element of Fcorresponding to f. In view of §9 [12] and [17] the natural mapping

(1)
$$\gamma: \Omega_{\xi}(M, N) \to L_{\xi}(M, N)$$

is injective. We supply F with a topology inherited from the Tychonoff product topology of $\Omega_{\ell}(M, N)^{\mathbb{Z}}$, where each element z of F is

$$(2) \ z = \sum_{f} n_{f,z}[f],$$

 $n_{f,z} \in \mathbb{Z}$ for each $f \in \Omega_{\xi}(M, N)$,

$$(3) \sum_{f} |n_{f,z}| < \infty.$$

In particular $[nf] - n[f] \in B$, where 1f = f, $nf = f \circ (n-1)f$ for each $1 < n \in \mathbb{N}$, $f + g := f \circ g$. We call $L_{\xi}(M, N)$ the loop group.

2.2. Proposition. The space $L_{\xi}(M, N)$ from §2.1 is the complete separable Abelian Hausdorff topological group; it is non-discrete, perfect and has the cardinality c.

Proof follows from §I.2.7 and §2.1, since in view of Formulas 2.1.(1-3) for each $f \in L_{\xi}(M, N)$ there are $g_j \in \Omega_{\xi}(M, N)$ such that $f = f_1 - f_2$, where $\gamma(g_j) = f_j$ for each $j \in \{1, 2\}$. Therefore, γ is the topological embedding such that $\gamma(f+g) = \gamma(f) + \gamma(g), \gamma(e) = e$.

2.3. Theorem. Let $G = L_{\xi}(M, N)$ be the same group as in §2.1, $\xi = (t, s)$ or $\xi = t$ with $0 \le t \in \mathbb{R}$, $s_0 \in \mathbb{N}_0$.

(1) If $At'(\tilde{M})$ has $card(\Lambda'_{\tilde{M}}) \geq 2$, then G is isomorphic with $G_1 = L_{\xi}(\tilde{M}, N)$, where $\tilde{M} = U'_1 \cup U'_2$ (see §1.2.5). Moreover, $T_{\eta}G$ is the Banach space for each $\eta \in G$ and G is ultrametrizable.

(2) If $1 \leq t + s$, then G is an analytic manifold and for it the mapping $\tilde{E}: \tilde{T}G \to G$ is defined, where $\tilde{T}G$ is the neighbourhood of G in TG such that $\tilde{E}_{\eta}(V) = \bar{e}xp_{\eta(s)} \circ V_{\eta}$ from some neighbourhood \bar{V}_{η} of the zero section in $T_{\eta}G \subset TG$ onto some neighbourhood $W_{\eta} \ni \eta \in G$, $\bar{V}_{\eta} = \bar{V}_{e} \circ \eta$, $W_{\eta} = W_{e} \circ \eta$, $\eta \in G$ and \tilde{E} belongs to the class $C(\infty)$ by V, \tilde{E} is the uniform isomorphism of uniform spaces \bar{V} and W.

(3) There are atlases $\tilde{A}t(TG)$ and $\tilde{A}t(G)$ for which \tilde{E} is locally analytic. Moreover, G is not locally compact for each $0 \leq t$.

Proof. The first statement follows immediately from Theorem I.2.17 and §2.1. Therefeore, to prove the second statement it is sufficient to consider the manifold M with a finite atlas At(M).

Let $V_{\eta} \in T_{\eta}G$ for each $\eta \in G$, $V \in C_0(\xi, G \to TG)$, suppose also that $\tilde{\pi} \circ V_{\eta} = \eta$ be the natural projection such that $\tilde{\pi} : TG \to G$, then V is a vector field on G of class $C_0(\xi)$. The disjoint and analytic atlases $At(C_0(\xi, M \to N))$ and $At(C_0(\xi, M \to TN))$ induce disjoint clopen atlases in G and TG with the help of the corresponding equivalence relations and ultrametrics in these quotient spaces. These atlases are countable, since G and TG are separable. In view of Theorem I.2.10 the space $T_{\eta}G$ is Banach and not locally compact, hence it is infinite-dimensional over K.

In view of Formulas I.2.6.2.(1-7) the multiplications

(1)
$$R_f: G \to G, g \mapsto g \circ f = R_f(g)$$
 and

(2)
$$\alpha_h : C_0^0(\xi, (M, s_0) \to (N, y_0)) \to C_0^0(\xi, (M, s_0) \to (N, y_0)), \ \alpha_h(v) = v \circ h$$

for $f, g \in G$ and $h, v \in C_0^0(\xi, (M, s_0) \to (N, y_0))$ belong to the class $C(\infty)$. Using Formulas (1,2) as in §I.2.10 we get, that the vector field V on G of

class $C_0(\xi)$ has the form

(3)
$$V_{\eta(x)} = v(\eta(x)),$$

where v is a vector field on N of the class $C_0(\xi)$, $\eta \in G$,

$$v(\langle f \rangle_{K,\xi} (x)) := \{v(g(x)) : g \in \langle f \rangle_{K,\xi}\}.$$

Since $\bar{e}xp: \bar{T}N \to N$ is analytic on the corresponding charts (see §I.2.8.). In view of Formulas I.2.8.(1-4) $\tilde{E}(V) = \bar{e}xp \circ V$ has the necessary properties, where $\bar{e}xp$ is considered on $At^n(N)$ with $\psi^n{}_i(V^n{}_i)$ being K-convex in the Banach space Y. Therefore, due to Formula (3) we have

(4)
$$\tilde{E}_{\eta}: T_{\eta}G \supset \tilde{V}_{\eta} \to W_{\eta} \subset G$$

are continuous and

(5)
$$\tilde{E}_{\eta}(V) = \bar{e}xp_{\eta(x)}v(\eta(x)),$$

where $x \in M$, consequently, \tilde{E} is of class $C(\infty)$.

2.4. Note. Let $\Omega_{\xi}^{\{k\}}(M, N)$ be the same submonoid as in §I.3.5 such that c > 0 and c' > 0. Then it generates the loop group $G' := L_{\xi}^{\{k\}}(M, N)$ as in §2.1 such that G' is the dense subgroup in $G = L_{\xi}(M, N)$.

2.5. Theorem. On the group $G = L_{\xi}(M, N)$ from §2.1 and for each $b \in C$ there exist probability quasi-invariant and pseudo-differentiable of order b measures μ with values in \mathbb{R} and \mathbb{K}_q for each prime number q such that $q \neq p$ relative to a dense subgroup G'.

Proof. In view of Theorem 2.3 it is sufficient to consider the case of M with the finite atlas At'(M). Let the operator \tilde{A} be defined on $TC_0^0(\xi, (M, s_0) \rightarrow (N, y_0))$ by Formulas I.3.6.(3,4). The factorization by the equivalence relation \tilde{K}_{ξ} from §I.3.6 and the Grothendieck construction of §2.1 produces the following mapping $\tilde{\Upsilon}$ from the corresponding neighbourhood of the zero section

in $TL_{\xi}(M, N)$ into a neighbourhood of the zero section either in $TL_{\xi'}(M, Y)$ for $\dim_{\mathbf{K}} M < \infty$ or into $c_0(\{TL_{\xi'}(M_a, Y) : a \in \mathbf{N}\})$ for $\dim_{\mathbf{K}} M = \aleph_0$.

Therefore they are continuously strongly differentiable with $(D\tilde{\Upsilon}(f))(v) = \tilde{\Upsilon}(f)(v)$, where f and $v \in V_N \subset T_e L_{\xi}(M, N)$, V_N is the corresponding neighbourhoods of zero sections for the element $e = \langle \omega_0 \rangle_{K,\xi}$. In view of the existence of the mapping \tilde{E} (see Formulas 2.3.(4,5)) for $\tilde{T}G$ there exists the local diffeomorphism

$$(1)\Upsilon: W_{e} \to V'_{0}$$

induced by \tilde{E} and $\tilde{\Upsilon}$, where W_e is a neighbourhood of e in G, V'_0 is a neighbourhood of zero either in the Banach subspace \tilde{H} of $T_e L_{\xi'}(M, Y)$ for $\dim_{\mathbf{K}} M < \infty$ or in the Banach subspace \tilde{H} of $c_0(\{T_e L_{\xi'}(M_e, Y) : a \in \mathbf{N}\})$ for $\dim_{\mathbf{K}} M = \aleph_0$.

