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On the solution set of second-order delay differential
inclusions in Banach spaces

A. Sghir

Ann. Math. Blaise Pascal, Vol. 7, N° 1. 2000, pp.65-79

Abstract

In this paper, we consider the second-order delay differential inclusion x" (t) E
Ax(t) + F(t, xt) in a Banach space and we study some properties of its solution
set. We prove a relaxation theorem which reveals the connection between the
solution sets of a second-order delay differential inclusion and its convexified
version, under some weak conditions.

1991 Mathematics Subject Classification. Primary 34K10, 34K15, 34K30.
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1 Introduction

Many problems in applied mathematics, such as those in control theory, lead to the
study of second-order delay differential inclusions

x" (t) ~ Ax(t) + F(t, xt) , (1)

where A is the infinitesimal generator of a Co-propagator of linear operators (C(t))tER
on a Banach space (E, |.|E) and F is a nonlinear multimapping, satisfying assumptions
to be specified in the third section.
As particular cases of relations of the form (I) we have:
i) The second-order delay differential equation

x" (t) = Ax(t) + f (t, xt)

where F(t, xt) = J(t, xt).
ii) The differential inequalities

(t) _ xt)|E ~ g(t, xt)

where F(t, xt) is the ball of radius g(t, xt) centered at Ax(t) + f(t, xt).
iii) Control problems where the control u(t) and the trajectory x(t) are related by the
second-order delay differential equation 

’

x" (t) = + f(t, xt~ u(t)), u(t) E U(t).
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Here, the control function u(t) is a measurable function and F(t, xt) = f (t, xt, U(t)).
This paper is concerned with the second-order delay differential inclusion (1) and its
mild trajectories. We show that many results which allow us to apply differential
inclusions, see for example ~l, 3, 8,10,13~ and references therein, are valid as well for
(1). In our relaxation theorem, the assumption of integrale boundedness (condition
(H4)) will be replaced by an integrability condition (condition (H3)). We also give
some properties of the solution set of the inclusion (1).

2 Preliminaries

For a real Banach space and J := ~-r, 0~ (r > 0), let G := C(~-r, 0]; E) be
the Banach space of continuous functions from J to E with the usual supremum norm

~.~. For any continuous function x E C([-r,03C9]; E) (w > 0) and any t ~ I := [0,03C9] we
denote by xt the element of C defined by = x(t + 8), 8 e J.
For a subset A C E, coA, coA and clA are respectively the convex hull, the closed
convex hull and the closure. We denote by ~’(E) (resp. the family of all

nonempty closed (resp. closed convex) subsets of E, and by 03B4 the Hausdorff distance
in F(E), i.e. for A, B E F(E)

~(j4, B) = max[sup(d(a, B), sup d(b, A)~

where d ( a, B ) = inf d ( a, b) .
bEB

Next we present some basic concepts concerning multimappings.
Let X be another Banach space, for a multimapping G : X  (the family of all
nonempty subsets of E), we define its lim sup and lim inf at x E X in the Kuratowski
sense by

lim sup G(y) = ~z E E : lim inf d(z, G(y)) = 0~
~-~~

and

liminf G(y) = {z E E : lim d(z, G(y)) = 0}.~-~ y-x

We say that the limit of G(y) as y tends to x exists in the Kuratowski sense if

lim sup G(y) = lim inf G(y).
y~x

We denote this limit by lim G(y) = G(x). We say that G is upper (resp. lower)
y~x

semicontinuous at x if

lim sup G(y) C G(x) (resp. G(x) C liminf G(y)).
y-ax ~~~

If G is both upper and lower semicontinuous at x then we say that G is continuous at

x. If G is continuous or semicontinuous for all x E X, we say that G is continuous or
semicontinuous on X.
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Let G : : I --; P(E) be a multimapping. A function g : .~ --~ E such that g(t) E G(t) for
every t ~ I is called a selection of G.
G is called measurable if, for almost all t E I

G(t) ç > 1}

where gn are measurable selections of G. This definition of the mesurability is given
by Zhu [13], when E is separable and G(t) E for every t E I this definition is the
same as the classic one (see for example [3]).
By the symbol of I~ we will denote the set of all Bochner integrable selections of the
multimapping G, i.e.

