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Abstract

Loop groups G as families of mappings of one non-Archimedean
Banach manifold M into another N with marked points over the same

locally compact field K of characteristic char(K) = 0 are considered.
Quasi-invariant measures on them are constructed. Then measures

are used to investigate irreducible representations of such groups.

1 Introduction.

In the first part results on loop semigroups were exposed. This part is devoted
to loop and path groups, quasi-invariant measures on them and their unitary
representations. Results from Part I are used below (see also Introduction of
Part I). .

Irreducible components of strongly continuous unitary representations
of Abelian locally compact groups are one-dimensional by Theorem 22.17
[10]. In general commutative non-locally compact groups may have infinite-
dimensional irreducible strongly continuous unitary representations, for ex-
ample, infinite-dimensional Banach spaces over R considered as additive
groups (see §2.4 in [1] and §4.5 [9] ).

*Mathematics subject classification (1991 Revision) 43A05, 43A8~ and 46S10.
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In §3 for the investigation of a representation’s irreducibility the pseudo-
differentiability and some other specific properties of the constructed quasi-
invariant measures are used. Besides continuous characters separating points
of the loop group (see Theorem 3.3), strongly continuous infinite-dimensional
irreducible unitary representations are constructed in §3.2.

The path groups and semigroups are investigated in §4.
In the real case there are known H-groups defined with the help of ho-

motopies [18]. A compositon on the H-group is defined relative to classes of
homotopic mappings. In the non-Archimedean case homotopies are mean-
ingless. A space of mappings C(~’, (.~1, so} -3 from one manifold M
into another N preserving marked points (see I. ~2.g~ is supplied with the
composition operation of families of mappings using loop semigroups. It is
called a loop O-semigroup, since compositions are defined relative to certain
equivalence classes, which are closures of families of certain orbits relative to
the action of the diffeomorphism group of M preserving so. From it a loop
O-group is defined with the help of the Grothendieck construction. O-groups
are considered in §5.

In §6 the notation is summarized.

2 Loop groups.
2.1. . Note and Definition. For a commutative monoid N~ with
the unity and the cancellation property (see Theorem 1.2.7 and Condition
1.2.7.(5)) there exists a commutative group N) equal to the Grothendieck
group. This group is the quotient group F/B, where F is a free Abelian group
generated by N) and B is a closed subgroup of F generated by ele-
ments [ f + 9) - ~ f ) - ~g), f and g E N), ~ f ) denotes an element of F
corresponding to f. In view of §9 [12] and [17] the natural mapping

(1~ ~ : N~ --~ N)

is injective. We supply F with a topology inherited from the Tychonoff
product topology of N~~, where each element z of F is

(2) z = 03A3 nf,z[f],
I
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E Z for each f E S~~ (M, N),

(3) ~  oo.

f

In particular - ~ B, where 1 f = f , n f = f o (n -1 ) f for each
1  n ~ N, f +g :~ f o g. We call L~(M, N) the loop group.

Z.~. Proposition. The space Lt(M, N) from §2.1 is the complete sepa-
rable Abelian Hausdorff topological group; it is non-discrete, perf ect and haa
the cardinality c.

Proof follows from §I.2.7 and §2.1, since in view of Formulas 2.1.(I-3)
for each f E Lt(My N) there are g~ ~ such that f = f 2, where
y(g~) = f~ for each j E ~1, 2~. Therefeore, y is the topological embedding
such that y( f + g) = y( f ) + y(9), = e.

2.3. Theorem. Let G = be the same group as in ~2.1, ~ ~
(t, a) or ~ = t with 0  t E R, s~ E No.

(1) If At’(M) has card(’M) > 2, then G is isomorphic with G1 =
where M = U’1 u Uz (see §I.2.5). Moreover, T~G ix the Banach

space for each ~ ~ G and G is ultrametrizable.
- (2) If 1  t + a, then G is an analytic manifold and for it the mapping
E : TG -+ G is defined, where TG is the neighbourhood of G in TG such
that E~(V) = from some neighbourhood V~ of the zero section in
T~G ~ TG onto some neighbourhood W~ ~ E G, V~ = V o ~, W~ = We o ~,
~ E G and E belongs to the class C(oo) by Y, E is the uniform isomorphism
of uniform spaces V and W ,

(3) There are atlcues Ãt(TG) and At(G) for which E is locally analytic.
Moreover, G as not locally compact for each 0  t.

Proof. The first statement follows immediately from Theorem L2.I7 and
§2.1. . Therefeore, to prove the second statement it is sufficient to consider
the manifold M with a finite atlas At(M).

Let V~ E T~G for each ~ ~ G, V E G ~ TG), suppose also that
= r~ be the natural projection such that TG --~ G, then V is a vector

field on G of class C0(03BE). The disjoint and analytic atlases At(C0(03BE, M -+ N))
and At(C0(03BE, M ~ TN)) induce disjoint clopen atlases in G and TG with
the help of the corresponding equivalence relations and ultrametrics in these
quotient spaces. These atlases are countable, since G and ?’G are separable.
In view of Theorem L2.10 the space is Banach and not locally compact ,
hence it is infinite-dimensional over K.
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In view of Formulas 1.2.6.2.(1-7) the multiplications

= ~(~) and

(2) 03B1h : C00(03BE, (M, go) ~ (N,y0)) ~ C00(03BE, (M, so) ~ (N, yo))s = v o h

for E G and h, v E C00(03BE, (M, s0) ~ (N,y0)) belong to the class C(~).
Using Formulas (1,2) as in §I.2.10 we get, that the vector field V on G of

class has the form

(3) V~(x) = v(~(x)),

where v is a vector field on N of the class G,

vC f ~~)) v= v 9 E~ f >K~~~

Since exp : TN ~ N is analytic on the corresponding charts (see §L2.8.). In
view of Formulas 1.2.8.(1-4) É(V) = ezp o V has the necessary properties,
where exp is considered on At" (N) with 03C8"i(V"i) being K-convex in the
Banach space Y. Therefore, due to Formula (3) we have

are continuous and .

