R.Z. ABDULLAEV V.I. CHILIN Arens algebras, associated with commutative von Neumann algebras

Annales mathématiques Blaise Pascal, tome 5, nº 1 (1998), p. 1-12 http://www.numdam.org/item?id=AMBP_1998_5_1_1_0>

© Annales mathématiques Blaise Pascal, 1998, tous droits réservés.

L'accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http: //math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Math. Blaise Pascal, Vol. 5, N° 1, 1998, pp.1-12

ARENS ALGEBRAS, ASSOCIATED WITH COMMUTATIVE VON NEUMANN ALGEBRAS

ABDULLAEV R.Z., CHILIN V.I.

1. Introduction. Let (Ω, Σ, μ) be a measurable space with a finite measure, $L^{p}(\mu) = L^{p}(\Omega, \Sigma, \mu)$ the Banach space of all μ -measurable complex functions on Ω , integrable with the degree, $p \in [1, +\infty)$. R. Arens [1] introduced and studied the set $L^{\omega}(\mu) = \bigcap L^{p}(\mu)$. He showed, $1 \le p < \infty$ in particular, that $L^{\omega}(\mu)$ is a complete locally-convex metrizable algebra with respect to "t" topology generated by the system of norms $||f||_p =$ $\left(\int_{\Omega} |f|^p d\mu\right)^{1/p}$, $p \ge 1$. Later G.R. Allan [2] observed that $(L^{\omega}(\mu), t)$ is a GB^* -algebra with the unit ball $B_0 = \{f \in L^\infty : ||f||_p \leq 1\}$. Further investigation of properties of the Arens algebra $L^{\omega}(\mu)$ was made by S.J. Bhaft [3,4]. He described the ideals of the algebra $L^{\omega}(\mu)$ and considered some classes of homomorphism of this algebra. B.S. Zakirov [5] showed that $L^{\omega}(\mu)$ is an EW*-algebra and gave an example of two measures, μ and ν , on an atomic Boolean algebra, for which the algebras $L^{\omega}(\mu)$ and $L^{\omega}(\nu)$ are not isomorphic. It is clear that the problem of complete classification of the Arens algebras arises. Speaking more preciesly, what conditions should be imposed on measures μ and ν for the corresponding Arens algebras to be isomorphic? It is natural to solve this problem in the class of equivalent measures. Therefore instead of a measurable space with a measure, one should consider a commutative von Neumann algebra M with faithful normal finite traces μ and ν on M and study the problem of *-isomorphism of EW^* - algebras $L^{\omega}(M;\mu) = \bigcap L^p(M;\mu)$ and $L^{\omega}(M,\nu)$ $1 \le p \le \infty$

The present article gives the complete solution of the mentioned problem, a classification of the normalized Boolean algebras from the book by D.A. Vladimirov [6] being considerably used. All neccessary notations and results from the theory of von Neumann algebras are taken from [7] and the theory of integration on von Neumann algebras is from [8].

2. Preliminaries. Let M be an arbitrary von Neumann algebra, μ a faithful normal finite trace on M, P(M) the lattice of all projections of M. Let $K(M, \mu)$ be the *-algebra of all μ -measurable operators affiliated with M [8].

In the commutative case, when $M = L^{\infty}(\Omega, \Sigma, \mu)$ and $\mu(x) = \int_{\Omega} x \, d\mu$, where (Ω, Σ, μ) is a measurable space, the algebra $K(M, \mu)$ coincides with the algebra of all measurable complex functions on (Ω, Σ, μ) .

For every set $A \subset K(M, \mu)$ we shall denote by A_h (respectively, by A_+) the set of all self-adjoint (respectively, positive self-adjoint) operators from A. The partial order in $K_h(M, \mu)$ generated by the positive cone $K_+(M, \mu)$ will be denoted by $x \leq y$.