I1G = {9 E L1(I; E) : g(t) E G(t) a.e.}.

If I1G ~ 0, then the measurable multimapping G is called integrable and

G{t)dt = : g E I1G}.
I I

Clearly if G is measurable and integrably bounded, i.e. there exists v E L1+(I) such
that

:= sup{|e|E : e E  v{t) a.e.
then G is integrable. But the converse is not true.
We will also need the following properties (see [13]) which will be used later.
Lemma 2.1 Let G : : ~ --~ P(E) be a measurable multimapping. Then so is coG.
Lemma 2.2 Let G : I --~ P(E) be an integrable multimapping. Then cl f I G(t)dt is a
convex set and

cl I G(t)dt = cl I coG(t)dt = cl I coG(t)dt.
Remark If G : I --; P(E) is an integrable multimapping, then so is G where G(t) =
clG(t) and

cl G{t)dt = cl G(t)dt
(indeed cl II G(t)dt c cl ~~ G(t)dt C cl f ~ coG(t)dt = cl f I G(t)dt).
Lemma 2.3 Let G : I --~ P(E) be a measurable multimapping and u : : 1 --~ E a

measurable function. Then for any measurable function v : I --~ there exists a
measurable selection g of G such that

~ + a.e.

At last, we give some important properties of a Co-propagator and its infinitesimal
generator (see [7]).
A strongly continuous propagator of continuous operators on E is a family
of continuous linear mappings C(t) : : E --~ E, t E I~, satisfying
i) C(0) = I ;
ii) C(t + s) + C(t - s) = 2C(t)C(s) ;
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iii) for x E E, C(.)~ : E is continuous.
A strongly continuous propagator of continuous linear mappings is also called a Co-
propagator. A linear operator A is associated with a propagator, it plays the role of
the infinitesimal generator for Co-semigroups:

D(A) = {.r E : lim 2 h2[C(h) - I]x exists}h0

and

Ax =lim 2 h2[C(h) - I]x for x ~ D(A) )
is the infinitesimal generator of the Co-propagator (C(t))t~R, D(A) is the domain of
A. We have:
- There exist constants ~ > 0 and r~ > 1 such that

~C(t)~ ~ ~e03B1|t| for t E R.

- D(A) is dense in E and A is a closed linear operator.
- For every x E D(A) and t E R, then C(t)x E D(A) and

d2 dt2C(t)x = AC(t)x = C(t)Ax.

- Let a, b E E and f E ~~(~I; ~), the function u E C(I; E) given by

u(t) = C(t)a + S(t)b + t0 S(t-s)(f(s))ds, t ~ I

is the mild solution on I of the initial value problem

u"(t) = Au(t) + f(t), t ~ I
u(0) = a, u’(0) = b

where S(t) = f~ C(s)ds. Nloreover

|u(t)|E ~ ~e03B1t|a|E + ~03B1-1(e03B1t - 1)|b|E + ~03B1-1(e03B103C9 - 1)~f~1 , t ~ I

(03B1-1(e03B1t - 1) is replaced by t when cx = 0). If a = 0 then u is continuously differentiableand
~e03B1t |b|E + ~e03B103C9 ~f~1, t ~ I.

3 The solution set of a second-order delay differen-
t ial inclusion and a relaxat ion theorem

Consider the functional differential inclusion
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Definition 3.1 A function ~ G C~ := C([2014r~J; E) is called a mild trajectory of (3.1)~
if there exist ~ 6 B := {~ C : ~/(0) exists} and a Bochner integrable function
/ L~(7;E) such that

in 1 (2)

and

x(t) = 03C6(t), t ~ J 
(3)C(t)03C6(0) + S(t)03C6’(0) + t0S(t - s)(f(s))ds, t ~ I

i.e.) f is a Bochner integrable selection of the multimapping t ~ F(t,xt) and x is a

mild solution of the initial value problem

(4) x"(t) = Ax(t) + f(t), t ~ I

x0 = 03C6, 03C6 ~ B.