Let now W'_{e} be a neighbourhood of e in G' such that $W'_{e}W_{e} = W_{e}$. It is possible, since the topology in G and G' is given by the corresponding ultrametrics and there exists W_{e} with $W_{e}W_{e} = W_{e}$, hence it is sufficient to take $W'_{e} \subset W_{e}$. For $g \in W_{e}$, $v = \tilde{E}^{-1}(g)$, $\phi \in W'_{\xi}$ the following operator

(2)
$$S_{\phi}(v) := \Upsilon \circ L_{\phi} \circ \Upsilon^{-1}(v) - v$$

is defined for each $(\phi, v) \in W'_e \times V'_0$, where $L_{\phi}(g) := \phi \circ g$. Then $S_{\phi}(v) \in V''_0 \subset V''_0$, where V''_0 is an open neighbourhood of the zero section either in the Banach subspace \tilde{H}' of T_eG' for $\dim_{\mathbf{K}} M < \infty$ or in the Banach subspace \tilde{H}' of $c_0(\{T_eG'_a : a \in \mathbf{N}\})$ for $\dim_{\mathbf{K}} M = \aleph_0$, where $G'_a = L^{\{k\}}_{\xi}(M_a, N)$. Moreover, $S_{\phi}(v)$ is the $C(\infty)$ -mapping by ϕ and v. As in §I.3.6 a quasi-invariant and pseudo-differentiable of order b measure ν on $V'_0 \subset \tilde{H}$ exists relative to $\phi \in W'_e$, where

(3)
$$\nu(dx) = \bigotimes_{j=1}^{\infty} \nu_{l(j)}(dx^j)$$

and Conditions I.3.6.(13,14,17-20) are satisfied.

More general classes of quasi-invariant and pseudo-differentiable of order b measures ν with values in $[0, \infty)$ or in $\mathbf{K}_{\mathbf{q}}$ exist on $V'_{\mathbf{0}}$ relative to the action of $\phi \in W'_{\mathbf{e}}$, $(\phi, v) \mapsto v + S_{\phi}(v)$, where $v \in V'_{\mathbf{0}}$.

In view of Formulas (1-3) the measure ν induces a measure $\tilde{\mu}$ on W_e with the help of Υ such that

(4)
$$\tilde{\mu}(A) = \nu(\Upsilon(A))$$
 for each $A \in Bf(W_e)$,

since $\|\nu\|(V'_0) > 0$. The groups G and G' are separable and ultrametrizable, hence there are locally finite coverings $\{\phi_i \circ W_i : i \in \mathbb{N}\}$ of G and $\{\phi_i \circ W'_i : i \in \mathbb{N}\}$ of G' with $\phi_i \in G'$ such that W_i are open subsets in W_e and W'_i are open subsets in W'_e , that is,

$$\bigcup_{i=1}^{\infty} \phi_i \circ W_i = G \text{ and } \bigcup_{i=1}^{\infty} \phi_i \circ W'_i = G',$$

where $\phi_1 = e$, $W_1 = W_e$ and $W'_1 = W'_e$ [6]. Then $\tilde{\mu}$ can be extended onto G by the following formula

(5)
$$\mu(A) := (\sum_{i=1}^{\infty} \tilde{\mu}((\phi_i^{-1} \circ A) \cap W_i)r^i) / (\sum_{i=1}^{\infty} \tilde{\mu}(W_i)r^i)$$

for each $A \in Bf(G)$, where 0 < r < 1 for real $\tilde{\mu}$ or r = q for $\tilde{\mu}$ with values in K_q. In view of Formulas (4,5) this μ is the desired measure, which is quasi-invariant and pseudo-differentiable of order b relative to the subgroup $G^n = G'$ (see also §§I.3.2-4).

3 Representations of loop groups.

3.1. Let μ be a real non-negative quasi-invariant relative to G' measure on (G, Bf(G)) as in Theorem 2.5. Assume also that $H := L^2(G, \mu, \mathbb{C})$ is the standard Hilbert space of equivalence classes of functions $f : G \to \mathbb{C}$ for which absolute values |f| are square-integrable by μ . Suppose that U(H) is the unitary group on H in a topology induced from a Banach space $L(H \to H)$ of continuous linear operators supplied with the operator norm.

Theorem. There exists a strongly continuous injective homomorphism $T: G' \to U(H)$.

Proof. Let f and h be in H, their scalar product is given by the standard formula

$$(1) (f,h) := \int_G \bar{h}(g)f(g)\mu(dg),$$

where f and $h: G \to C$, \bar{h} denotes the complex conjugated function h. There exists the regular representation

(2) $\mathsf{T}: G' \to U(H)$

defined by the following formula:

(3)
$$T_z f(g) := [\rho(z,g)]^{1/2} f(z^{-1}g),$$

where

(4)
$$\rho(z,g) = \mu_z(dg)/\mu(dg), \ \mu_z(S) := \mu(z^{-1}S)$$

for each $S \in Bf(G)$, $z \in G'$. For each fixed z the quasi-invariance factor $\rho(z,g)$ is continuous by g, hence $T_z f(g)$ is measurable, if f(g) is measurable (relative to $Af(G, \mu)$ and Bf(C)). Therefore,

(5)
$$(\mathsf{T}_{z}f(g),\mathsf{T}_{z}h(g)) = \int_{G} \bar{h}(z^{-1}g)f(z^{-1}g)\rho(z,g)\mu(dg) = (f,h),$$

consequently, T_x is the unitary operator for each $z \in G'$. From

(6)
$$\rho(z'z,g) = \rho(z,(z')^{-1}g)\rho(z',g) = [\mu_{z'z}(dg)/\mu_{z'}(dg)][\mu_{z'}(dg)/\mu(dg)]$$

it follows that

(7)
$$T_{x'}T_x = T_{x'x}$$
, $T_{id} = I$ and $T_{x^{-1}} = T_x^{-1}$,

where I is the unit operator on H.

The embedding of T_eG' into T_eG is the compact operator. The measure μ on G is induced by the measure on $c_0(\omega_0, \mathbf{K})$, where ω_0 is the first countable ordinal. In view of Theorems 3.12 and 3.28 [13] for each $\delta > 0$ and $\{f_1, ..., f_n\} \subset H$ there exists a compact subset B in G such that

$$(8) \sum_{i=1}^n \int_{G\setminus B} |f_i(g)|^2 \mu(dg) < \delta^2.$$

Therefore, there exists an open neighbourhood W' of e in G' and an open neighbourhood S of e in G such that $\rho(z,g)$ is continuous and bounded on $W' \times W' \circ S$, where $S \subset W' \circ S \subset G$. In view of Formulas (5-8), Theorems 2.3 and 2.5 and the Hölder inequality we have

$$\lim_{j \to \infty} \sum_{i=1}^{n} \| (\mathsf{T}_{x_{j}} - I) f_{i} \|_{H} = 0$$

for each sequence $\{z_j : j \in \mathbb{N}\}$ converging to e in G'. Indeed, for each v > 0 and a continuous function $f : G \to \mathbb{C}$ with $||f||_H = 1$ there is an open

neighbourhood V of *id* in G' (in the topology of G'), such that $|\rho(z,g)-1| < v$ for each $z \in V$ and each $g \in F$ for some open F in G, $id \in F$ with

$$\mu_z^f(G \setminus F) < v$$
 for each $z \in V$, where $\mu^f(dg) := |f(g)| \mu(dg)$

and $f \in \{f_1, ..., f_n\}$, $n \in \mathbb{N}$. At first this can be done analogously for the corresponding Banach space from which μ was induced.

In H continuous functions f(g) are dense, hence for each 0 < v < 1 there exists V" such that

$$\int_{G} |f(g) - f(zg)(\rho(z,g))^{1/2}|^{2} \mu(dg) < 4v$$

for each finite family $\{f_j\}$ with $||f_j||_H = 1$ and $z \in V' = V \cap V''$, where V'' is an open neighbourhood of *id* in G' such that $||f(g) - f(zg)||_H < v$ for each $z \in V''$, consequently T is strongly continuous (that is, T is continuous relative to the strong topology on U(H) induced from $L(H \to H)$, see its definition in [8]).

Moreover, T is injective, since for each $g \neq id$ there is $f \in C^0(G, \mathbb{C}) \cap H$, such that f(id) = 0, f(g) = 1, and $||f||_H > 0$, so $T_f \neq I$.

Note. In general T is not continuous relative to the norm topology on U(H), since for each $z \neq id \in G'$ and each 1/2 > v > 0 there is $f \in H$ with $||f||_{H} = 1$, such that $||f - T_{z}f||_{H} > v$, when supp(f) is sufficiently small with $(z \circ supp(f)) \cap supp(f) = \emptyset$.

3.2. Theorem. Let G be a loop group with a real probability quasiinvariant measure μ relative to a dense subgroup G' as in Theorem 2.5. Then μ may be chosen such that the associated regular unitary representation (see §3.1) of G' is irreducible.