Put $M(x) = \sup\{\mu(y)|0 \le y \le x, y \in M\}$ for every $x \in K_+(M,\mu)$. Let $p \in [1,\infty)$ and $L^p(M,\mu) = \{x \in K(M,\mu)|\mu(|x|^p) < \infty\}$, where $|x| = (x^*x)^{1/2}$. The set $L^p(M,\mu)$ is a subspace in $K(M,\mu)$ and the function $||x||_p = \mu(|x|^p)^{1/p}$ is a Banach norm on $L^p(M,\mu)$ [9]. Moreover,

1. $||x||_p = ||x^*||_p = ||xu||_p$ for all $x \in L^p(M, \mu)$ and a unitary element $u \in M$;

2. If $|x| \leq |y|$, $x \in K(M, \mu)$, $y \in L^p(M, \mu)$, then $x \in L^p(M, \mu)$ and $||x||_p \leq ||y||_p$;

3. If $x \in L^p(M, \mu)$, $y \in L^q(M, \mu)$ with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, $1 < p, q, r < \infty$, then $xy \in L^r(M, \mu)$ and $\|xy\|_r \le \|x\|_p \|y\|_q$.

From these properties of the norm $\|\cdot\|_p$ it follows that the set $L^{\omega}(M,\mu)$ = $\bigcap_{1 \le p < \infty} L_p(M,\mu)$ is a *-subalgebra in $K(M,\mu)$, and $M \subset L^{\omega}(M,\mu)$. It was

shown in [5] that $M = L^{\omega}(M, \mu)$ if and only if dim $M < \infty$. Furthermore, since $L^{\omega}(M, \mu)$ is a solid *-subalgebra in $K(M, \mu)$ (e.g. the inequality $|x| \leq |y|, x \in K(M, \mu), y \in L^{\omega}(M, \mu)$ implies $x \in L^{\omega}(M, \mu)$), $L^{\omega}(M, \mu)$ is an EW^* -algebra, the bounded part of which coincides with M [10].

Now we cite from [6] some information which will be used in the sequel.

Let X be an arbitrary complete Boolean algebra, $e \in X$, $X_e = [0, e] = \{g \in X | g \leq e\}$. The minimal cardinality of the set which is dense in X_e in the (o)-topology will be denoted $\tau(X_e)$. An infinite complete Boolean algebra X is called homogeneous, if $\tau(X_e) = \tau(X_g)$ for any non-zero $e, g \in X$. The cardinality of $\tau(X) = \tau(X_I)$ where $\mathbf{1}$ - is the unit of the Boolean algebra X is called a weight of a homogeneous Boolean algebra X.

Let μ be a strictly positive countably additive measure on X. If $\mu(\mathbf{1}) = 1$, then the pair (X, μ) is called a normalized Boolean algebra. It was shown in [6] that for any cardinal number τ there existed a complete homogeneous normalized Boolean algebra X with the weight $\tau(X) = \tau$. The next theorem gives a criterion of isomorphism of two homogeneous normalized Boolean algebras.

Theorem ([6]). Let (X, μ) and (Y, ν) be homogeneous normalized Boolean algebras. The following conditions are equivalent:

- 1) $\tau(X) = \tau(Y);$
- 2) There exists an isomorphism $\varphi : X \to Y$ for which $\nu(\varphi(x)) = \mu(x)$ for all $x \in X$.

This theorem enables us to describe the class of von Neumann algebras for which the existence of *-isomorphism between the Arens algebras $L^{w}(M,\mu)$ and $L^{\omega}(N,\nu)$ is equivalent to isomorphism between M and N.

Proposition 1. Let M and N be commutative von Neumann algebras, the Boolean algebras P(M) and P(N) of which are homogeneous, and let μ and ν be faithful normal finite traces on M and N, respectively. The following conditions are equivalent:

- 1) The Arens algebras $L^{\omega}(M,\mu)$ and $L^{\omega}(N,\nu)$ are *-isomorphic;
- 2) The von Neumann algebras M and N are *-isomorphic;
- 3) $\tau(P(M)) = \tau(P(N)).$

Proof. Sience $L^{\omega}(M,\mu)$ and $L^{\omega}(N,\nu)$ are EW^* -algebras the bounded parts of which coincide with M and N respectively, restriction on M of any *-isomorphism from $L^{\omega}(M,\mu)$ on $L^{\omega}(N,\nu)$ is a *-isomorphism from M on N. On the other hand if the von Neumann algebras M and N are *-isomorphic, then their Boolean algebras of projectors are also isomorphic and therefore, in this case, $\tau(P(M)) = \tau(P(N))$.