(5) E~(V) = exp~(x)v(~(x)),
where x E M, consequently, E is of class C(oo).

2.4. Note. Let N) be the same submonoid as in §1.3.5 such
that c > 0 and c’ > 0. Then it generates the loop group G’ := N)
as in ~2.1 such that G’ is the dense subgroup in G = L~(M, N).

2.5. Theorem. On the group G = Lt(M, N) from §2..i and for each b E
C there exist probability quasi-invariant and pseudo-differentiable of order
b measures  with values in Rand Kq for each prime number q such that
q ~ p relative to a dense subgroup G’. .

Proof. In view of Theorem 2.3 it is sufficient to consider the case of M
with the finite atlas At’(M). Let the operator A be defined on (~l, sa) --~
(N, yo)) by Formulas 1.3.6.(3,4). The factorization by the equivalence relation
.K~ from §1.3.6 and the Grothendieck construction of §2.1 produces the fol-
lowing mapping ~’ from the corresponding neighbourhood of the zero section
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in TL03BE(M, N) into a neighbourhood of the zero section either in Y)
for dimKM  oo or into o N}) for dimKM = No- .

Therefore they are continuously strongly differentiable with (D03A5(f))(v) =
where / and v ~v C T.L(M,N), ~ is the corresponding neigh-

bourhoods of zero sections for the element e == wo >~- In view of the
existence of the mapping E (see Formulas 2.3.(4,5)) for TG there exists the
local diffeomorphism

(1)T: 
induced by JS and T, where H~ is a neighbourhood of e in G, V’o is a

neighbourhood of zero either in the Banach subspace J? of T~L~~(M, Y) for
dimKM  oo or in the Banach subspace H of ~ N})
for dimKM = Ho.

Let now M~ be a neighbourhood of e in G’ such that = M~. It
is possible, since the topology in G and G’ is given by the corresponding
ultrametrics and there exists W~ with W~W~ = W~, hence it is sufficient to
take W’~ C W~. For g ~ W~, v = E-1(g), 03C6 6 Wt03BE the following operator

(2) ~) :== To o Y"~(t~) -1;
is defined for each (~v) M~ x where L~(~) := ~ Then E

C ~; where V"o is an open neighbourhood of the zero section either in
the Banach subspace JET of T~G’ for dimKM  oo or in the Banach subspace
H’ of : a  N}) for dimKM = No, where G. = L{k}03BE(Ma,N).
Moreover, S03C6(v) is the C(oo)-mapping by 03C6 and v. As in §1.3.6 a quasi-
invariant and pseudo-differentiable of order b measure 03BD on V’0 ~ H exists
relative to 03C6 6 W’~, where

(3) v(dx)=vl(j)(dxj)
~=1

and Conditions 1.3.6.(13,14,17-20) are satisfied.
More general classes of quasi-invariant and pseudo-differentiable of order

b measures v with values in [0, ~) or in Kq exist on V’0 relative to the action
of 03C6 W’~, (03C6,v) ~ v + S03C6(v), where v V’0.

In view of Formulas (1 - 3) the measure i/ induces a measure , on We
with the help of T such that

(4) (A) = for each A Bf(We),
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since > o. The groups G and G’ are separable and ultrametrizable,
hence there are locally finite coverings o Wi : i E N} of G and o W’; :
i E N} of G’ with ~= E G’ such that W; are open subsets in We and W’~ are
open subsets in that is,

~ 03C6i o Wi = G and 03C6i  W’i = G’,
~=1 =i

where = e, Wi and W’1 = M’~ {6]. Then  can be extended onto
G by the following formula

(5) (A) := (03A3 ((03C6i-1 ° A) ~ Wi)ri)/( (Wi)ri)
=i s~~

for each A E B f (G), where 4  r  1 for real j~ or r ~ ~ for ~c with values
in Kq. In view of Formulas (4, 5) this ,u is the desired measure, which is
quasi-invariant and pseudo-differentiable of order b relative to the subgroup
G" = G’ (see also §§1.3.2-4). .

3 Representations of loop groups.
3.1. . Let  be a real non-negative quasi-invariant relative to G’ measure on

as in Theorem 2.5. Assume also that H : = is the
standard Hilbert space of equivalence classes of functions f : : G --~ C for
which absolute values are square-integrable by ~t. Suppose that U(H) is
the unitary group on H in a topology induced from a Banach space L(H -3
H) of continuous linear operators supplied with the operator norm.

Theorem. There e%ists a strongly continuous injective homomorphism
T : : G’ -~ U(H).

Proof. Let f and h be in H, their scalar product is given by the standard
formula

(1) (f, h) := ~Gh(g)f(g) (dg) ,

where f and h : G --~ C, h denotes the complex conjugated function h. There
exists the regular representation

(2)T: : G’-->U~H)
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defined by the following formula:

{3) T xf {9) v= 

where

(4) 03C1(z,g) = z(S) := (z-1S)
for each S E B f {G), z E G’. For each fixed z the quasi-invariance factor
p(z,g) is continuous by g, hence T x f {g) is measurable, if f {g) is measurable
(relative to Af(G,p,) and B f (C)). Therefore,

C~~ CT~f {9)~ = = 

consequently, Tx is the unitary operator for each z E G’. From

(g) = = [ z’x(dg)/ z’(dg)][ 2,(dg)/ (dg)]

it follows that

{?) = Tz’z, Tid = I and = T-1z,

where 1 is the unit operator on H.
The embedding of T~G’ into T‘G is the compact operator. The measure

 on G is induced by the measure on c0(03C90, K), where Wo is the first count-
able ordinal. In view of Theorems 3.12 and 3.Z8 f 13) for each d > 0 and

..., fn} C H there exists a compact subset B in G such that

{8) ~GBB|fi(g)|2 (dg)  03B42.
Therefore, there exists an open neighbourhood W’ of e in G’ and an open
neighbourhood S of e in G such that p( z, g) is continuous and bounded on
W’ x W’ o S, where S C ~V‘ o S C G. In view of Formulas {5-8), Theorems
2.3 and 2.5 and the Holder inequality we have

n

~(Tzj - I)fi~H = 0

for each sequence ~x~ : j E N? converging to e in G’. Indeed, for each
v > 0 and a continuous function f : G -+ C with ~f~H =1 there is an open



62

neighbourhood V of id in G‘ (in the topology of G’) such that (  v
for each z E V and each g E F for some open F in G, id E F with

F)  v for each z E Y, where f (dg) := | (dg)
and f E ..., f,~~, n E N. At first this can be done analogously for the
corresponding Banach space from which ~ was induced.