Proof. Let ν on $c_0(\omega_0, \mathbf{K})$ be of the same type as in §3.23 or §3.30 [13] or it is given by Formulas I.3.6.(13-20). For example, ν is generated by a weak distribution such that

(1)
$$\nu_j(dx^j) := c_j exp(-|x^j/\xi^j|^{\gamma}) v(dx^j),$$

where $c_j > 0$, $\nu_j(\mathbf{K}) = 1$, v is the Haar non-negative measure on \mathbf{K} ,

$$(2) \lim_{j\to\infty}\xi^j=0,$$

 $0 \neq \xi^j \in \mathbf{K}, \gamma > 0$ is fixed with

(3)
$$\sum_{j=1}^{\infty} |\xi^j|^{-\gamma} p^{-k(i_j,m_j)} < \infty$$

(see about k(i,m) in §I.3.5). Let a ν -measurable function $f: c_0(\omega_0, \mathbf{K}) \to \mathbf{C}$ be such that $\nu(\{x \in c_0(\omega_0, \mathbf{K}) : f(x+y) \neq f(x)\} = 0$ for each $y \in sp_{\mathbf{K}}(e_j : j \in \mathbf{N}) =: X_o$ with $f \in L^1(c_0(\omega_0, \mathbf{K}), \nu, \mathbf{C})$. Let also $P_k: c_0(\omega_0, \mathbf{K}) \to L(k)$ be projectors such that $P_k(x) = x_k$ for each $x = (\sum_{j \in \mathbf{N}} x^j e_j)$, where $x_k := \sum_{j=1}^k x^j e_j$ and $L(k) := sp_{\mathbf{K}}(e_1, ..., e_k)$. Then analogously to the proof of Proposition II.3.1 [4] in view of Fubini theorem there exists a sequence of cylindrical functions

(4)
$$f_k(x) = f_k(x_k) = \int_{c_0(\omega_0, \mathbf{K}) \ominus L(k)} f(P_k x + (I - P_k) y) \nu_{I - P_k}(dy)$$

which converges to f in $L^1(c_0(\omega_0, \mathbf{K}), \nu, \mathbf{C})$, where $\nu = \nu_{L(k)} \otimes \nu_{I-P_k}, \nu_{I-P_k}$ is the measure on $c_0(\omega_0, \mathbf{K}) \ominus L(k)$. Each cylindrical function f_k is ν -almost everywhere constant on $c_0(\omega_0, \mathbf{K})$, since $L(k) \subset X_o$ for each $k \in \mathbf{N}$, consequently, f is ν -almost everywhere constant on $c_0(\omega_0, \mathbf{K})$. Let Υ be the local diffeomorphism from Formula 2.5.(1). In view of Theorems 5.13 and 5.16 [16] these Banach spaces are topologically K-linearly isomorphic with $c_0(\omega_0, \mathbf{K})$. From the construction of G' and μ with the help of Υ and ν as in §2.5 it follows that if a function $f \in L^1(G, \mu, \mathbf{C})$ satisfies the following condition $f^h(g) = f(g) \pmod{\mu}$ by $g \in G$ for each $h \in G'$, then $f(x) = const \pmod{\mu}$, where $f^h(g) := f(hg), g \in G$.

Let $f(g) = ch_U(g)$ be the characteristic function of a subset $U, U \subset G$, $U \in Af(G, \mu)$, then $f(hg) = 1 \Leftrightarrow g \in h^{-1}U$. If $f^h(g) = f(g)$ is true by $g \in G$ μ -almost everywhere, then

(5)
$$\mu(\{g \in G : f^h(g) \neq f(g)\}) = 0$$
,

that is $\mu((h^{-1}U) \triangle U) = 0$, consequently, the measure μ satisfies the condition (P) from §VIII.19.5 [8], where $A \triangle B := (A \setminus B) \cup (B \setminus A)$ for each $A, B \subset G$. For each subset $E \subset G$ the outer measure $\mu^*(E) \leq 1$, since $\mu(G) = 1$ and μ is non-negative [2], consequently, there exists $F \in Bf(G)$ such that $F \supset E$ and $\mu(F) = \mu^*(E)$. This F may be interpreted as the least upper bound in Bf(G) relative to the latter equality. In view of Proposition VIII.19.5 [8] the measure μ is ergodic, that is for each $U \in Af(G, \mu)$ and $F \in Af(G, \mu)$ with $\mu(U) \times \mu(F) \neq 0$ there exists $h \in G'$ such that $\mu((h \circ E) \cap F) \neq 0$.

From Theorem I.1.2 [4] it follows that (G, Bf(G) is a Radon space, since G is separable and complete. Therefore, a class of compact subsets approximates from below each measure $|f(g)|\mu(dg)$, where $f \in L^2(G, \mu, \mathbb{C})$. Due to

Egorov Theorem 2.3.7 [7] for each $\epsilon > 0$ and for each sequence $f_n(g)$ converging to f(g) for μ -almost every $g \in G$, when $n \to \infty$, there exists a compact subset K in G such that $\mu(G \setminus K) < \epsilon$ and $f_n(g)$ converges on K uniformly by $g \in K$, when $n \to \infty$. Hence in view of the Stone-Weierstrass Theorem A.8 [8] an algebra V(Q) of finite pointwise products of functions from the following space

(6)
$$sp_{\mathbf{C}}\{\psi(g) := \rho^{1/2}(h,g) : h \in G'\} =: Q$$

is dense in H, since $\rho(e,g) = 1$ for each $g \in G$ and $L_h : G \to G$ are diffeomorphisms of the manifold G, where $L_h(g) := hg$.

For each $m \in \mathbb{N}$ there are locally analytic curves $S(\zeta, \phi_j)$ in G' with analytic restrictions $S(\zeta, \phi_j)|_{B(K,0,1)}$, where j = 1, ..., m and $\zeta \in K$ is a parameter, such that

 $S(0,\phi_i) = e$ and $(\partial S(\zeta,\phi_i)/\partial \zeta)|_{\zeta=0}$ are linearly independent in T_eG'

for j = 1, ..., m, since G' is the infinite-dimensional group, which is complete relative to its own uniformity. In accordance with §2.5 there exists infinitely pseudo-differentiable μ on G (that is, of order l for each $l \in \mathbb{N}$) relative to $S(\zeta, \phi_j)$ for each j. If two real non-negative quasi-invariant relative to G' measures μ and λ on G are equivalent, then the corresponding regular representations T^{μ} and T^{λ} are equivalent, since the mapping

$$f(g) \mapsto (\mu(dg)/\lambda(dg))^{1/2} f(g)$$

establishes an isomorphism of $L^2(G, \mu, \mathbb{C})$ with $L^2(G, \lambda, \mathbb{C})$, where $f \in L^2(G, \mu, \mathbb{C})$. Then the following condition $det(\Psi(g)) = 0$ defines an analytic submanifold G_{Ψ} in G of codimension over K no less than one:

(7)
$$codim_{\mathbf{K}}G_{\Psi} \geq 1$$
,

where $\Psi(g)$ is a matrix function of the variable $g \in G$ with matrix elements

(8)
$$\Psi_{l,j}(g) := PD_c(l, \rho^{1/2}(S(\zeta, \phi_j), g))$$

for $l \ge 1$. If $f \in H$ is such that

(9)
$$(f(g), \rho^{1/2}(\phi, g))_H = 0$$

for each $\phi \in G' \cap W$, then

(10)
$$PD_{c}(l, (f(g), \rho^{1/2}(S(\zeta, \phi_{j}), g))_{H}) = 0.$$

But V(Q) is dense in H and in view of Formulas (6-10) this means that f = 0, since for each m there are $S(\zeta, \phi_j) \in G' \cap W$ such that $det\Psi(g) \neq 0$ μ -almost everywhere on G. If $||f||_H > 0$, then $\mu(supp(f)) > 0$, consequently, $\mu((G'supp(f)) \cap W) = 1$, since G'U = G for each open U in G and for each $\epsilon > 0$ there exists an open U such that $U \supset supp(f)$ and $\mu(U \setminus supp(f)) < \epsilon$.

Therefore, Q is dense in H. This means that the unit vector f_0 is cyclic, where $f_0 \in H$ and $f_0(g) = 1$ for each $g \in G$. The group G is Abelian, hence there exists a unitary operator $U: H \to H$ such that

(11)
$$U^{-1}T_h U = F_h$$

are operators of multiplication on functions $F_h \in L^{\infty}(G, \mu, \mathbb{C})$ for each $h \in G'$, where

(12)
$$F_h(g) = exp(2\pi i f_h(g)),$$

 $g \in G, f_h \in L^0(G, \mu, \mathbf{R}), L^0(G, \mu, \mathbf{R})$ is a Frechét space of classes of equivalent μ -measurable functions $f : G \to \mathbf{R}$, which is supplied with a metric