Now suppose that $\tau(P(M)) = \tau(P(N))$ and assume $\mu'(x) = \mu(x)/\mu(1)$, $\nu'(y) = \nu(y)/\nu(1)$, $x \in M$, $y \in N$. According to the theorem 1, there exists an isomorphism of Boolean algebras $\varphi : X \to Y$ for which $\nu(\varphi(x)) =$ $\mu'(x)$ for all $x \in X$. This isomorphism extends to a *-isomorphism Φ : $K(M,\mu) \to K(N,\nu)$ (See [11]): At the same time $\mu'(x) = \nu'(\Phi(x))$ for all $x \in L^1(M,\mu')$. Since $\mu'(|x|^p) = \nu'(\Phi(|x|^p)) = \nu'(|\Phi(x)|^p)$ we have $\Phi(L^p(M,\mu)) = \Phi(L^p(M,\mu')) = L^p(N,\nu') = L^p(N,\nu)$ for all $p \ge 1$. Hence $\Phi(L^{\omega}(M,\mu)) = L^{\omega}(N,\nu)$. **Corolary.** Let M and N be non-atomic commutative von Neumann algebras on separable Hilbert spaces, μ and ν faithful normal finite traces on M and N, respectively. Then the Arens algebras $L^{\omega}(M,\mu)$ and $L^{\omega}(N,\nu)$ are *-isomorphic.

Proof. At first, show that if M acts on a separable Hilbert space H, then the Banach space $(L^r(M, \mu), \|\cdot\|_r)$ is also separable. To start one should note that in this case the strong topology is metrizable on the unit ball M_1 of the algebra M ([12] p.24). In addition, the convergence $x_{\alpha} \xrightarrow{so} 0$ in the strong topology in M_1 is equivalent to the convergence $\mu(x_{\alpha}^*x_{\alpha}) \to 0$ ([12] p.130).

Thus, for any sequence of $\{x_n\} \subset M$ and $x \in M$ the convergence $x_n \xrightarrow{so} x$ implies $\sup ||x_n||_M < \infty$ and $||x_n - x||_2 \to 0$, where $|| \cdot ||_M$ is a C^* -norm in M. Hence, on any ball $M_n = \{x \in M | ||x||_M \le n\}$ the strong topology coincides with the topology induced from $L_2(M, \mu)$. Since H is separable, there exists a countable set $X_n \subset M$ which is dense in M_n in the strong topology ([13], p.568). Hence the countable set $X = \bigcup_{n=1}^{\infty} X_n$ is dense in M in the topology induced from $L_2(M, \mu)$. Since M is dense in $(L_2(M, \mu), || \cdot ||_2), (L_2(M, \mu), || \cdot ||_2)$ is separable.

There is one thing left to say: the (\circ)-topology in $(P(M), \mu)$ coincides with the topology induced from $(L^2(M, \mu), \|\cdot\|_2)$. Therefore, the P(M) is a non-atomic Boolean algebra which is separable in the (\circ)-topology. Hence it is homogeneous [6]. Similarly, P(N) is a non-atomic Boolean algebra and $\tau(P(M)) = \tau(P(N))$. According to the proposition 1, the Arens algebras $L^{\omega}(M, \mu)$ and $L^{\omega}(N, \nu)$ – are *-isomorphic.

Let (X, μ) be an arbitrary complete non-atomic normalized Boolean algebra. It was shown in [6] that there is a sequence $\{e_n\}$ of non-zero pairwise disjoint elements for which the Boolean algebras $[0, e_n]$ are homogeneous and $\tau_n = \tau([0, e_n]) < \tau_{n+1}, n = 1, 2, \ldots$ This collection is determined uniquely and the matrix

$$\begin{pmatrix} \tau_1 & \tau_2 & \dots \\ \mu(e_1) & \mu(e_2) & \dots \end{pmatrix}$$

is called the passport of the Boolean algebra (X, μ)

The following theorem will be used for investigation of isomorphisms of Arens algebra.

Theorem 2 [6]. Let (X, μ) and (Y, ν) be complete non-atomic normalized Boolean algebras. The following conditions are equivalent.

- 1. There exists an isomorphism $\varphi : X \to Y$ for which $\nu(\varphi(x)) = \mu(x)$ for all $x \in X$.
- 2. The passports of the Boolean algebras (X, μ) and (Y, ν) coincide.