In H continuous functions f (g) are dense, hence for each 4  v  1 there
exists V" such that

 4v

for each finite family with ~ 1 and z E Y’ ~ V ~ V", where
V" is an open neighbourhood of id in G’ such that ~~ f (g) -  v for
each z E Y", consequently T is strongly continuous (that is, T is continuous
relative to the strong topology on U(H) induced from L(H -~ H), see its
definition in [8~}.

Moreover, T is injective, since for each g ~ id there is f E C°(G, C) n H,
such that f {id) = o, f(g) =1, and > o, so T, ~ I.

Note. In general T is not continuous relative to the norm topology on
U(H), since for each z ~ id E G’ and each 1/2 > v > 0 there is f E H with

=1, such that > v, when supp(f) is sufficiently small with
(z o Bupp(f» n Bupp(f) = ~.

3.2. Theorem. Let G be a loop group with a real probability quasi-
invariant measure  relative to a dense subgroup G’ as in Theorem 2.5, Then
 may be chosen such that the associated regular unitary representation (see

§3.1) olG’ is irreducible.
Proof. Let v on c0(03C90, K) be of the same type as in §3.23 or §3.30 [13] or

it is given by Formulas 1.3.6.(13-20). For example, v is generated by a weak
distribution such that

(1) ~_ 

where c~ > 0, v;(K) === 1, ~ is the Haar non-negative measure on K,

(2) 03BEj = 0,

0 ~ 03BEj E > 0 is fixed with
oo

(3) 03A3 |03BEj|-03B3p-k(ij,mj)  OG

1=~
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(see about k(i, m) in §I.3.5). . Let a v-measurable function f : co(wo, K) -+ C
be such that E : f(x + 1I) ~ f(x)} = 0 for each y E spK(ej :

j E N) =: Xo with f E Li(co(wo, K), v, C). Let also Pk : ca(wo, K) -
L(k) be projectors such that = xk for each z = (03A3j~Nxjej), where

:= and L(k) := spK(el,..., ek). Then analogously to the proof
of Proposition 11.3.1 [4] in view of Fubini theorem there exists a sequence of
cylindrical functions

(4) fk(x) = = + (I - Pk)yvI-Pk(dy)

which converges to f in v, C), where v = vL(k) ~ VI-Pk, VI-Pk
is the measure on c0(03C90, K) e L(k). Each cylindrical function fk is v-almost
everywhere constant on co("’o,K), since L(k) C Xo for each k E N, conse-
quently, f is v-almost everywhere constant on K). Let T be the local
diffeomorphism from Formula 2.5.(1). . In view of Theorems 5.13 and 5.16 [16]
these Banach spaces are topologically K-linearly isomorphic with c0(03C90, K).
From the construction of G’ and p, with the help of T and v as in §2.5 it
follows that if a function f E Ll(G, ~C, C) satisfies the following condition
f"(g) = leg) (mod ~.) by g E G for each h E G‘, then f (a) = conat (mod ~.),
where v= f (h9), 9 E G.

Let I(g) = ch.U(g~ be the characteristic function of a subset U, U C G,
U E Af (G, ~t), then (hg) = 1 C~ g E If = leg) is true by g E G
~-almost everywhere, then

~5~ N~~~9 E G f ~9)}) _ ~~

that is = 0, consequently, the measure ~. satisfies the condition
(P) from §VIII.19.5 [8], where A ~ B :_ (A BB)U(BBA) for each A,B C G.
For each subset E C G the outer measure ~.’(E)  1, since p,(G) = 1 and ~a
is non-negative [2], consequently, there exists F E RI(G) such that F > E
and ~.’(E). This F may be interpreted as the least upper bound in
B f (G) relative to the latter equality. In view of Proposition VIII.19.5 (8~ the
measure ~ is ergodic, that is for each U E A f (G, and F E Af(G, ~) with
~.(U) x p(F) # D there exists Ix E G’ such that o E) fl F) ~ 0.

From Theorem 1.1.2 [4] it follows that (G, B f (G) is a Radon space, since
G is separable and complete. Therefore, a class of compact subsets approxi-
mates from below each measure where f E ~,, C). Due to
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Egorov Theorem 2.3.7 [7] for each e > 0 and for each sequence f n(g) converg-
ing to leg) for p-almost every g E G, when n -~ oo, there exists a compact
subset K in G such that (G B K)  E and converges on K uniformly
by 9 E K, when tT -~ oo. Hence in view of the Stone-Weierstrass Theorem
A.8 [8] an algebra V(Q) of finite pointwise products of functions from the
following space

(6) spC{03C8(g) := : h ~ G’} =: Q

is dense in H, since p(e, g) = 1 for each g ~ G and Lh : G --~ G are

diffeomorphisms of the manifold G, where Lh(g) :~ hg.
For each m E N there are locally analytic curves in G’ with

analytic restrictions S(03B6,03C6j)|B(K,0,1), where j = 1, ..., m and 03B6 ~ K is a
parameter, such that