(13)
$$d(f,v) := \int_{G} \min(1, |f(g) - v(g)|) \mu(dg),$$

 $i = (-1)^{1/2}$ (see §IV.8 and Theorem X.2.1 and Theorem X.4.2 and Segal Theorem in §X.9 [5]). The following set $(cl \ sp_{\mathbb{C}}\{F_h : h \in G'\})$ is not contained in any ideal of the form $\{F : \ supp(F) \subset G \setminus A\}$ with $A \in Af(G, \mu)$ and $\mu(A) > 0$, since $|F_h(g)| = 1$ for each $(h,g) \in G' \times G$, where cl(E) is taken in $L^{\infty}(G, \mu, \mathbb{C})$ for its subset E. Then $\{F_h : h \in G'\}$ is not contained in any set

$$\{F = exp(2\pi i f): f \in L^0(G, \mu, \mathbb{C}), supp(f) \subset G \setminus A\}$$

with $A \in Af(G, \mu)$ and $\mu(A) > 0$, since μ is ergodic relative to G'. From the construction of μ (see Formulas (1-3) and I.3.6.(13-17,21-24)) it follows that for each $f_{1,j}$ and $f_{2,j} \in H$, j = 1, ..., n, $n \in \mathbb{N}$ and each $\epsilon > 0$ there exists $h \in G'$ such that

$$|(\mathsf{T}_h f_{1,j}, f_{2,j})_H| \leq \epsilon |(f_{1,j}, f_{2,j})_H|,$$

when $|(f_{1,j}, f_{2,j})_H| > 0$, hence

$$|(F_h U^{-1} f_{1,j}, U^{-1} f_{2,j})_H| \le \epsilon |(U^{-1} f_{1,j}, U^{-1} f_{2,j})_H| = \epsilon |(f_{1,j}, f_{2,j})_H|,$$

since G is the Radon space by Theorerm I.1.2 [4] and G is not locally compact. Therefore, for each $\tilde{f}_{1,j}$ and $\tilde{f}_{2,j} \in H$, j = 1, ..., n, $n \in \mathbb{N}$ and $\epsilon > 0$ there exists $h \in G'$ for which $|(F_h \tilde{f}_{1,j}, \tilde{f}_{2,j})_H| \leq \epsilon |(\tilde{f}_{1,j}, \tilde{f}_{2,j})_H|$ for each j = 1, ..., n, when $|(\tilde{f}_{1,j}, \tilde{f}_{2,j})_H| > 0$, since UH = H. This means that there is not any finite-dimensional G'-invariant subspace H' in H, that is, $F_h H' \subset H'$ for each $h \in G'$.

We suppose that λ is a probability Radon measure on G' such that λ has not any atoms and $supp(\lambda) = G'$. In view of the strong continuity of the regular representation there exists the S. Bochner integral $\int_G T_h f(g)\mu(dg)$ for each $f \in H$, which implies its existence in the weak (B. Pettis) sence. The measures μ and λ are non-negative and bounded, hence $H \subset L^1(G, \mu, \mathbb{C})$ and $L^2(G', \lambda, \mathbb{C}) \subset L^1(G', \lambda, \mathbb{C})$ due to the Cauchy inequality. Therefore, we can apply below Fubini theorem (see §II.16.3 [8]). Let $f \in H$, then there exists a countable orthonormal base $\{f^j : j \in \mathbb{N}\}$ in $H \ominus \mathbb{C}f$. Then for each $n \in \mathbb{N}$ the following set

$$B_n := \{q \in L^2(G', \lambda, \mathbf{C}) : (f^j, f)_H = \int_{G'} q(h)(f^j, \mathsf{T}_h f_0)_H \lambda(dh) \text{ for } j = 0, ..., n\}$$

is non-empty, since the unit vector f_0 is cyclic, where $f^0 := f$. There exists $\infty > R > ||f||_H$ such that $B_n \cap B^R =: B_n^R$ is non-empty and weakly compact for each $n \in \mathbb{N}$, since B^R is weakly compact, where

$$B^{R} := \{q \in L^{2}(G', \lambda, \mathbf{C}) : ||q|| \leq R\}$$

(see the Alaoglu-Bourbaki theorem in §(9.3.3) [15]). Therefore, B_n^R is a centered system of closed subsets of B^R , that is,

$$\bigcap_{n=1}^{m} B_n^R \neq \emptyset \text{ for each } m \in \mathbb{N},$$

hence it has a non-empty intersection, consequently, there exists $q \in L^2(G', \lambda, \mathbb{C})$ such that

(14)
$$f(g) = \int_{G'} q(h) \mathsf{T}_h f_0(g) \lambda(dh)$$

for μ -almost each $g \in G$. If $F \in L^{\infty}(G, \mu, \mathbb{C})$, f_1 and $f_2 \in H$, then there exist q_1 and $q_2 \in L^2(G', \lambda, \mathbb{C})$ satisfying equation (14). Therefore,

$$(15) (f_1, Ff_2)_H = \int_G \int_{G'} \int_{G'} \bar{q}_1(h_1) q_2(h_2) F(g) \rho_{\mu}^{1/2}(h_1, g) \rho_{\mu}^{1/2}(h_2, g) \lambda(dh_1) \lambda(dh_2) \mu(dg)$$

Let

(16)
$$\xi(h) := \int_G \int_{G'} \int_{G'} \bar{q}_1(h_1) q_2(h_2) \rho_{\mu}^{1/2}(h_1, g) \rho_{\mu}^{1/2}(hh_2, g) \lambda(dh_1) \lambda(dh_2) \mu(dg).$$

Then there exists $\beta(h) \in L^2(G', \lambda, \mathbb{C})$ such that

(17)
$$\int_{G'} \beta(h)\xi(h)\lambda(dh) = (f_1, Ff_2)_H =: c.$$

To prove this we consider two cases. If c = 0 it is sufficient to take β orthogonal to ξ in $L^2(G', \lambda, \mathbb{C})$. Each function $q \in L^2(G', \lambda, \mathbb{C})$ can be written as $q = q^1 - q^2 + iq^3 - iq^4$, where $q^j(h) \ge 0$ for each $h \in G'$ and j = 1, ..., 4, hence we obtain the corresponding decomposition for ξ :

(18)
$$\xi = \sum_{j,k} b^{j,k} \xi^{j,k}$$
,

where $\xi^{j,k}$ corresponds to a pair (q_1^j, q_2^k) , where $b^{j,k} \in \{1, -1, i, -i\}$. If $c \neq 0$ we can choose (j_0, k_0) for which $\xi^{j_0,k_0} \neq 0$ and

(19) β is orthogonal to others $\xi^{j,k}$ with $(j,k) \neq (j_0,k_0)$.

Otherwise, if $\xi^{j,k} = 0$ for each (j,k), then $q_l^j(h) = 0$ for each (l,j) and λ -almost every $h \in G'$, since due to Formula (16):

$$\xi(0) = \int_{G} \mu(dg) (\int_{G'} \bar{q}_1(h_1) \rho_{\mu}^{1/2}(h_1, g) \lambda(dh_1)) (\int_{G'} q_2(h_2) \rho_{\mu}^{1/2}(h_2, g) \lambda(dh_2)) = 0$$

and this implies c = 0, which is the contradiction with the assumption $c \neq 0$. Hence due to Formula (18) there exists β satisfying Formula (17) and Condition (19).

Since $L^2(G', \lambda, \mathbb{C})$ is infinite-dimensional, then for each finite families

$$\{a_1,...,a_m\} \subset L^{\infty}(G,\mu,\mathbf{C}) \text{ and } \{f_1,...,f_m\} \subset H$$

there exists $\beta(h) \in L^2(G', \lambda, \mathbb{C})$, such that

$$eta$$
 is orthogonal to $\int_G ar{f}_{m{s}}(g) [f_j(h^{-1}g)(
ho_\mu(h,g))^{1/2} - f_j(g)] \mu(dg)$

for each s, j = 1, ..., m. Hence each operator of multiplication on $a_j(g)$ belongs to A_G , since due to Formula (17) and Condition (19) there exists $\beta(h)$ such that

$$(f_{\bullet}, a_j f_l) = \int_G \int_{G'} \bar{f}_{\bullet}(g) \beta(h) (\rho_{\mu}(h, g))^{1/2} f_l(h^{-1}g) \lambda(dh) \mu(dg)$$
$$= \int_G \int_{G'} \bar{f}_{\bullet}(g) \beta(h) (\mathsf{T}_h f_l(g)) \lambda(dh) \mu(dg) \text{ and}$$
$$\int_G \bar{f}_{\bullet}(g) a_j(g) f_l(g) \mu(dg) = \int_G \int_{G'} \bar{f}_{\bullet}(g) \beta(h) f_l(g) \lambda(dh) \mu(dg) = (f_{\bullet}, a_j f_l) h_{\bullet}(g) \lambda(dh) \mu(dg)$$

Hence A_G " contains subalgebra of all operators of multiplication on functions from $L^{\infty}(G, \mu, \mathbb{C})$.

Let us remind the following. A Banach bundle B over a Hausdorff space G' is a bundle $\langle B, \pi \rangle$ over G', together with operations and norms making each fiber B_h $(h \in G')$ into a Banach space such that

 $BB(i) x \mapsto ||x||$ is continuous from B into R;

BB(ii) the operation + is continuous as a function from

 $\{(x, y) \in B \times B : \pi(x) = \pi(y)\}$ into B;

BB(iii) for each $\lambda \in \mathbb{C}$ the map $x \mapsto \lambda x$ is continuous from B into B;

BB(iv) if $h \in G'$ and $\{x_i\}$ is any net of elements of B such that $||x_i|| \to 0$

and $\pi(x_i) \to h$ in G', then $x_i \to 0_h$ in B,

where $\pi: B \to G'$ is a bundle projection, $B_h := \pi^{-1}(h)$ is the fiber over h (see §II.13.4 [8]). If G' is a Hausdorff topological group, then a Banach algebraic bundle over G' is a Banach bundle $B = \langle B, \pi \rangle$ over G' together with a binary operation \bullet on B satisfying the following Conditions AB(i-v):

$$AB(i) \ \pi(b \bullet c) = \pi(b)\pi(c) \text{ for } b \text{ and } c \in B;$$

AB(ii) for each x and $y \in G'$ the product • is bilinear from $B_x \times B_y$ into B_{xy} ;

AB(iii) the product • on B is associative;

$$AB(iv) ||b \bullet c|| \leq ||b|| \times ||c||$$
 for each $b, c \in B$;

AB(v) the map • is continuous from $B \times B$ into B

(see §VIII.2.2 [8]). With G' and a Banach algebra A the trivial Banach bundle $B = A \times G'$ is associative, in particular let A = C (see §VIII.2.7 [8]).