For 03C6 B, we define = {x is a mild trajectory of (3.1) with x0 = 03C6} to
be the solution set of (3.1) from the point p.
Let 03C8 G L1(I, jE) and y 6 C03C9 be a mild solution of the problem

(C) y"(t) = Ay(t) + g(t), t ~ I

y0 = 03C8.
’ ~*

Suppose that the multimapping F : : I x C 2014~ ?"(~) satisfies the following conditions:
H1) For every 03C6 C, the multimapping F(., 03C6) is measurable on 7.
H2) There is an integrable function A:: 7 2014~ R+ such that for every ~ ~ G C,

~F~~F(~~))~)~-~ 

~3) The function q: t ’2014~ d(g(t), is integrable on I.

Rg) For any function :r CúJ, the multimapping t ’2014~ F(t, ~) is integrable on /.
.H~) There is an integrable function ~ ~ ~~(~) such that .

:= sup{|y|E : 2/ F(t, 03C6)} ~ 03BD(t)

for all § C and almost all t ~ I.
Remarks
- When F satisfies (H1) and (H2), then t ~ F(t,yt) and q are measurable on I.
- is measurable, then the condition (H’3) gives (H3).
- When F satisfies (HI) and (H2) it satisfies (~3) if and only if it satisfies: there is

z C~ such that the multimapping t 2014)- F(t, ~) is integrable (see [13j).
- When F satisfies (~2)? then for every integrable function k’ > k and ~,~ C ,

F(t, ~) G F(t, ~) + a.e. in I

where B denotes the closed unit ball in E.

Next we present a useful result on the relationships between the trajectories of (3.1)
and the solutions of problem (C).
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Theorem 3.I Let qb e B, g e L1(I; E) and y e C03C9 be a mild solution of problem
(C). Assume that (H1) - (H3) hold true and let p > 0. Then for all p e B with

~03C6 - 03C8~  p, |03C6’(0) - 03C8’(0)|E  p and for all integrable function v : I - IR+, there
exist z e C, and f e L1(I; E) satisfying (2), (3) and

~x - y~03C9 ~ K(03C9)m(03C9), llf - g~1 ~ K(w)m(w)

where M = q(e°" + e03B103C9- 1 03B1), (e03B103C9 - 1 03B1 is replaced by w when a = 0) ,

K(t) = MexpM / 2k(s)ds, m(t) = p + t0 (q(s) + v(s))ds.
Proof. By lemma 2.3, there is a measurable selection fi of the multimapping
t - F(t, yt) such that, for almost all t e I,

|f1(t) - g(t) lE ~ d(g(t), F(t, yt)) + v(t)
 q(t) + v(t)

and then fi e L1(I; E). Set

~i ~~~ _ j w(t) 
if t e J

x 1(t) = C(t)03C6(0) + S(t)03C6’(0) + t0S(t - s)(f1(s))ds if t ~ I

we have x1 e C03C9 and for all t ~ I,

~x1t - Ytll =sup |x1(t + 9> - y(t + 03B8)|E
ocJ

 M(p + j§ ) fi (s) - g(s)|Eds)
 M> + t0(q(s) + v(s))ds).

By using lemma 2.3, there is a measurable selection f2 of the multimapping
t - F(t, z§ ) such that, for almost all t ~ I,

- f1(t)|E  2d( fi (t), F(t, z§))
 26(F (t , yt ) , F(t, , z§ ) )
 2k (t) ~x1t - yt~

and then f2 e L1(I; E). Set

03C6(t) if t ~ Jx2 (t) = C(t)03C6(0) + S(t)03C6’(0) + t0 S(t - s)(f2(s))ds if t ~ I.

Thus, we can define by induction two sequences (xn) and (fn) with xn ~ Cw and

fn e L1(I; E) such that:
i) x0 = y and for all n ~ 1 ,

{ 03C6(t) if t ~ J
xn(t) = C(t)03C6(0) + S(t)03C6’(0) + t0 S(t - s)(fn(s))ds if t ~ I;
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it) fo = g and for all n > i

fn(t) ~ F(t, xn-1t) a.e. in I;

iii) for almost all t ~ I and n > I,

lfn+1(t) - fn(t)|E ~ 2k(t)~xnt - xn-1t~.