3. Main results. A von Neuman algebra M is called σ -finite if it admits at most countable family of orthogonal projections. On any σ -finite von Neumann algebra M, there exists a normal state, in particular, if Mis commutative, then its Boolean algebra of projections P(M) is a normed one. The next theorem discribes the class of commutative σ -finite von Neumann algebras M for which the Arens algebras $L^{\omega}(M, \mu)$ and $L^{\omega}(M, \nu)$ are *-isomorphic for any faithful normal finite traces of μ and ν on M.

Theorem 3. For a commutative σ -finite von Neumann algebra M the following conditions are equivalent:

- 1. The Arens algebras $L^{\omega}(M,\mu)$ and $L^{\omega}(M,\nu)$ are *-isomorphic for any faithful normal finite traces μ and ν on M.
- 2. $M = M_0 + \sum_{i=1}^n M_i$, where M_0 is a finite-dimensional commutative von Neumann algebra, M_i is an infinite-dimensional commutative von Neumann algebra in which the lattice of projections $P(M_i)$ is a homogeneous Boolean algebra and $\tau_i = \tau(P(M_i) < \tau_{i+1}, i = 1, ..., n-1)$ (the summand M_0 are $\sum_{i=1}^n M_i$ may be absent).

Proof. 1) \rightarrow 2). Let Δ be the set of all atoms in P(M) and $e = \sup \Delta$. Suppose that Δ is a countable set. Then $M_0 = eM$ coincides with the algebra ℓ_{∞} of all bounded sequences of complex numbers. Denote the atoms in $P(\ell_{\infty})$ by $q_u = (0, \ldots, 0, 1, 0, \ldots)$. Consider two faithful normal finite traces μ and ν on M, for which $\mu(q_n) = n^{-2}$, $\nu(q_n) = e^{-2n}$ and $\mu(x) = \nu(x)$ for all $x \in (\mathbf{1} - e)M$. Suppose, that a *-isomorphism Φ from $L^{\omega}(M, \nu)$ on $L^{\omega}(M, \mu)$ exists. Since $\Phi(M_0) = M_0$, we have $\Phi(L^{\omega}(M_0, \nu) = L^{\omega}(M_0, \mu)$. Choose $x \in K(M_0, \nu)$ such that $xq_n = 2^n$. The series

$$\sum_{n=1}^{\infty} \frac{2^{pn}}{e^{2^n}} = \nu(|x|^p)$$

converges for all $p \ge 1$. Therefore $x \in L^{\omega}(M_0, \nu)$ and, so $\Phi(x) \in L^{\omega}(M_0, \nu)$. Since $M_0 = l_{\infty}$, the *-isomorphism Φ is generated by some bijection π of the set of natural numbers. It means that $\Phi(x) = \Phi(\{2^n\}) = \{2^{\pi(n)}\} = y \in L^{\omega}(M_0, \mu)$. In particular,

$$\nu(|y|) = \sum_{n=1}^{\infty} 2^{\pi(n)} n^{-2} < \infty$$

which is wrong. Hence, a set Δ is either finite or empty.

Now suppose that in the Boolean algebra $P((\mathbf{1}-e)M)$ there is a countable set $\{e_n\}$ of disjoint elements, for which the algebras $X_n = P(e_nM)$ are homogeneous and $\tau_n = \tau(X_n) < \tau_{n+1}$. Choose two faithful normal finite traces μ and ν on M such that $\mu(e_n) = n^{-2}$, $\nu(e_n) = e^{-2^n}$ and $\mu(x) = \nu(x)$ for all $x \in M_0$. Let Φ be a *-isomorphisms from $L^{\omega}(M,\nu)$ on $L^{\omega}(M,\mu)$. Then $\Phi((\mathbf{1}-e)M) = (\mathbf{1}-e)M$ and, since weights τ_n are different, $\Phi(e_nM) = e_n(M)$ (See [6]). Choose $x \in K((\mathbf{1}-e)M,\nu)$ such that $xe_n = 2^n e_n$. Then $x \in L^{\omega}((\mathbf{1}-e)M,\nu)$, $\Phi(x) = x$ and

$$\mu(|\Phi(x)|) = \sum_{n=1}^{\infty} 2^n n^{-2} = \infty$$

i.e. $\Phi(x)$ does not belong to $L^{\omega}(M, \nu)$.

The obtained contradiction implies that the set $\{e_n\}$ is at most countable.