S(0,03C6j) = e and (8S(f , 03C6j)/~03B6)|03B6=0 are linearly independent in T~G’

for j == 1, ..., m, since G’ is the infinite-dimensional group, which is complete
relative to its own uniformity. In accordance with §2.5 there exists infinitely
pseudo-differentiable  on G (that is, of order 1 for each l E N) relative
to S(f , for each j. If two real non-negative quasi-invariant relative to
G’ measures p and À on G are equivalent, then the corresponding regular
representations ?’N and Ta are equivalent, since the mapping .

f(g) ~ 

establishes an isomorphism of L~(G, ~s, C) with L~(G, a, C), where f E L~(G, ~, C). .
Then the following condition 0 defines an analytic submanifold
G~ in G of codimension over K no less than one:

(7) codimKG03A8 > 1, ,

where is a matrix function of the variable g E G with matrix elements

(8) := 

for i > 1. . If f ~ H is such that

Cg) (f C9)~ p~~~(~~ 9))~ = a
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for each ~ E G1 n W, then

(10) PDc(l, (f(g),03C11/2(S(03B6,03C6j),g))H) = 0.

But V(Q) is dense in H and in view of Formulas (6 - 10) this means that
f = 0, since for each m there are 03C6j) e G’ n W such that det03A8(g) ~ 0
-almost everywhere on G. If ~f~H > 0, then »(supp( f)) > 0, consequently,

fl W ) = 1, since G’ U = G for each open U in G and for each
e > 0 there exists an open U such that U > supp(f) and B supp(f))  E.

Therefore, Q is dense in H. This means that the unit vector fo is cyclic,
where fo E H and = 1 for each g E G. The group G is Abelian, hence
there exists a unitary operator U : H -~ H such that

(11) U-1ThU = Fh

are operators of multiplication on functions Fh E L°°(G, ~., C) for each h E
G’, where

(12) = exp(203C0ifh(g)),
9 E G, fn E R), LO(G, , R) is a Frechét space of classes of equivalent
p-measurable functions f G -3 R, which is supplied with a metric

(13) ,v) := jG min(1, |f(g) - v(g)|) (dg),

i = (-1)1~1 (see §IV.8 and Theorem X.2.1 and Theorem X.4.2 and Segal
Theorem in §X.9 [5]). The following set (d spC{Fh : h E G’}) is not con-
tained in any ideal of the form {F : : supp(F) C G ~ A} with A E Af (G, ~.)
and p(A) > 0, since I = 1 for each (h,g) E G’ x G, where cl(E) is
taken in L°°(G, ~c, C) for its subset E. Then ~Fh : h E G’} is not contained
in any set

{F = exp(203C0if) : f E , C), supp(f) C G B A}

with A E Af(G,p,) and p(A) > 0, since  is ergodic relative to G’. . From the
construction of ~, (see Formulas (1-3~ and I.3.6.(13-17,21-24~~ it follows that
for each f1,j and f2,j E H, j = 1, ..., n, n E N and each e > 0 there exists
h E G’ such that

|(Thf1,j,f2,j)H|~~|(f1,j,f2,j)H| ,
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when > 0, hence

= f2,j)H|,
since G is the Radon space by Theorerm L I .2 [4] and G is not locally compact.
Therefore, for each and ~ H, j = l~ ..., n, n E N and E > ~ there
exists h ~ G’ for which f2,j)H|  for each j =1,...,n,
when > 0, since UH = H. This means that there is not any
finite-dimensional G’-invariant subspace H’ in H, that is, FhH’ C H’ for
each h ~ G’. .

We suppose that A is a probability Radon measure on G’ such that A has
not any atoms and supp(03BB) = G’. In view of the strong continuity of the
regular representation there exists the S. Bochner integral ,(~ for
each f E H, which implies its existence in the weak (B. Pettis) sence. The
measures  and À are non-negative and bounded, hence H C , C)
and L~~G‘, A, C) C A, C) due to the Cauchy inequality. Therefore, we
can apply below Fubini theorem (see §II.16.3 [8]). Let f E H, then there
exists a countable orthonormal base {fj : j ~ N} in H e C f . Then for each
n E N the following set

Bn := {q ~ L2(G’, 03BB, C): (fj, f)H = ~G’ q(h)(fj, Thf0)H03BB(dh) for j = fl, ..., n}

is non-empty, since the unit vector f a is cyclic, where f 4 := f. There exists
oo > R > ~f~H such that Bn ~ BR =: Bn is non-empty and weakly compact
for each n ~ N, since BR is weakly compact, where

BR := {q E L2(G’, 03BB, C) : ~q~  R}

(see the Alaoglu-Bourbaki theorem in §(9.3.3) [15]). Therefore, J3~ is a

centered system of closed subsets of BR, that is,
for each 

hence it has a non-empty intersection, consequently, there exists q ~ LZ (G’, h, C)
such that

(14) f(g) =~G’ q(h)Thf0(g)03BB(dh)
for .¿-almost each g ~ G. If F E f ~ and f ~ ~ H, then there
exist qi and q~ ~ Lz~G’, ~, ~) satisfying equation (14). Therefore,

(15) (f1, F f2)H = G G , G g)03BB(dh1)03BB(dh2) (dg).
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Let

(16) 03BE(h) := cGrGl q1(h1)q2(h2)03C11/2 (h1,g)03C11/2 (hh2,g)03BB(dh1)03BB(dh2) (dg).
Then there exists /?(&) E such that

(17) ~G’03B2(h)03BE(h)03BB(dh)=(f1, F f2)H =: c.
To prove this we consider two cases. If c = 0 it is sufficient to take j3
orthogonal to ~ in L~(G’, a, C). Each function q E ~t, C) can be written
as q = iq4, where > 0 for each I~ E G’ and j =1, ..., 4,
hence we obtain the corresponding decomposition for ~:

(1 8) j = t

J.*

where 03BEj,k corresponds to a pair (qj1, qk2), where bj,k E {1, -l, i, -i}. If c ~ 0
we can choose ( jo, k0) for which 0 and

(19) ~Q is orthogonal to others with ( j, ( jo, ko).