It follows then from (iii) that
iv) for all t ~ I and n > 1 ,

z? ll  M t0 |fn+1(t1) - fn(t1)|Edt1
 M t0 2k(t1)~xnt1 - xn-1t1~dt1
 M t0 2k(t1)[M t10 2k(t2)~xn-1t2 - xn-2t2~dt2]dt1

~ Mn t0 2k(t1) t10 2k(t2) .. . tn-10 
2k(tn)

~ x1tn - ytn~dtn ... dt1

~ M[~ + t0(q(s) + v(s))ds]. 
[M t0 2k(s)ds]n n!.

Then, for all n > I

~xn+1 - xn~w : = max(~xn-1 - xn~, sup |xn+1(t) - xn(t)|E)
tcI

~ ~~P 
~ 

tcI

 SUp - Z§l ))
tci

~ Af’~~(~) 
~~’ ~~ 

By (iv) we obtain for all t ~ I and n > I ,
n

Yt ll ~ ~x1t - yt~ + £ "l ll
I=1

~ Mm(t)[1 + 03A3 [M t0 2k(s)ds]i i! ]
I=1 

 K(t)m(t).

We deduce that (z") is a Cauchy sequence of a continuous functions, converging uni-
formly to a function z e C03C9 and for almost all t ~ I, (fn(t)) is a Cauchy sequence in



72

E, hence (fn(.~~ converges pointwise almost everywhere to a measurable function f (.)
in E. But for almost all t ~ I and n E N

n

|fn+1(t) - g(t)|E ~ 03A3 |fi+1(t) - fi(t)|E + |f1(t) - g(t)|E
i=r

n

~ 2k(t) 03A3~xit - + q(t) d- v(t)
i=1

 + q(t) + vet)

hence, _ ~g(t)~E + 2k(t)K(w)m(w) -~q(t) +v(t), thus (fn) converges to f in
Ll(I;E~ and then (t E ~-r,w~) converges in E to

03C6(t) if t ~ JC(t)03C6(0) + S(t)03C6’(0) + t0 S(t - s)(f(s))ds if t ~ I,

we obtain

_ ( l + S(t)cp’(0) + fo S(t - s}( f (s))ds E 1.

Furthermore, for almost all t ~ I

d(f(t),F(t,xt)) ~ |f(t) - fn(t)|E + d(fn(t),F(t, xt))
 

~ 

The right hand side tends to zero almost everywhere on I as n ~ +~. Thus, for
almost all t ~ I, f(t) ~ F(t, xt).
Consequently x ~ SF(03C6), moreover, for all n E N

~xn+1-y~w ~ sup ~xn+1t - yt~
tEl

~ K(03C9)m(03C9).

Taking limits in the precedent inequality, we have ~x - y~03C9  K(03C9)m(03C9).
We now show gill _ K(03C9)m(03C9).
For almost all t ~ I and n E N‘ , we have

|fn+1 (t) - g(t)|E ~ q(t) + v(t) + 2k(t)Mm(03C9) 03A3 [M t0 sk(s)ds]i-1 (i-1)!i=1
thus,
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Taking the limit in the above inequality, we obtain gill  m(03C9)K(03C9). []

In the next theorem we compare trajectories of (3.1) and of the convexified (relaxed)
second-order delay differential inclusion x" (t) E Ax(t) + coF(t, xt) (3.2).
For 03C6 B, we put

ScoF(03C6) = {x ~ C03C9 : x is a trajectory of (3.2) with x0 = 03C6}.

Theorem 3.2 Assume that F satisfies conditions (HI) , (H2) and (J?g). Then, for all
~p E B,

clSF(03C6) = clScoF(03C6).