2) \rightarrow 1). Let $M = M_0 + \sum_{i=1}^n M_i$, where M_0 is finite-dimensional and M_i is infinite dimensional commutative von Neumann algebra, the Boolean algebra $P(M_i)$ being homogeneous, $\tau_i < \tau_{i+1}$, $i = 1, \ldots, n-1$.

Take arbitrary faitful normal traces μ and ν on M. As dim $M_0 < \infty$, $L^{\omega}(M_0,\mu) = M_0 = L^{\omega}(M_0,\nu)$. According to the proposition 1 a \ast isomorphism Φ_i from $L^{\omega}(M,\mu)$ on $L^{\omega}(M_i,\nu)$ exists. Each element x from $L^{\omega}(M,\mu)$ is represented as $x = x_0 + \sum_{i=1}^n x_i$, where $x_0 \in M_0 = L^{\omega}(M_0,\mu)$, $x_i \in L^{\omega}(M_i,\mu)$, $i = 1, \ldots, n$. It is obvious that $\Phi(x) = x_0 + \sum_{i=1}^n \Phi_i(x_i)$ is a \ast -isomorphism from $L^{\omega}(M,\mu)$ on $L^{\omega}(M,\nu)$. The theorem is proved.

Using theorem 3, it is easy to construct an example of a non-atomic commutative von Neumann algebra M with traces μ and ν , such that the Arens algebras $L^{\omega}(M,\mu)$ and $L^{\omega}(M,\nu)$ are isomorphic, while there is no *-isomorphism φ from M on M, for which $\nu \circ \varphi = \mu$. Indeed, assume that $M = M_1 + M_2$, where M_1, M_2 are non-atomic commutative σ -finite von Neumann algebras in which the lattice of projections form homogeneous Boolean algebras and $\tau(P(M_1)) < \tau(P(M_2))$. Identify M_1 with the subalgebra e_1M_1 and M_2 with $(\mathbf{1} - e_1)M_1$, $e_1 \in P(M)$. Let μ be an arbitrary faithful normal finite trace on M, $\mu(\mathbf{1}) = 1$. Assume that

$$\nu(x) = p(\mu(e_1)^{-1}\mu(xe_1) + q(\mu(\mathbf{I} - e_1))^{-1}\mu(x(\mathbf{I} - e_1)),$$

 $x \in M, p,q > 0, p+q = 1$. It is evident that ν is a faithful normal finite trace on M. Choose p and q such that $\mu(e_1) \neq \nu(e_1) = p, \ \mu(\mathbf{1} - e_1) \neq \nu(\mathbf{1} - e_1) = q$. According to the theorem 2, there is no *-isomorphism $\varphi : M \to M$ for which $\nu \circ \varphi = \mu$. At the same time, according to the theorem 3, the Arens algebras $L^{\omega}(M, \mu)$ and $L^{\omega}(M, \nu)$ are *-isomorphic.

Now, let us find out when the Arens algebras coincide for different traces. Let μ and ν be two faithful normal finite traces on a commutative von Neumann algebra M. Denote by $h = \frac{d\mu}{d\nu}$ the Radon-Nikodim derivate of the trace μ relative ν , i.e. h is the element from $L^1_+(M,\nu)$ for which $\mu(x) = \nu(hx)$ for all $x \in M$.

It is clear that the element x from $K(M, \mu)$ belongs to $L^1(M, \mu)$ if and only if $hx \in L^1(M, \nu)$. In this case the equality $\mu(x) = \nu(hx)$ holds.

Proposition 2. $L^{\omega}(M,\nu) \subset L^{\omega}(M,\mu)$ if only if

$$h \in \bigcup_{1$$

where $L^{\infty}(M,\nu)$ is identified with M.