The regular representation T of G' gives rise to a canonical regular $L^2(G, \mu, \mathbb{C})$ -projection-valued measure \overline{P} :

(20)
$$\overline{P}(W)f := Ch_W f$$
,

where $f \in L^2(G, \mu, \mathbb{C})$, $W \in Bf(G)$, Ch_W is the characteristic function of W. Therefore,

$$(21) \mathsf{T}_h \bar{P}(W) = \bar{P}(h \circ W) \mathsf{T}_h$$

for each $h \in G'$ and $W \in Bf(G)$, since $\rho(h, h^{-1} \circ g)\rho(h, g) = 1 = \rho(e, g)$ for each $(h, g) \in G' \times G$,

$$Ch_W(h^{-1} \circ g) = Ch_{hoW}(g)$$
 and

(22)
$$\mathsf{T}_h(\bar{P}(W)f(g)) = \rho(h^{-1},g)^{1/2}\bar{P}(h\circ W)f(h^{-1}\circ g).$$

Thus $\langle T, \overline{P} \rangle$ is a system of imprimitivity for G' over G, which is denoted T^{μ} , that is,

SI(i) T is a unitary representation of G';

SI(ii) \overline{P} is a regular $L^2(G,\mu,\mathbf{C})$ -projection-valued Borel measure on G and

$$SI(iii)$$
 $T_h \bar{P}(W) = \bar{P}(h \circ W) T_h$ for all $h \in G'$ and $W \in Bf(G)$.

For each $F \in L^{\infty}(G, \mu, \mathbb{C})$ let α_F be the operator in $L(L^2(G, \mu, \mathbb{C}))$ consisting of multiplication by F:

$$\alpha_F(f) = Ff \text{ for each } f \in L^2(G, \mu, \mathbf{C}),$$

where $L(Z) := L(Z \to Z)$ (see §3.1). The map $F \mapsto \alpha_F$ is an isometric *isomorphism of $L^{\infty}(G, \mu, \mathbb{C})$ into $L(L^2(G, \mu, \mathbb{C}))$ (see §VIII.19.2[8]). Therefore, using the approach of this particular case given above we get, that Propositions VIII.19.2,5[8] are applicable in our situation.

If \bar{p} is a projection onto a closed H^{μ}-stable subspace of $L^2(G, \mu, C)$, then due to Formulas (20-22) \bar{p} commutes with all $\bar{P}(W)$. Hence \bar{p} commutes with α_F for each $F \in L^{\infty}(G, \mu, C)$, so by §VIII.19.2 [8] $\bar{p} = \bar{P}(V)$, where $V \in Bf(G)$. Also \bar{p} commutes with T_h for each $h \in G'$, consequently, $(h \circ V) \setminus V$ and $(h^{-1} \circ V) \setminus V$ are μ -null for each $h \in G'$, hence $\mu((h \circ V) \Delta V) = 0$ for all $h \in G'$. In view of the ergodicity of μ and Proposition VIII.19.5 [8] either $\mu(V) = 0$ or $\mu(G \setminus V) = 0$, hence either $\bar{p} = 0$ or $\bar{p} = I$.

3.3. Theorem. On the loop group $G = L_{\xi}(M, N)$ from §2.1 there exists a family of continuous characters $\{\Xi\}$, which separate points of G.

Proof. In view of Lemma I.2.17 it is sufficient to consider the case of the submanifold \tilde{M} having no more than two charts. Then \tilde{M} is clopen in $c_0(\alpha, \tilde{K})$, where $\tilde{M} = \tilde{M} \setminus \{s_0\}$.

Let at first $\dim_{\mathbf{K}} M < \aleph_0$. The Haar measure $\lambda_{\alpha} : Bf(\mathbf{K}^{\alpha}) \to \mathbf{Q}_{\mathbf{q}}$ with a prime number $q \neq p$ (see the Monna-Springer theorem in §8.4 [16]) induces the measure $\lambda_{\alpha} : Bf(\tilde{M}) \to \mathbf{Q}_{\mathbf{q}}$, analogously for

$$(1) N_J := N \cap sp_{\mathbf{K}} \{ e_j : j \in J \}$$

for each $N \ni n \ge \alpha$ and $h \in L(N_J, \lambda_n, Q_q)$ there corresponds a measure $\nu_{J,h}$ on $Bf(N_J)$ for which

(2)
$$\nu_{J,h}(dy) = h(y)\lambda_n(dy)$$

and to $\nu_{J,h}$ there corresponds a differential form

(3)
$$w_{J,h}(y) = h(y)dy^{j_1} \wedge \ldots \wedge dy^{j_n}$$
,

where $y \in N_J$ and $J := \{j_1, ..., j_n\}$. Hence there exists its pull back $(\pi_J \tilde{f})^* w$, where $\pi_J : c_0(\beta, \mathbf{K}) \to sp_{\mathbf{K}}\{e_j : j \in J\}$ is the projection for each $J \subset \beta$, $f \in C_0^0(\xi, \tilde{M} \to N), \ \tilde{f} = P(l, s+1)f, \ l = [t] + 1$ (see §I.2.11 and Corollary I.2.16).

As usually, for a mapping $h: M \to N_J$ of class C(1) and a tensor T of the type (0, k) with components $T_{i_1,...,i_k}$ defined for N_J we have:

$$(4) \ (h^*T)_{l_1,\ldots,l_k}(x^1,\ldots,x^{\alpha}) = [\sum_{i_1,\ldots,i_k} T_{i_1,\ldots,i_k}(\partial y^{i_1}/\partial x^{l_1})\dots(\partial y^{i_k}/\partial x^{l_k})](y(x^1,\ldots,x^{\alpha}))$$

such that h^*T is defined for \tilde{M} , where $(x^1, ..., x^{\alpha})$ are coordinates in \tilde{M} induced from K^{α} and $(y^1, ..., y^n) = y$ are coordinates in N_J induced from K^n , $y^j = y^j(x^1, ..., x^{\alpha}) = h^j(x^1, ..., x^{\alpha})$, x^j and $y^j \in K$.

Let now $dim_{\mathbf{K}}M = dim_{\mathbf{K}}N = \aleph_0$. Let λ be equivalent with a probability $\mathbf{Q}_{\mathbf{q}}$ -valued measure either on the entire $T_{\mathbf{y}}N$ or on its Banach infinitedimensional over K subspace P (see Formulas I.3.6.(13-20)). Each such λ induces a family of probability measures ν on Bf(N) or its cylinder subalgebra induced by the projection of T_yN onto P, which may differ by their supports.

Let $T_y N =: L$ be an infinite-dimensional separable Banach space over K, so there exists a topological vector space $L^N := \prod_{j=1}^{\infty} L_j$, where $L_j = L$ for each $j \in \mathbb{N}$ [15]. Consider a subspace Λ^{∞} of a space of continuous ∞ -multilinear functionals $\eta : L^N \to K$ such that

$$\eta(x+y) = \eta(x) + \eta(y), \ \eta(\sigma x) = (-1)^{|\sigma|} \eta(x) \text{ and } \eta(x) = \lambda \eta(z)$$

for each $x, y \in L^{\mathbb{N}}$, $\sigma \in S_{\infty}$ and $\lambda \in K$, where

$$x = \{x^j: x^j \in \mathsf{L}, j \in \mathsf{N}\} \in \mathsf{L}^{\mathsf{N}}, \ z^j = x^j \text{ for each } j \neq k_0 \text{ and } \lambda z^{k_0} = x^{k_0}$$

 S_{∞} is a group of all bijections $\sigma : \mathbb{N} \to \mathbb{N}$ such that $card\{j : \sigma(j) \neq j\} < \aleph_0$, $|\sigma| = 1$ for $\sigma = \sigma_1 \dots \sigma_n$ with odd $n \in \mathbb{N}$ and pairwise transpositions $\sigma_l \neq I$, that is,

$$\sigma_l(j_1) = j_2, \ \sigma_l(j_2) = j_1 \text{ and } \sigma_l|_{N \setminus \{j_1, j_2\}} = l$$

for the corresponding $j_1 \neq j_2$, $|\sigma| = 2$ for even n or $\sigma = I$. Then Λ^{∞} (or Λ^j) induces a vector bundle $\Lambda^{\infty}N$ (or $\Lambda^j N$) on a manifold N of ∞ -multilinear skew-symmetric mappings over F(N) of $\Psi(N)^{\infty}$ (or $\Psi(N)^j$ respectively) into F(N), where $\Psi(N)$ is a set of differentiable vector fields on N and F(N) is an algebra of K-valued C^1 -functions on N. This $\Lambda^{\infty}N$ is the vector bundle of differential ∞ -forms on N. Then there exist a subfamily $\Lambda^{\infty}_G N$ of differential forms w on N induced by the family $\{\nu\}$.