Proof. It is easy to see that clSF(03C6) ~ clScoF(03C6). Conversly, we shall show that

ScoF(03C6) ~ clSF(03C6). Let y ~ ScoF(03C6), then there exists g ~ L1(I; E) such that

03C6(t) if t ~ J
y(t) = C(t)03C6(0) + S(t)03C6’(0) + t0 S(t - s) (g(s))ds if t ~ I

where g(s) ~ coF(s, ys) a.e. in I.
The following result follows immediately from [3 p. 85]. .
Lemma 3.1

Let G I ---~ P(E) be a measurable multimapping, then so is
s -~ S(t -- s)G(s). Moreover if I(s) E S(t - s)G(s) then, there exists a measurable
selection g(s) E G(s) such that 1(8) = S(t - s)g(s) a.e. in I.
By (J~g) for all fixed t in I, the multimapping s f--~ S(t - s)F(s, yg) is integrable on I
and by lemma 2.2 and its remark we obtain

s ~--~ clS(t - s)F(s,ys) and s ~ coS(t - s)F(s, ys)

are also integrable on I and

cl IS(t - s)F(s, ys)ds = cl IclS(t - s)F(s, ys)ds
= cl IcoS(t - s)F(s, ys)ds

but, coS(t - s)F(s, y9) = clS(t - s)coF(s, y$), indeed

S(t - C clS(t - s)coF(s, ys)

which is a closed convex set and then

coS(t - s)F(s, y9) c clS(t - s)coF(s, Ys),

conversly, it suffice to see that
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let f(s) E S(t - then there exists g(s) E z6F(s, ys) such that
f(s) = S(t - s)g(s) hence, there exists a sequence (gn(s)) such that coF(s, ys)
and lim gn(s) = g(s), we put

n~+~

fn(s) = s(t - E S(t - = cos(t - s)F(s, ys)

and taking the limit +~, we obtain

f(s) = S(t - s)g(s) ~ cl coS‘(t - s)F(s, ys)

thus,

cl I S(t - s)F(s, ys)ds = cl IclS(t - s)coF(s, ys)ds
= cl I S(t - s)coF(s, ys)ds

(see remark of lemma 2.2).
By lemma 3.1, we obtain for all £ > 0 an integrable selection h(s) E a.e. such

that

( 1 S(t - S)(9(S))ds - r S(t ‘~  ~~,~,~~ 
set 

z(t) = 03C6(t) if t ~ JC(t)03C6(0) + S(t)03C6’(0) + t0 S(t - s)(h(s))ds if t ~ I

then z is a mild solution of problem

z"(t) = Az(t) + h(t)
z0 = 03C6.

Moreover by assumption (H’3), the function t ~ q(t) = d(h(t) , F(t, zt) ) is integrable
on I. It follows from theorem 3.1 for  = 0 and v(t) = ~ K(w)(~k~1+03C9)+1 there exists
x E such that

K(03C9)[03C90 q(t)dt + 03C90 v(t)dt]

~ 
" 

thus,
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4 Some properties of the solution set
In this section, we discuss the continuous dependence of the solution set on parameters
and initial value. We suppose that E is a reflexive Banach space.
Theorem 4.1. Let (A, dA) be a metric space, : I X C ~ Fc(E) a family of
multimappings satisfying conditions (-Hi), (H2) with the same function k and (H4 ) for
the same function v. If for any (t, E I x C, lim 03B4(F03BB(t,03C6), F03BB0(t, 03C6)) = 0, then for

03BB~03BB0

all 03C6 E B, A ~ SF03BB (p) is upper semi continuous at 03BB0.
Proof. Let x Elim sup SF~ (cp), there exists a sequence (An) such that lim an = ~

03BB~03BB0 n~+~

and E SF03BBn(03C6) such that lim x03BBn = x in Cw, hence
n~+~

x03BBn (t) = { 03C6(t) if t ~ J

C(t)03C6(0) + S(t)03C6’(0) + t0 S(t - s)(f03BBn(s))ds if t ~ I

where f03BBn (s) ~ F03BBn (s, x03BBns) a.e. in I.
The sequence ( f an ) is integrably bounded and E is reflexive, then by the Dunford-Pettis
theorem [12], taking a subsequence and keeping the same notation, we may assume that
it converges weakly in L1(I; E) to some function f E L1 (I; E). For each t ~ I, the

mapping

g ~ L1(I; E) ~ t0 S(t - s)(g(s))ds
is a continuous linear operator from L1(I; E) into F. It remains continuous if these
spaces are endowed with the weak topologies ~2~ . Therefore for each t E I, the sequence
(x03BBn(t)) converges weakly to C(t)p(0) + S(t)03C6’(0) + fo S(t - s)( f (s))ds. Since by
assumption converges to x(t) in E, we have