Proof. Let $L^{\omega}(M,\nu) \subset L^{\omega}(M,\mu) \subset L^{1}(M,\mu)$. Then $\mu(x) = \nu(hx)$ for all $x \in L^{\omega}(M,\nu)$, and μ is a positive linear functional on $L^{\omega}(M,\nu)$. Since $L^{\omega}(M,\nu)$ is a complete metrizable locally-convex algebra with respect to the *t*-topology generated by the system of norms $\left\{ \|x\|_{p} = \left(\nu(|x|^{p})\right)^{1/p}\right\}_{p\geq 1}$ (see[3]) and involution in $L^{\omega}(M,\nu)$ is continuous in this topology, μ is continuous [14]. It was shown in [3] that the dual space of $(L^{\omega}(M,\nu)t)$ may be identified with $\bigcup_{1 . Hence one can find such <math>y \in L^{p}(M,\nu)$ for some $p \in (1,\infty]$ that $\nu(hx) = \mu(x) = \nu(yx)$ for all $x \in L^{\omega}(M,\nu)$. It means that h = y and $h \in \bigcup_{1 .$ Conversely, if $h \in L^p(M,\nu)$ for some $p \in (1,\infty]$, then $\nu(hx)$ is a *t*-continuous linear functional on $L^{\omega}(M,\nu)$ (See[3]) and therefore $\mu(|x|^q) = \nu(h|x|^q) < \infty$ for any $x \in L^p(M,\nu)$ and $q \ge 1$; we recall that $|x|^q \in L^{\omega}(M,\nu)$ for all $x \in L^{\omega}(M,\nu)$ and $q \ge 1$. Thus,

$$L^{\omega}(M,\nu) \subset \bigcap_{q \ge 1} L^{q}_{\cdot}(M,\mu) = L^{\omega}(M,\mu)$$

The following criterion of coincidence of the algebras $L^{\omega}(M,\mu)$ and $L^{\omega}(M,\nu)$ arises from the proposition 2.

Theorem 4. Let μ, ν be faithful normal finite traces on a commutative von Neumann algebra M. Then $L^{\omega}(M, \mu) = L^{\omega}(M, \nu)$ if only if

$$\frac{d\mu}{d\nu} \in \bigcup_{1$$

Remarks.

1. In the example constructed after theorem 3 $L^{\omega}(M,\mu) = L^{\omega}(M,\nu)$ since

$$\frac{d\mu}{d\nu} = \mu(e_1)p^{-1}e_1 + \mu(1-e_1)q^{-1}(1-e_1)).$$

Now everything is ready to obtain the criterion of *-isomorphism of the Arens algebras $L^{\omega}(M,\mu)$ and $L^{\omega}(M,\nu)$. Let M be an arbitrary non-atomic commutative σ -finite von Neumann algebra. According to [6] the Boolean algebra P(M) of projections M possesses uniquely determined collection $\{e_r\}$ of non-zero pairwise disjoint elements for which the Boolean algebras $X_n = \{e \in P(M) : e \leq e_n\}$ are homogeneous and $\tau(X_n) < \tau(X_{n+1})$. Assume that the collection $\{e_n\}$ is infinite otherwise all Arens algebras $L^{\omega}(M,\mu)$ are *-isomorphic (see theorem 3).

Theorem 5. Let μ and ν be faithful normal finite traces on a non-atomic commutative σ -finite von Neumann algebra M. The following conditions are equivalent:

- 1) The Arens algebras $L^{\omega}(M,\mu)$ and $L^{\omega}(M,\nu)$ are *-isomorphic;
- 2) There are such $p, q \in (1, \infty]$ that

$$\sum_{n=1}^{\infty} \mu_n^p \nu_n^{1-p} < \infty, \quad \sum_{n=1}^{\infty} \nu_n^q \mu_n^{1-q} < \infty$$

in the case
$$p \neq \infty$$
, $q \neq \infty$, and $\sup_{n \ge 1} |\mu_n \nu_n^{-1}| < \infty$ if $p = \infty$, $\sup_{n \ge 1} |\nu_n \mu_n^{-1}| < \infty$ if $q = \infty$.

Proof. 1) \rightarrow 2). Let Φ be a *-isomorphism from $L^{\omega}(M,\mu)$ on $L^{\omega}(M,\nu)$. Since all $\tau(x_n)$ are different, $\Phi(e_n\mu) = e_n\mu$.

Denote by N the atomic von Neumann subalgebra of all elements x from M, for which $xe_n = \lambda_n$ for some complex numbers λ_n , $n = 1, \ldots$. It is evident that N is identified with the algebra l_{∞} of all bounded sequences of complex numbers. Since $\Phi(e_n) = e_n$, $n = 1, 2, \ldots$, it follows that $\Phi(z) = z$ for all $z \in N$. If $z \in L^{\omega}(N, \mu) \bigcap K(N, \mu) = L^{\omega}(N, \mu)$, $z \ge 0$, then z = $\sup_{m \ge 1} z \sum_{n=1}^{m} e_n$, and $(z \sum_{n=1}^{m} e_n) \in N_+$. Therefore, $m \ge 1$

$$\Phi(z) = \sup_{m \ge 1} \Phi(z \sum_{n=1}^{m} e_n) = \sup_{m \ge 1} z \sum_{n=1}^{m} e_n = z.$$

Thus the restriction of Φ on $L^{\omega}(N,\mu)$ coincides with the identity mapping. It means that $L^{\omega}(N,\nu) = \Phi(L^{\omega}(N,\mu)) = L^{\omega}(N,\mu)$.