Otherwise, if 03BEj,k = 0 for each ( j, k), then = Q for each (I, j) and
~1-a,lmost every h ~ G’, since due to Formula (16):

~(a) _ G = o

and this implies c = 0, which is the contradiction with the assumption c ~
0. Hence due to Formula (18) there exists ~3 satisfying Formula (17) and
Condition (19).

Since L~(G’, a, C) is infinite-dimensional, then for each finite families

~a~, ..., a,~} C and ~fi~ ..., f m} C H

there exists /3(A) E ~L~(G’, À, C), such that

(~ is orthogonal to f ~(9~Cf s (h ~g)(P~(h~ 9))~l ~ " .
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for each 8,j = 1, ..., m. Hence each operator of multiplication on a j (g) be-
longs to Ac", since due to Formula (17) and Condition (19) there exists 03B2(h)
such that

(f,ajfl)=~G~G’fs(g)03B2(h)(03C1 (h,g))1/2fl(h-1g)03BB(dh) (dg)
= ~G~G’f(g)03B2(h)(Thfl(g))03BB(dh) (dg) and

~Gf(g)aj(g)fl(g) (dg) = ~G ~G’ f(g)03B2(h)fl(g)03BB(dh) (dg) = (fs,ajfl).

Hence AG" contains subalgebra of all operators of multiplication on functions
from L°°(G, ~, C). .

Let us remind the following. A Banach bundle B over a Hausdorfl space
G’ is a bundle  B, a > over G’, together with operations and norms making
each fiber Bh (h E G’) into a Banach space such that

BB(i) x is continuous from B into R;

BB(ii) the operation + is continuous as a function from

{(x, y) E B x B : = n(y)} into B;

BB(iii) for each .1 E C the map x r-> .1x is continuous fromB into B;

BB(iv) if h E G’ and {x;} is any net of elements of B such that -~ 0

and t~(x~) 2014~ h in G’, then x; -~ Oh in B,
where B --> G’ is a bundle projection, Bh := ~ 1(h) is the fiber over h (see
§II.13.4 [8]). . If G’ is a Hausdorff topological group, then a Banach algebraic
bundle over G’ is a Banach bundle B = B, ~r > over G’ together with a
binary operation 8 on B satisfying the following Conditions AB( i - v~:

AB(i) ~r(6 ~ c) = for b and c E B;

AB(ii) for each x and y E G’ the product ~ is bilinear from B$ xB, into B.,,;

AB( iii) the product ~ on B is associative;

AB(iv) c~~  (~b~~ x for each b, c E B;

AB(v) the map 2022 is continuous from B x B into B
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(see §VIIL2.2 [8]). With G’ and a Banach algebra A the trivial Banach bundle
B = A x G’ is associative, in particular let A = C (see §VIII.2.7 [8]).

The regular representation T of G’ gives rise to a canonical regular L2(G, , C)-
projection-valued measure P:

(20) P(W) f := Chw f ,

where f E W E B f (G), C~W is the characteristic function of
W. Therefore,

= P(h o W)Th
for each h E G’ and W E B f (G), since o g) p(h, g) =1= p(e,g) for
each (h, g) E G’ x G,

ChW(h-1 o g) = ChhoW(g) and

(22) = P(h-’~ 9)~~s~’’(h o o g). °

Thus  T, P > is a system of imprimitivity for G’ over G, which is denoted
T~, that is,

6*7 (i) T is a unitary representation of G~;

SI(ii) P is a reguialr , C)--projection-valued Borel measure on G and

SI(iii) = P(h o W)T II for all 1~ E G’ and W E B f(G).
For each F E ~, ~) let aF be the operator in L(L~~G, ~c, C)) con-

sisting of multiplication by F:

= F f for each f E L~ ~G, ~, C ),

where L(Z) := L(Z ~ Z) (see §3.1). The map F ~ aF is an isometric *-
isomorphism of , C) into , C)) (see §VIII.19.2[8]). There-
fore, using the approach of this particular case given above we get, that
Propositions ~IIL 19.2,5(8j are applicable in our situation.

If p is a projection onto a closed H~-stable subspace of L~(G, ~, C), then
due to Formulas (20-22) p commutes with all P~~Y). Hence p commutes
with ap for each F E so by §VIII.19.2 [8] p = P(Y), where
V E B f (G). Also p commutes with Th for each h E G’, consequently,
(hoV)BV and are -null for each h E G’, hence = 0
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for all h 6 G’. In view of the ergodicity of  and Proposition VIII.19.5 [8]
either (V) = 0 or B V) = 0, hence either p = 0 or p = 1.

3.3. Theorem. On the loop group G = N) from §2.1 there ezists
a family of continuous characters {0396}, which separate points of G.

Proof. In view of Lemma 1.2.17 it is sufficient to consider the case of
the submanifold M having no more than two charts. Then Af is clopen in

K), where M = M B {s0}.
Let at first dimKM  No. The Haar measure 03BB03B1 : B/(K") ~ Qq with a

prime number q ~ p (see the Monna-Springer theorem in §8.4 {16]) induces
the measure A~ : B/(M) 2014~ Qq, analogously for

for each N  n ~ a and h L(Nj, 03BBn, Qq) there corresponds a measure vJ,h
on Bf(NJ) for which

and to there corresponds a differential form

where y Nj and J := {j1, ..., jn}. Hence there exists its pull back (03C0Jf)*03C9,
where xj : ~ spK{ej : j E J} is the projection for each J C /?,
f C~(~ M -~ N), / = s + = M + 1 (see §1.2.11 and Corollary
L2.16).