x(t) = + + t0 S(t - s)(f(s))ds.
We claim that f (s) E x9) a.e. According to Mazur’s theorem [6], the weak
convergence implies the existence of the double sequence of nonnegative numbers (am,n)
such that

i) am,n = 0 for n > n0(m);
no(m)

ii) E = 1 for 
n=m

n0(m)
iii) the sequence ( f m), where f m (t) _ ~ converges to f with respect to

n=m

the norm of the space ~1 (I, E). Passing if necessary to a subsequence we can assume
that ( f m? ) converges to f almost everywhere on I. Moreover for almost everywhere
s ~ I
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and since lim ~(Fa(~, ~); ~)) = 0, then
03BB~03BB0

Vs > 0, ~N ~ N : ~n > N, f an (s) E + 2~B a.e. in I

where B is the closed unit ball in E, and then, for all n > N

no(mj)

fm; (s) E 03A3 03B1mj,n(F03BB0(s, xs) + 2~B) = + 2~B
~ 

n=mj

taking the limit in the above formula, we deduce that for all e > 0,

f(s) E + 2~B a.e. in I, and then

I(s) E a.e. in I.

Remark Since, in the theorem 4.1, the assumption E is reflexive is used only for

deducing the sequence ( f ~" ) converges weakly in ~1 (I ; .E), it may be replaced by the
following assumption: there exists a k > 0 such that for all bounded subset S~ C ~

~(F(t, 03A9)) ~ k~0(03A9) for all t ~ I

where x (resp. xo) is the measure of noncompactness in E (resp. C) (see for example
[4,11]). In this case, we obtain

. E l~}) = o

for almost all t E I, i.e. the set { f an (t) : n E N} is relatively compact in E a.e. in I

and since sup ~f03BBn~1  +x, then from Diestel’theorem [4] it follows that the sequence
n~N

( f an ) is relatively weak compact in the space L1 (I; E) .

Theorem 4.2 (E is not reflexive). Let (A,dA) be a metric space, Fx : : I x C ~ F(E)
a family of multimappings satisfying the conditions (.Hi), (H2) with the same function
k. If for any (t, ~) E ~ x C the multimapping A 2014~ ~) is lower semicontinuous at
Ao E A, then for all cp E B, A ~ SF03BB (p) is lower semicontinuous at 03BB0.
Proof. Since the case SF, (p) = Ø is trivial, we assume that SF03BB0 (p) ~ Ø. Let

x E SF03BB0 (p) then, 
° °

03C6(t) if t ~ J
x(t) = C(t)03C6(0) + S(t)03C6’(0) + t0 S(t - s)(f(s))ds if t ~ I

where I(s) E C lim inf Fa(s, xs) a.e. in I, thus
03BB~03BB0

lim d( f (s); Fa(s, = 0 a.e., and then for ~ > 0, there exists p > 0 such that
03BB~03BB0

d(03BB, 03BB0)  03C1 implies d(f(s), F03BB(s, xs))  ~ 203C9K(03C9). Thus for 03BB ~ such that

d(03BB, 03BB0)  03C1, t ~ d(f(t), F03BB(t, xt)) = q(t)

is integrable and x is a mild solution of
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and by theorem 3.1 with  = 0 and v(t) = ~ 203C9K(03C9) there exists a function x03BB ~ SF03BB(03C6)
(for ~o)  p) such that

= + = e,

hence ~ eliminf S~(~). N
03BB~03BB0

Combining theorems 4.1 and 4.2, we obtain.
Corollary Let (A, dA) be a metric space, a family of multi mappings
satisfying the conditions (~i), (H2) with the same function k and (H4) with the same
function v. If for any (~ ~) I x C, lim ~(F~(~ ~), ~)) = 0, then for all p E B,

03BB~03BB0
A t2014~ is continuous at Ao.
Theorem 4.3 Assume that F : / x C - satisfying the conditions (T~i), (H2)
and (H4). Then SF C~ -~ is continuous on CB where C~ := denote
the Banach space of continuously differentiable E-valued functions on J with the norm
~03C6~C1 = ~03C6~ + ~03C6’~..
Proof. For any 03C61, 03C62 ~ C1, let F03C62 (t, 03C6) = F(t,03C6 + (2)t - (1)t) for all (t, 03C6) ~ I  C
then SF(03C62) = SF03C62 (03C61) + 2 - 1 where