Let $\Lambda^j N$ be the space of differential *j*-forms *w* on *N* such that $w = \sum_{|J|=j} w_J dx^J$, where $dx^J = dx^{j_1} \wedge ... \wedge dx^{j_n}$ for a multi-index $J = (j_1, ..., j_n)$, $n \in \mathbb{N}, |J| = j_1 + ... + j_n, 0 \leq j_i \in \mathbb{Z}, w_J : N \to \mathbb{K}$ are C^{∞} -mappings, $B^k N := \bigoplus_{j=0}^k \Lambda^j N$. Here the manifold $B^k N$ is considered to be of classes of smoothness C^{∞} .

Let $\bar{B}^{\infty}N := (\bigoplus_{0 \le j \in \mathbb{Z}} \Lambda^j N) \oplus \Lambda_G^{\infty}N$ for $\dim_{\mathbb{K}}N = \infty$ and $\bar{B}^k N = \bigoplus_{j=0}^k \Lambda^j N$ for each $k \in \mathbb{N}$. We choose $w \in \bar{B}^k N$, where $k = \min(\dim_{\mathbb{K}}N, \dim_{\mathbb{K}}M)$. There exists its pull back $\tilde{f}^*_{\kappa}w$ for each $f \in C_0(\xi, M \to N)$ (see for comparison the classical case in §§1.3.10, 1.4.8 and 1.4.15 in [11] and the non-Archimedean case in [3]), where

$$\tilde{f}_{\kappa} := \sum_{a=1}^{\infty} \kappa_a \{ A_a(f|_{M_a}) - A_{a-1}(f|_{M_{a-1}}) \},\$$

 $|\kappa_a| \times ||A_a|| \le 1$ and $\kappa_a \in K$ for each $a \in N$, $A_0 := 0$ (see Formula I.3.6.(1)). This series is correctly defined and converges due to Lemma I.2.4.2 and Formulas I.2.4.3.b.(1-4). When $f \neq 0$ there exists $\kappa := \{\kappa_a : a \in N\}$ such that $\tilde{f}_{\kappa} \neq 0$. Let $E_j : S_j \to P$ be a family of continuous linear operators from Banach spaces S_j into a Banach space P, then there exists a continuous linear operator

$$E: c_0(\{S_j: j \in \mathbb{N}\}) \to P ext{ such that}$$
 $Ex = \sum_{j=1}^{\infty} E_j x^j,$

where $x = \{x^j : x^j \in S_j, j \in \mathbb{N}\} \in c_0(\{S_j : j \in \mathbb{N}\})$. We take $w \in C_0(\infty, \tilde{M} \to B^k N)$, when $\dim_{\mathbb{K}} M \leq \dim_{\mathbb{K}} N$. When $\aleph_0 > \dim_{\mathbb{K}} M > \dim_{\mathbb{K}} N$ we take $w \in C_0(\infty, \tilde{M} \to B^k(N^m))$, where $N^m = N_1 \times \ldots \times N_m$ with $N_j = N$ for each $j = 1, \ldots, m$ such that $\mathbb{N} \ni m \geq \dim_{\mathbb{K}} M/\dim_{\mathbb{K}} N$. A mapping $F \in C_0(t, \tilde{M} \to N)$ generates a mapping $F^{\otimes m} := (F, \ldots, F) : \tilde{M} \to N^m$ and the pull back $(F^{\otimes m})^*$ which is also denoted simply by F^* , where F^*w is a $C_0(t-1)$ -mapping, when $1 \leq t \in \mathbb{R}$, (F, \ldots, F) is an *m*-tuplet. When $\aleph_0 = \dim_{\mathbb{K}} M > \dim_{\mathbb{K}} N$ we take instead of N or N^m a submanifold \tilde{N} of $N^\infty := \bigotimes_{j=1}^\infty N_j$ modelled on $c_0(\{S_j : j \in \mathbb{N}\})$, where $S_j = T_y N$ for each j, that is, in accordance with our notation $\tilde{N} := c_0(N_j : j \in \mathbb{N})$. Therefore, there exists a pull back $\tilde{f}^* w$ for ν and w either on N^* or on \tilde{N} instead of N in the corresponding cases of $\dim_{\mathbb{K}} M$ and $\dim_{\mathbb{K}} N$

Moreover, to $(\pi_J \tilde{f}_{\kappa})^* w$ a Q_q -valued measure μ_w on \tilde{M} corresponds, since ν is the Q_q -valued measure. When $\dim_K M < \aleph_0$ we take \tilde{f} instead of \tilde{f}_{κ} . Then there exists a Q_q -valued functional:

(5)
$$F_{J,w,\kappa}(f) := \int_{\tilde{M}} (\pi_J \tilde{f}_\kappa)^* w = \int_{\tilde{M}} (\pi_J \tilde{f}_\kappa \circ \psi)^* w$$

for each $f \in C_0^0(\xi, (\tilde{M}, s_0) \to (\bar{N}, y_0))$ and $\psi \in G_0(\xi, \bar{\tilde{M}})$, consequently, $F_{J,\bar{w},\kappa}$ is continuous and constant on each class $\langle f \rangle_{K,\xi}$, where either $\tilde{N} = N$ or $\bar{N} = N^m$ or $\bar{N} = \tilde{N}$ in the corresponding cases. If h is not locally constant then h^* is not zero operator, hence the family $\{F_{J,w,\kappa} : J, w, \kappa\}$ separates points in the loop semigroup, where κ is omitted in the case $\dim_K M < \aleph_0$.

Let $\tilde{\Xi}_y : \mathbf{Q}_q \to S^1$ be a continuous character of \mathbf{Q}_q as the additive group (see §25.1 [10]), where $S^1 := \{z \in \mathbf{C} : |z| = 1\}$ is the unit circle, x and

$$y \in \mathbf{Q}_{\mathbf{q}},$$

(6)
$$\tilde{\Xi}_{y}(x) = exp[2\pi i(\sum_{n=-\infty}^{\infty}(\sum_{s=n}^{\infty}y_{-s}q^{(n-s-1)}))],$$

 $x = \sum_{n=-\infty}^{\infty} x_n q^n$, $x_n \in \{0, 1, ..., q-1\}$. For a given x and y this sum in [*] is finite, where y is fixed. In view of Formulas (1-6)

$$\Xi(g) := \tilde{\Xi}(\begin{pmatrix} + \\ - \end{pmatrix} F_{J, w, \kappa}(f))$$

is a continuous character on $L_{\xi}(M, N) = L_{\xi}(\tilde{M}, N)$, where $F_{J,w,\kappa}(f)$ [or $-F_{J,w,\kappa}(f)$] corresponds to g [or -g respectively], for g being the image of $< f >_{K,\xi}$ relative to the embedding

$$\gamma: \Omega_{\xi}(M,N) \hookrightarrow L_{\xi}(M,N)$$

(see also §2.2).

3.4. Note. The loop groups and semigroups were considered above for analytic manifolds with disjoint clopen charts. Each metrizable manifold M on a Banach space X over a local field K is a disjoint union of clopen subsets diffeomorphic with balls in X, since the value group $\Gamma_{\rm K} := \{|x|_{\rm K} : 0 \neq x \in K\}$ is discrete in $(0, \infty)$ (see [14] and Lemma 7.3.6 [6]).

Suppose now that a new atlas At'(M) is with open charts (U'_j, ϕ'_j) such that there are $U_j \cap U'_i \neq \emptyset$ for some $i \neq j$. Using spaces $C_0(\xi, \phi'_j(U'_j) \to Y)$ we can define $C_0(\xi, M \to N)$ correctly only if connecting mappings $\phi_i \circ \phi'_j^{-1}$ on $\phi'_j(U'_j \cap U'_i)$ are of class of smoothness not less than $C_0(\xi)$ for each $i \neq j$ with $U'_j \cap U'_i \neq \emptyset$. Here the atlases At'(M) and At'(N) need not be disjoint. The same condition need to be imposed on $\psi'_i \circ \psi'_j^{-1}$ for each $V'_j \cap V'_i \neq \emptyset$ for a new atlas At'(N) of N with open charts (V'_j, ψ'_j) . This is also necessary for the definition of $G(\xi, M)$. Let $\phi : M \to M'$ be a diffeomorphism for $1 \leq \xi = t$ or $\xi = (t, s)$ with $0 \leq t$ and $1 \leq s$ (a homeomorphism for $0 \leq \xi = t < 1$) of class not less than $C_0(\xi)$ of two manifolds (may be one set with two different atlases), then $G(\xi, M)$ and $G(\xi, M')$ are diffeomorphism (the homeomorphic) topological groups with the diffeomorphism (the homeomorphism respectively)

$$g \mapsto \phi \circ g \circ \phi^{-1},$$

since $G(\xi, M)$ have a Banach manifold structure for $1 \le t$ or $1 \le s$, where $g \in G(\xi, M)$. If $\psi : N \to N'$ is a diffeomorphism (homeomorphism) of class

at least $C_0(\xi)$, then $C_0(\xi, M \to N)$ and $C_0(\xi, M' \to N')$ are diffeomorphic (homeomorphic) due to the following map

$$g \mapsto \psi \circ g \circ \phi^{-1}$$
,

where $g \in C_0(\xi, M \to N)$. If $\{f_n\}$ and $\{g_n\}$ are sequences in $C_0(\xi, (M, s_0) \to (N, y_0))$ converging to f and g respectively, $\{\eta_n\}$ is a sequence in $G_0(\xi, M)$ such that $g_n = f_n \circ \eta_n$ for each $n \in \mathbb{N}$, then

$$\psi \circ f_n \circ \phi^{-1} \circ \phi \circ \eta_n \circ \phi^{-1} = \psi \circ g_n \circ \phi^{-1}.$$