As usually, for a mapping h : M 2014~ ~j of class C(l) and a tensor T of
the type (O~A) with components T~,...,~ defined for TVj we have:

(4) (A~)~..,~(~~.,~)=[ ~ ~,.,,,(~~~)...(9~/~)](~B....,~)~
~i,..~

such that h*T is defined for M, where (:cB.., ~) are coordinates in M induced
from K~ and ...,y") = y are coordinates in Nj induced from =

yj(x1, ..., x03B1) = hj(x1, ..., x03B1), xj and yj K.
Let now dimKM = dimKN = No. Let A be equivalent with a probabil-

ity Qq-valued measure either on the entire TyN or on its Banach infinite-
dimensional over K subspace P (see Formulas 1.3.6.(13-20)). Each such A
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induces a family of probability measures v on B f (N) or its cylinder subal-
gebra induced by the projection of TyN onto P, which may differ by their
supports.

Let TyN =: L be an infinite-dimensional separable Banach space over K,
so there exists a topological vector space LN := L~, where L~ = L for each
j E N [15]. Consider a subspace A°° of a space of continuous oo-multilinear
functionals ~ : LN ~ K such that

+ v) = + ~(y), ~(03C3x)=(-1)|03C3|~(x) and = 03BB~(z)

for each E IN, (r E 500 and À E K, where

a? = E l,j EN} E LN, zj = xj for each j ~ ko and 03BBzk0 = xk0,

500 is a group of all bijections y : N ~ N such that card{j : 03C3(j) ~ j}  No,
|03C3| = 1 for v = with odd n E N and pairwise transpositions 03C3l ~ I,
that is,

03C3l(j1) = j2, 03C3l(j2) = ji and = I

for the corresponding j2, |03C3| = 2 for even n or 03C3 = 7. Then ~ (or j)
induces a vector bundle (or A-~N) on a manifold N of oo-multilinear
skew-symmetric mappings over F(N) of (or respectively) into
F(N), where is a set of differentiable vector fields on N and F(N) is an
algebra of K-valued C~-functions on N. This is the vector bundle of

differential oo-forms on N. Then there exist a subfamily ~GN of differential
forms w on N induced by the family {v}.

Let jN be the space of differential j-forms w on N such that w =
wJdxJ, where dxJ = dxj1 I1... A for a multi-index J = ..., jn),

n E N, !J~ = ;1 +.. + ~~, 0 _ j~ E Z, wj : N --~ K are C°°-mappings,
B~N := Here the manifold Bit N is considered to be of classes of
smoothness C°°.

Let B~N := jN) ~ ~GN for dimKN = oo and BkN =
~kj=0 jN for each k E N. We choose w ~ BieN, where k = min(dimKN, dimKM).

There exists its pull back f*03BA03C9 for each f E C0(03BE, M ~ N) (see for com-
parison the classical case in §§1.3.10, 1.4.8 and 1.4.15 in (11~ and the non-
Archimedean case in [3]), where

f03BA:=

03BAa{Aa(f|Ma)-Aa-1(f|Ma-1)},
a~l
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x  1 and xa E K for each a E N, Ao := 0 (see Formula L3.6.(1)).
This series is correctly defined and converges due to Lemma 1.2.4.2 and For-
mulas L2.4.3.b.(1-4). When f ~ 0 there exists ? := x N~ such that

o. Let S~ -~ P be a family of continuous linear operators from Bar
nach spaces 5~ into a Banach space P, then there exists a continuous linear
operator

E E N}) e P such that

Ex = Ejxj,

where x = {xj : xj E ~ N} E ~ N}). We take w E
Co(oo, M ~ BkN), when dimKM ~ dimKN. When No > dimKM >
dimKN we take w E Co(oo, M --~ where Ni x ... x N,~
with Ni = N for each j =1, ..., m such that N m > dimKM/dimKN. A
mapping F E Co(t, M --~ N) generates a mapping F~ := (F, ..., F) : M --~
Nm and the pull back (F~’")* which is also denoted simply by F*, where F*w
is a Co(t - l)-mapping, when 1  t E R, (F, ..., F) is an m-tuplet. When
Ho = dimKM > dimK N we take instead of N or ,N"‘ a submanifold N of
N~ := modelled on where Sj = TyN for each j,
that is, in accordance with our notation N := eN). Therefore,
there exists a pull back for u and w either on N’ or on N instead of N
in the corresponding cases of dimKM and dimKN

Moreover, to a Qq-valued measure 03C9 on M corresponds, since
11 is the Qq-valued measure. When dimKM  No we take i instead of f,~.
Then there exists a Qq-valued functional:

(5) .= = 

for each f E Co ( f , (M, ’0) ~ (N, and 03C8 E G0(03BE, M), consequently, FJ,03C9,03BA
is continuous and constant on each class  f >~,~, where either N = N or

, 

N = N"’ or N = N in the corresponding cases. If h is not locally constant
then h* is not zero operator, hence the family : J, w, It} separates
points in the loop semigroup, where x is omitted in the case dimKM  0.

Let 0396y : Qq ~ Sl be a continuous character of Qq as the additive group
(see §25.1 (lo~), where 51 := ~x E C : : ~xf = 1~ is the unit circle, x and
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y ~ Qq,

Es) = exp[203C0i( ( y-sq(n-s-1)))],
n=-oo ==n

~ == E ~a,1, ..., q - I~. For a given a? and y this sum in [*]
is finite, where y is fixed. In view of Formulas (1-6)

0396(g) := 0396( (+-)FJ,03C9,n(f))
is a continuous character on N) = .N), where [or
- corresponds to g [or -g respectively], for g being the image of
 f >~,~ relative to the embedding

03B3 : 03A903BE(, N) L03BE(M,N)
(see also ~2.2).

8.4. Note. The loop groups and semigroups were considered above for
analytic manifolds with disjoint clopen charts. Each metrizable manifold M
on a Banach space X over a local field K is a disjoint union of clopen subsets
diffeomorphic with balls in X, since the value group rK := : 0 ~ a? E
K} is discrete in (o, oo) (see [14] and Lemma 7.3.6 [6]).