(t) = 03C6(t) if t ~ JC(t)03C6(0) + S(t)03C6’(0) if t ~ I
indeed,

03C61(t) if t ~ Jx ~ SF03C62(03C61) ~ x(t) = C(t)03C61(0) + S(t)03C6’1(0) + t0 S(t - s)(f(s))ds if t ~ I

where f(s) ~ F03C62(x,xs) a.e.

~ x(t) + 2(t) - 1 (t) = 03C62(t)C(t)03C62(0) + S(t)03C6’2(0) + t0 S(t - s)(f(s))ds
where F(s,xs + (2)s - (1)s) = F(s, (x + 2 - 1)s) a.e.

Furthermore, it is clear that p2 ~ F03C62(t, 03C6) (for all (t, 03C6) ~ I x C) is continuous at 03C61
and the family satisfy the assumptions of precedent corollary, therefore for
all 03C6 ~ C1,03C62 ~ SF03C62(03C6) is continuous at 03C61 and then

lim SF(03C62) = lim (SF03C62(03C61) + 2 - 1); 1 2 1 2

= 

= SF(03C61). []

Theorem 4.4 (E is not reflexive) Assume that f : : I x C 2014~ satisfying the
conditions (~?i), (H2) and (7~) i.e. there exists a compact K C ~ such that for every

7 x C, F(t, 03C6) c K. Then for all 03C6 ~ B, is compact.
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Proof. We prove first that SF(03C6) is relatively compact. Let (xn) be a sequence of
SF(03C6), then for all n E N

, 

if t E J
x (t) = { C(t)03C6(0) + S(t)03C6’(0) + t0 S(t - s)(fn(s))ds if t ~ I

where In(s) E a.e. in I.

We shall show that A := E N} is equicontinuous. For each 0  to  t  ~r and
n ~ N

|xn(t) - xn(t0)|E ~ |C(t)03C6(0) - C(t0)03C6(0)|E + |S(t)03C6’(0) - S(t0)03C6’(0)|E +

t00 ~S(t - s) - S(t0 - s)~ |fn(s)|Eds + tt0~S(t - s)~ |fn(s)|Eds

but,

~S(t - s) - S(t0 - s)~ = ~t-s0 C()d - t0-s0 C()d~
~ t-st0-s~C()~d
~ t-st0-s~e03B1d
~ ~03B1-1[e03B1(t-s) - e03B1(t0-s)]
~ ~(t - t0)e03B103C9

(03B1-1[e03B1(t-s) - e03B1(t0-s)] is replaced by t - t0 when 03B1 = 0), then

t00~S(t - s) - S(t0 - s)~ |fn(s)|Eds ~ ~(t - t0)e03B103C9 t00 |fn(s)|Eds.
Also,

t ~S(t - s)~ |fn(s)|Eds ~ ~(t - t0)e03B103C9 t0 |fn(s)|E ds.to to
Since fn are integrably bounded and the maps t --~ C(t)cp(o), t --~ S(t)p’(0) are uni-
formly continuous on I, we obtain that A is equi continuous, clearly it is also bounded.
Now, we prove that A(t) = E N} is relatively compact. For all s E I,
S(t - s) : E -~ E is continuous, then by assumption (H4) we have that
Ki = {S(t - [0, t] and n E N} is relatively compact, thus K2 = coK1 is
compact and K3 = ~tx : (t, x) E I x K2} is compact. Consequently
A(t) C C(t)cp(o) +S(t)cp’(0) + K3 is relatively compact. From the Ascoli theorem ~4, I1~
we may assume that the sequence (xn) converges to some x E C~,. We prove next that
x E By condition (H~), the set { f~,(t) : n E N} is relatively compact in E and
since sup  +0o, then from Diestel’s theorem [4] it follows that the sequence

nEIN

( fn) is relatively weak compact in the space E) and by using exactly the same
method as in the proof of theorem 4.1 we obtain x E 
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