This gives a bijective correspondence between classes $\langle g \rangle_{K,t}$ and $\langle \tilde{g} \rangle_{K,t}$ in $C_0(\xi, (M, s_0) \to (N, y_0))$ and $C_0(\xi, (M', s'_0) \to (N', y'_0))$ respectively, where

$$\tilde{g} = \psi \circ g \circ \phi^{-1} \in C_0(\xi, (M', s_0') \to (N', y_0')),$$

 $s'_0 = \phi(s_0), y'_0 = \psi(y_0)$. Therefore, $\Omega_{\xi}(M, N)$ and $\Omega_{\xi}(M', N')$ are diffeomorphic (homeomorphic respectively) topological semigroups, consequently, $L_{\xi}(M, N)$ and $L_{\xi}(M', N')$ are diffeomorphic (homeomorphic) topological groups due to Theorems I.2.7, I.2.10, 2.3 and Proposition 2.2. This means independence of these semigroups and groups relative to a choice of equivalent atlases of manifolds.

4 Path groups.

4.1. Definition and Note. In view of Equations I.2.9.(1-3) each space N^{ξ} has the additive group structure, when $N = B(Y, 0, R), 0 < R \le \infty$.

Therefore, the factorization by the equivalence relation $K_{\xi} \times id$ produce the monoid of paths $C_0^{\theta}(\xi, \overline{M} \to N)/(K_{\xi} \times id) =: S_{\xi}(M, N)$ in which compositions are defined not for all elements, where $y_1 i dy_2$ if and only if $y_1 = y_2 \in N$. There exists a composition $f_1 f_2 = (g_1 g_2, y)$ if and only if $y_1 = y_2 = y$, where $f_i = (g_i, y_i), g_i \in \Omega_{\xi}(M, N)$ and $y_i \in N^{\xi}, i \in \{1, 2\}$. The latter semigroup has elements e_y such that $f = e_y \circ f = f \circ e_y$ for each f, when their composition is defined, where $y \in N^{\xi}, f = (g, y), g \in \Omega_{\xi}(M, N), e_y = (e, y)$. If N^{ξ} is a monoid, then $S_{\xi}(M, N)$ can be supplied with the structure of a direct product of two monoids. Therefore, $P_{\xi}(M, N) := L_{\xi}(M, N) \times N^{\xi}$ is called the path group. **4.2.** Theorem. On the monoid $G = S_{\xi}(M, N)$ from §4.1, when N = B(Y, 0, R) and N^{ξ} is supplied with the additive group structure, and each $b \in C$ there are probability quasi-invariant and pseudo-differentiable of order b measures μ with values in R and Q_q for each prime number $q \neq p$ relative to a dense submonoid G'.

Proof. In view of Formulas 2.9.(1-3) there is the following isomorphism $S_{\xi}(M, N) = \Omega_{\xi}(M, N) \times N^{\xi}$. Hence it is sufficient to construct $\mu = \mu_1 \times \mu_2$, where μ_2 is a quasi-invariant and pseudo-differentiable measure on N^{ξ} and μ_1 on $\Omega_{\xi}(M, N)$, since μ_1 was constructed in Theorem I.3.6. The desired measure μ_2 on N^{ξ} exists due to Theorems 3.23, 3.27 and 4.3 [13].

4.3. Theorem. On the path group $G = P_{\xi}(M, N)$ from §4.1, when N = B(Y, 0, R) and N^{ξ} is supplied with the additive group structure, and each $b \in C$ there are probability quasi-invariant and pseudo-differentiable of order b measures μ with values in R and Q_q for each prime number $q \neq p$ relative to a dense subgroup G'.

Proof. Since $P_{\xi}(M, N) = L_{\xi}(M, N) \times N^{\xi}$, it is sufficient to construct $\mu = \mu_1 \times \mu_2$, where μ_2 is a quasi-invariant and pseudo-differentiable measure on N^{ξ} and μ_1 on $L_{\xi}(M, N)$, since μ_1 was constructed in Theorem 2.5 and μ_2 in §4.2.

4.4. Remark. Loop and path groups can be defined also for manifolds modelled on locally K-convex spaces.

In general for locally K-convex spaces X and Y a mapping $F: U \to Y$ is called of class C(t) if the partial difference quotient $\Phi^v F$ has a bounded continuious extension $\overline{\Phi}^v F: U \times V^s \times S^s \to Y_{A_p}$ for each $0 \leq v \leq t$ and each derivative $F^{(k)}(x): X^k \to Y$ is a continuous k-linear operator for each $x \in U$ and $0 < k \leq [t]$, where U and V are open neighbourhoods of 0 in X, $U + V \subset U, k \in \mathbb{N}_0, Y_{A_p}$ is a locally A_p -convex space obtained from Y by extension of a scalar field from K to $A_p, s = [v] + sign\{v\}$. If F is of class C(n) for each $n \in \mathbb{N}$ then it is called of class $C(\infty)$.

For C(m)-manifolds M and N modelled on locally K-convex spaces Xand Y with atlases $At(M) = \{(U_i, \phi_i) : i \in \Lambda_M\}$ and $At(N) = \{(V_i, \psi_i) : i \in \Lambda_N\}$ a mapping $F : M \to N$ is called of class C(n) if $F_{i,j}$ are of class C(n)for each i and j, where $F_{i,j} = \psi_i \circ F \circ \phi_j^{-1}$, $\phi_i \circ \phi_j^{-1}$ and $\psi_i \circ \psi_j^{-1}$ are of class C(m), $\infty \ge m \ge n \ge 0$.

Then quite analogously to \S I.2.6 and \S 2.1 loop and path semigroups and groups can be defined. For the construction of quasi-invariant measures in addition there can be used closed subspaces S of separable type over

K in dual spaces to nuclear locally K-convex spaces. From such spaces S quasi-invariant measures can be induced on containing them locally K-convex spaces Z with the help of the standard procedure based on algebras of cylindrical subsets with the subsequent extension onto the Borel σ -field. Then measures on groups can be constructed analogously to the considered above cases. If a group G is non-separable, then a non-zero Borel measure μ may be quasi-invariant relative to a subgroup G' which is not dense in G. Nevertheless, with the help of μ a regular representation of G' associated with μ can be induced.

5 Quasi-invariant measures on O-groups.

5.1. Definition. The space $C_0^0(\xi, (M, s_0) \to (N, y_0))$ is not a semigroup itself, but compositions are defined for the families $\langle f \rangle_{K,\xi}$, that is, relative to the equivalence relation K_{ξ} . Henceforth, let the topology of $\Omega_{\xi}(M, N)$ be defined relative to countable At(M) as in §I.2.5 and §I.2.6. If F is the free Abelian group corresponding to $\Omega_{\xi}(M, N)$ from §2.1, then there exists a set \overline{W} generated by formal finite linear combinations over \mathbb{Z} of elements from $C_0^0(\xi, (M, s_0) \to (N, y_0))$ and a continuous extension \overline{K}_{ξ} of K_{ξ} onto $W_{\xi}(M, N)$ and a subset \overline{B} of \overline{W} generated by elements [f+g]-[f]-[g] such that $W_{\xi}(M, N)/\overline{K}_{\xi}$ is isomorphic with $L_{\xi}(M, N)$, where

$$W_{\xi}(M,N) := \bar{W}/\bar{B},$$

f and $g \in C_0^0(\xi, (M, s_0) \to (N, y_0))$, [f] is an element in \overline{W} corresponding to f, \overline{W} is in a topology inherited from the space $C_0^0(\xi, (M, s_0) \to (N, y_0))^Z$ in the Tychonoff product topology. We call $W_{\xi}(M, N)$ an O-group. Clearly the composition in $C_0^0(\xi, (M, s_0) \to (N, y_0))$ induces the composition in $W_{\xi}(M, N)$. Then $W_{\xi}(M, N)$ is not the algebraic group, but associative compositions are defined for its elements due to the homomorphism χ^* given by Formulas 2.6.2.(5,6), hence $W_{\xi}(M, N)$ is the monoid without the unit element.