Suppose now that a new atlas is with open charts such

that there are Uy for some i ~ j. Using spaces --~ Y)
we can define C0(03BE, M ~ N) correctly only if connecting mappings 03C6i o 03C6’-1j
on n U=) are of class of smoothness not less than Co(~) for each ~s ~ j
with U’j ~ U’i ~ Ø. Here the atlases At’(M) and At’(N) need not be disjoint.
The same condition need to be imposed on 03C8’i o 03C8’-1j for each V’i ~ Ø
for a new atlas At’(N) of N with open charts (YJ, This is also neces-

sary for the definition of M). Let ~ : : M --~ M’ be a diffeomorphism
for 1  ~ = t or ~ = (t, s) with 0  t and 1  a (a homeomorphism for
a  ~ = t  1) of class not less than of two manifolds (may be one set
with two different atlases), then G(~, M) and .M’) are difleomorphic (or
homeomorphic) topological groups with the diffeomorphism (the homeomor-
phism respectively)

since G(~, M) have a Banach manifold structure for I ~ t or 1  s, where
g E M). If ~r : N -‘~ N’ is a diffeomorphism (homeomorphism) of class
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at least then C0(03BE, M ~ N) and C0(03BE, M’ ~ N’) are diffeomorphic
(homeomorphic) due to the following map

9~~o9o~_t~ ,

where g ~ C0(03BE, M ..; N). . If {fn} and are sequences in C0(03BE, (M, so) -+
(N, ~o)) converging to f and g respectively, is a sequence in Go(~, M)
such that g" = f n o ~n for each n E N, then

.

This gives a bijective correspondence between classes  g >K,t and  g >K,t
in Co(~, (M, so) -~ (N, yo)) and Co(~, (~’’, 80) ’-~ (N’ ~‘o)) respectively, where

g=03C8  g  03C6-1 ~ C0(03BE,(M’,s’0) ~ (N’, y’0)),

go = 03C6(s0), g’o = Therefore, N) and N’) are diffeo-
morphic (homeomorphic respectively) topological semigroups, consequently,
L03BE(M, N) and L03BE(M’, N’) are diffeomorphic (homeomorphic) topological groups
due to Theorems L2.?, L2.I0, 2.3 and Proposition 2.2. This means indepen-
dence of these semigroups and groups relative to a choice of equivalent atlases
of manifolds.

4 Path groups.

4.1. . Definition and Note. In view of Equations 1.2.9.(1-3) each space N~
has the additive group structure, when ~V = B(Y, 0, R), 0  .R  oo.

Therefore, the factorization by the equivalence relation I~~ x id produce
the monoid of paths Co (~, M .-~ x id) =: N) in which composi-
tions are defined not for all elements, where y1idy2 if and only if y1 = y2 ~ N.

There exists a composition f1f2 = if and only if yi = y2 = y, where
f~ = (9i~ b~;)~ 9’= E and ~~ e N~, i E {1, 2~. The latter semigroup
has elements ey such that f = ey o f = f  ey for each f , when their compo-
sition is defined, where y E N~, f = (g,y), 9 ~ e~ = (e, y). If N~
is a monoid, then N) can be supplied with the structure of a direct
product of two monoids. Therefore, N) := L(M, N) x N~ is called
the path group.
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4.2. Theorem. On the monoid G = S~~M, N) from §,~.1, when N =
B(Y, 0, R) and N( is supplied with the additive group structure, and each
b E C there are probability quasi-invariant and pseudo-differentiable of order
b measures p with values in Rand ~q for each prime number q ~ p relative
to a dense submonoid G’.

Proof. In view of Formulas 2.9.(1-3) there is the following isomorphism
S~~M, N) = x N~. Hence it is sufficient to construct p = ~~ x ~c~,
where 2 is a quasi-invariant and pseudo-differentiable measure on N03BE and

~1 on f~~(M, N), since ~; was constructed in Theorem L3.6. The desired
measure on N~ exists due to Theorems 3.23, 3.27 and 4.3 [13].

4.3. Theorem. On the path group G = N) from §4.1, when
N = B(Y, 0, R) and N03BE is supplied with the additive group structure, and
each b E C there are probability quasi-invariant and pseudo-differentiable of
order b measures  with values in Rand Qq for each prime number q ~ p
relative to a dense subgroup G’. .

Proof. Since = x N~, it is sufficient to construct
 = 1 x where 2 is a quasi-invariant and pseudo-differentiable measure

on N03BE and 1 on L03BE(M, N), since 1 was constructed in Theorem 2.5 and 2

in §4.2.
4.4. Remark. Loop and path groups can be defined also for manifolds

modelled on locally K-convex spaces.
In general for locally K-convex spaces X and Y a mapping F : : U -~ Y

is called of class C~t) if the partial difference quotient has a bounded

continuious extension 03A6vF : U x V. x S’ -3 YP for each 0  v  t and

each derivative F~(a?) : : X ~ -~ Y is a continuous k-linear operator for each
z E U and 0  Ie  [t], where U and V are open neighbourhoods of 0 in ~, ,
U + V c e No, Y~P is a locally Ap-convex space obtained from Y by
extension of a scalar field from K to Ap, e = jv~ + sign~v~. If F is of class

C(n) for each n E N then it is called of class C(oo). .
For C(m)-manifolds M and N modelled on locally K-convex spaces X

and Y with atlases At(M) = : : E A~} and At(N) = ~~Y, ~i) : i E
a mapping F : M -~ N is called of class C(n) if are’of class C(n)

for each i and j, where ~~ ~, ~~ o ~l 1 and are of class

C(m), ~ > m > n > 0.
Then quite analogously to §1.2.6 and ~2.i loop and path semigroups and

groups can be defined. For the construction of quasi-invariant measures
in addition there can be used closed subspaces S of separable type over
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K in dual spaces to nuclear locally K-convex spaces. From such spaces
S quasi-invariant measures can be induced on containing them locally K-
convex spaces Z with the help of the standard procedure based on algebras
of cylindrical subsets with the subsequent extension onto the Borel o-field.
Then measures on groups can be constructed analogously to the considered
above cases. If a group G is non-separable, then a non-zero Borel measure
p may be quasi-invariant relative to a subgroup G’ which is not dense in G.
Nevertheless, with the help of p, a regular representation of G’ associated
with p, can be induced.