Let $\mu_h(A) := \mu(h \circ A)$ for each $A \in Bf(W_{\xi}(M, N))$ and $h \in W_{\xi}(M, N)$, then as in §§I.3.3 and I.3.4 we get the definition of quasi-invariant and pseudodifferentiable measures.

Let now $G' := W_{\xi}^{\{k\}}(M, N)$ be generated by $C_{0,\{k\}}^{0}(\xi, (M, s_0) \to (N, 0))$ as in §I.3.5, then it is the dense O-subgroup in $W_{\xi}(M, N)$, where c > 0 and c' > 0.

5.2. Theorem. Let $G := W_{\xi}(M, N)$ be the O-group as in §5.1 and At(M) be finite. Then there exist quasi-invariant and pseudo-differentiable measures μ on G with values in $[0, \infty)$ and in Q_q (for each prime number q such that $q \neq p$) relative to a dense O-subgroup G'.

Proof. In view of the definition of the space $C_0^0(\xi, M \to Y)$ the mapping \tilde{A} given by Formula I.3.6.(3) for At(M) instead of At'(M) is the isomorphism of $T_0C_0^0(\xi, (M, s_0) \to (N, 0))$ onto the Banach subspace of \tilde{Z} for $\xi = (t, s)$, since At(M) is finite and $\phi_j(U_j)$ are bounded in X (see §I.2.4.1). In view of the existence of the mapping $w_{esp}(V)$ given by Formulas I.2.8.(3,4) there exists the local diffeomorphism $\Upsilon : W_e \to V'_0$ induced by \tilde{A} and \tilde{K}_{ξ} , where W_e is a neighbourhood of 0 in $W_{\xi}(M, N)$, V'_0 is a neighbourhood of zero either in the Banach subspace \tilde{H} of $T_0W_{\xi'}(M, Y)$ for $\dim_K M < \infty$ or in the Banach subspace \tilde{H} of $c_0(\{T_0W_{\xi'}(M_a, Y) : a \in N\})$ for $\dim_K M = \aleph_0$.

Let now W'_e be a neighbourhood of 0 in G' such that $W'_e W_e = W_e$. It is possible, since the topology in G and G' is given by the corresponding ultrametrics and there exists W_e with $W_e W_e = W_e$, hence it is sufficient to take $W'_e \subset W_e$. For $g \in W_e$, $v = w_{esp}^{-1}(g)$, $\phi \in W'_e$ the following operator $S_{\phi}(v) := \Upsilon \circ L_{\phi} \circ \Upsilon^{-1}(v) - v$ is defined for each $(\phi, v) \in W'_e \times V'_0$, where $L_{\phi}(g) := \phi \circ g$. Then $S_{\phi}(v) \in V''_0 \subset V'_0$, where V''_0 is an open neighbourhood of the zero section either in the Banach subspace \tilde{H}' of T_eG' for $\dim_K M < \infty$ or in the Banach subspace \tilde{H}' of $c_0(\{T_eG'_a : a \in \mathbb{N}\})$ for $\dim_K M = \aleph_0$, where $G'_a = W^{\{b\}}_{\xi}(M_a, N)$. Moreover, $S_{\phi}(v)$ is the $C(\infty)$ -mapping by ϕ and v. The rest of the proof is quite analogous to that of Theorem I.3.6.

5.3. Note. O-groups can be defined in another topology with the help of $c_0(\{H_j : j \in \mathbb{N}\})$, where $H_j := C_0(\xi; U_j \to Y)$. Then on such O-groups quasi-invariant and pseudo-differentiable measures can be constructed quite analogously.

6 Notation.

K is a local field; $N := \{1, 2, 3, ...\}; N_o := \{0, 1, 2, ...\};$

B(X, x, r) and $B(X, x, r^{-})$ are balls §I.2.2;

 \hat{Q}_m are polynomials §I.2.2;

 $X = c_0(\alpha, \mathbf{K}), Y = c_0(\beta, \mathbf{K}), \{e_i : i \in \alpha\}$ and $\{q_i : i \in \beta\}$ are orthonormal bases in Banach spaces X and Y; M and N are manifolds on X and Y

respectively §I.2.4; $At(M) = \{(U_j, \phi_j) : j \in \Lambda_M\}$ and $AT(N) = \{(V_k, \psi_k) : k \in \Lambda_N\}$ are atlases §I.2.4; $C(t, M \to Y)$ and $C_0(t, M \to Y)$ are spaces, $||f||_{C(t, M \to Y)} = ||f||_t$ and $||f||_{C_0(t, M \to Y)}$ are norms §I.2.4;

 $\rho^{\xi}(f,g)$ and $\rho^{\xi}_{0}(f,g)$ are ultrametrics in $C^{\theta}(\xi, M \to N)$ and $C^{\theta}_{0}(\xi, M \to N)$ respectively, $\xi = t$ or $\xi = (t,s)$, for s > 0 the manifold M is locally compact, for s = 0 the manifold M may be non-locally compact §I.2.4.3;

Hom(M) is a homeomorphism group §1.2.4.4;

 $G(\xi, M)$ and $Diff(\xi, M)$ are diffeomorphism groups §I.2.4.4;

 $M = \overline{M} \setminus \{0\}, \ \overline{M} \hookrightarrow c_0(\omega_0, \mathbf{K}), \ At'(\overline{M}) = \{(\overline{U}_j, \overline{\phi}'_j) : j \in \Lambda'_{\overline{M}}\}, \ s_0 = 0$ and $y_0 = 0$ are marked points of \overline{M} and N respectively §I.2.5;

 $\chi: M \lor M \to M$ is a mapping §I.2.6;

 $G_0(\xi, M)$ is a subgroup and $C_0(\xi, (M, s_0) \to (N, y_0))$ is a subspace preserving marked points, K_{ξ} is an equivalence relation, $\langle f \rangle_{K,\xi}$ is a class of equivalent elements §I.2.6;

 $\Omega_{\xi}(M, N)$ is a loop semigroup §I.2.6;

P(l, s) is an antiderivation §I.2.11;

Bf(X'), $Af(X', \mu)$ and Bco(X') are algebras of subsets of X', N_{μ} is a function §I.3.1;

 $\rho_{\mu}(h, g)$ is a quasi-invariance factor §I.3.3; $S_{\xi}(M, N)$ is a path semigroup §II.4.1; $L_{\xi}(M, N)$ is a loop group §II.2.1; $P_{\xi}(M, N)$ is a path group §II.4.1; $W_{\xi}(M, N)$ is an O-group §II.5.1.

References

- W. Banaszczyk. "Additive subgroups of topological vector spaces" (Berlin: Springer, 1991).
- [2] N. Bourbaki. "Intégration". Livre VI. Fasc. XIII, XXI, XXIX, XXXV. Ch. 1-9 (Paris: Hermann; 1965, 1967, 1963, 1969).
- [3] N. Bourbaki. "Variétés différentielles et analytiques". Fasc. XXXIII (Paris: Hermann, 1967).

- [4] Yu.L. Dalecky, S.V. Fomin. "Measures and differential equations in infinite-dimensional space" (Dordrecht, The Netherlands: Kluwer, 1991).
- [5] N. Dunford, J.T. Schwartz. "Linear operators" (New York: Interscience Publ., V. 1, 1958; V. 2, 1963).
- [6] R. Engelking. "General topology". Second Edit., Sigma Ser. in Pure Math. V. 6 (Berlin: Heldermann Verlag, 1989).
- [7] H. Federer. "Geometric measure theory" (Berlin: Springer, 1968).
- [8] J.M.G. Fell, R.S. Doran. "Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles". V. 1 and V. 2 (Boston.: Acad. Press, 1988).
- [9] I.M. Gel'fand, N.Ja. Vilenkin. "Generalized functions. V. 4. Applications of harmonic analysis" (New York: Academic Press, 1964).
- [10] E. Hewitt, K.A. Ross. "Abstract harmonic analysis" (Berlin: Springer, 1979).
- [11] W. Klingenberg. "Riemannian geometry" (Berlin: Walter de Gruyter, 1982).
- [12] S. Lang. "Algebra" (New York: Addison-Wesley Pub. Com, 1965).
- [13] S.V. Ludkovsky. "Quasi-invariant and pseudo-differentiable measures on a non-Archimedean Banach space". Int. Cent. Theor. Phys., Trieste, Italy, Preprint N^a IC/96/210, 1996.
- [14] S.V. Ludkovsky. "Embeddings of non-Archimedean Banach manifolds into non-Archimedean Banach spaces". Russ. Math. Surv. 53 (1998), 1097-1098.
- [15] L. Narici, E. Beckenstein. "Topological vector spaces" (New York: Marcel Dekker Inc., 1985).
- [16] A.C.M. van Rooij. "Non-Archimedean functional analysis" (New York: Marcel Dekker Inc., 1978).

- [17] R.C. Swan. "The Grothendieck ring of a finite group". Topology. 2 (1963), 85-110.
- [18] R.M. Switzer. "Algebraic topology homotopy and homology" (Berlin: Springer, 1975).