5 Quasi-invariant measures on O-groups.
6.1. Definition. The space (M, aa) ~ (N, y0)) is not a semigroup
itself, but compositions are defined for the families  f >x~, that is, relative
to the equivalence relation ,K~. Henceforth, let the topology of N)
be defined relative to countable At(M) as in §1.2.5 and §1.2.6. If F is the
free Abelian group corresponding to N) from §2.1, then there exists
a set W generated by formal finite linear combinations over Z of elements
from (M, saj - (N, and a continuous extension ,K~ of If~ onto
W~(M, N) and a subset B of W generated by elements ( f +g~ - ( f ] - ~gJ such
that W~(M, is isomorphic with N), where

N) := W/B,

f and g E --; f ~ is an element in W corresponding to
f, W is in a topology inherited from the space ~(~, (M, so) -+ (N, ya))~ in
the Tychonoff product topology. We call W03BE(M, N) an O-group. Clearly
the composition in Co (~, (M, a~) ~ (N, yo)j induces the composition in
W~(1V1, ~11j. Then W~(M, N) is not the algebraic group, but associative com-
positions are defined for its elements due to the homomorphism ~~ given
by Formulas 2.6.2.(5,6), hence W~(M, N) is the monoid without the unit
element.

Let := p,(h o A) for each A ~ N)) and h E W~(M, ,N),
then as in §§1.3.3 and 1.3.4 we get the definition of quasi-invariant and pseudo-
differentiable measures.

Let now G’ := lh) be generated by (M, aaj ~ (N,0))
as in §1.3.5, then it is the dense O-subgroup in N), where c > o and
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~ >0.
5.2. Theorem. Let G := the O-group as in §~~ and

At(M) be finite. Then there ezist quasi-invariant and pseudo-differentiable
measures on G with values in [0, oo) and in Qq (for each prime number q
such that p ) relative to a dense O-subgroup G’ .

Proof. In view of the definition of the space Go (~, M --~ Yj the mapping
4 given by Fbrmula 1.3.6.(3) for At(M) instead of At’(M) is the isomorphism
of ~ (N, o)) onto the Banach subspace of Z for 03BE = (t,s),
since At(M) is finite and are bounded in X (see ~L2.4.Ij. In view

of the existence of the mapping ww,(V) given by Formulas 1.2.8.(3,4) there
exists the local diffeomorphism T : --~ V’o induced by ~4 and 1~,~, where
We is a neighbourhood of 0 in V’o is a neighbourhood of zero
either in the Banach subspace il of Y) for dimKM  o0 or in the

Banach subspace H of c0({T0W03BE’(Ma, Y) a E N?) for dimKM = No.
Let now W’e be a neighbourhood of 0 in G’ such that W’eWe = We. It

is possible, since the topology in G and G is given by the corresponding
ultrametrics and there exists We with WeWe = We, hence it is sufficient to
take W’e C We. For g E We, v = E W’e the following operator
S~(v) := ~’ o L~ o ’~"1(vj - v is defined for each v) E ’6V~ x Va, where
L.(g) := Then S~(v) E V" o c where V" o is an open neighbourhood
of the zero section either in the Banach subspace H’ ofT.G’ for dimKM  o0

or in the Banach subspace H’ of E N}) for dimKM = N0, where
Ga = N). Moreover, S.(v) is the C(oo)-mapping by 03C6 and v. The
rest of the proof is quite analogous to that of Theorem 1.3.6.

5.3. Note. O-groups can be defined in another topology with the help
of E N~), where H j := U j --~ Y). Then on such 0-groups
quasi-invariant and pseudo-differentiable measures can be constructed quite
analogously.

6 Notation.

K is a local field; N := ~1, 2~ 3, ...}; No := t0,1, 2, ...~;
B(X, x, r) and B(X, x, are balls §I.2.2;
Qm are polynomials §1.2.2;
X = co(a, K), Y = co(Q, K), E 03B1} and {qi : i E /?} are orthonormal

bases in Banach spaces X and Y; M and N are manifolds on X and Y
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respectively §1.2.4;
At(M) = {(Uj,03C6j) : j E M} and AT(N) = {(Vk,03C8k) : k E N} are

atlases §1.2.4;
C(t, M ~ Y) and Co(t, M ~ Y) are spaces, = ~f~t and

~f~C0(t,M~Y) are norms §I.2.4;
and are ultrametrics in Cs (~, M -~ N) and -

N) respectively, I = t or ~ = (t, s), for s > U the manifold M is locally
compact, for s = 0 the manifold M may be non-locally compact §1.2.4.3;

Hom(M) is a homeomorphism group §L2.4.4;
G(é, M) and Diff(03BE, M) are diffeomorphism groups §L2.4.4;
M = M B {0}, M  c0(03C90,K), At’(M) = {(Uj,03C6’j) : j E s0 = 0

and 0 are marked points of M and N respectively §1.2.5;
x : M V M ~ M is a mapping §I.2.6;
Go(,M) is a subgroup and --~ is a subspace pre-

serving marked points, K~ is an equivalence relation, ~G ~ >K~ is a class of
equivalent elements §1.2.6;

N) is a loop semigroup §1.2.6;
P(t, s) is an antiderivation §L2.1~;
B f (X’), and Bco(X’) are algebras of subsets of X’, N~ is a

function §1.3.1;
pp(h,g) is a quasi-invariance factor §i.3.3;
S03BE(M, N) is a path semigroup §IL4.1;

N) is a loop group ~IL2.1;
is a path group §II.4.1;
is an O-group §IL5.1.
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