Therefore, according to the theorem $4 h \in \bigcup_{1 , and <math>h^{-1} \in \bigcup_{1 , where h is the Radon-Nikodym's derivative of the trace <math>\mu$ relative the trace ν , being considered in N. So using the equality $he_n =$

 $\mu_n \nu_n^{-1} e_n$, n = 1, 2, ..., the required inequalities follow from the condition 2).

 $2) \rightarrow 1$). Let the inequalities from the condition 2) hold. Consider the faithful normal finite trace on M given by the equality

$$\lambda(x) = \sum_{n=1}^{\infty} \nu_n \mu_n^{-1} \mu(e_n x), \ x \in M.$$

Since x_n is a homogeneous Boolean algebra and $\lambda(e_n) = \nu_n = \nu(e_n)$, using the proof of proposition 1, construct a *-isomorphism $\Phi_n : K(e_n M, \nu) \to K(e_n M, \lambda)$ for which $\nu(y) = \lambda(\Phi_n(y))$ for all $y \in L^1(e_n M, \nu)$. For each $x \in K(M, \nu)$ denote by $\psi(\lambda)$ such an element from $K(M, \lambda)$ for which $e_n\psi(x) = \Phi_n(e_n x)$. It is evident that ψ is a *-isomorphism from $K(M, \nu)$ on $K(M, \lambda)$. At the same time, if $x \in L^1_+(M, \nu)$, then

$$\nu(x) = \sum_{n=1}^{\infty} \nu(e_n x) = \sum_{n=1}^{\infty} \lambda(\Phi_n(e_n x)) =$$

$$\sum_{n=1}^{\infty} \lambda(e_n \psi(x)) = \lambda(\psi(x)),$$

therefore $\psi(L^{\omega}(M,\nu)) = L^{\omega}(M,\lambda)$.

Let is show that $L^{\omega}(M, \lambda) = L^{\omega}(M, \mu)$. Let *h* be such an element from $K(M, \mu)$ that $he_n = \mu_n \nu_n^{-1} e_n$. For every $x \in M$ we have

$$\lambda(hx) = \sum_{n=1}^{\infty} \lambda(he_n x) = \sum_{n=1}^{\infty} \mu_n \nu_n^{-1} \lambda(e_n x) =$$
$$= \sum_{n=1}^{\infty} \mu(e_n x) = \mu(x),$$

therefore $h = \frac{d\mu}{d\lambda}$. According to the inequalities from the condition 2, we obtain that

$$h^{-1} \in \bigcup_{1$$

If $\sup_{n\geq 1}(\mu_n\nu_n^{-1})<\infty$, then $h\in M$. Suppose that $\sum_{n=1}^{\infty}\mu_n^p\nu_n^{1-p}<\infty$ for some $p\in(1,\infty)$. Then

$$\lambda(h^p) = \sum_{n=1}^{\infty} \nu_n \mu_n^{-1} \mu(e_n h^p) = \sum_{n=1}^{\infty} \mu_n^p \nu_n^{1-p} < \infty.$$

Thus,

$$h \in \bigcup_{1$$

and, using the theorem 4, we get $L^{\omega}(M, \lambda) = L^{\omega}(M, \mu)$.

Therefore $\psi(L^{\omega}(M, \nu)) = L^{\omega}(M, \mu)$.

Remarks 2. Repeating the argument from the proof of the theorem 5, it is easy to obtain the following criterion of *-isomorphism of the Arens algebras $L^{\omega}(l_{\infty}, \mu)$ and $L^{\omega}(l_{\infty}, \nu)$:

Let μ and ν be faithful normal finite traces on a infinite dimensional atomic commutative von Neumann algebra N, $\{q_n\}_{n=1}^{\infty}$ – the set of all atoms in P(N), $\mu_n = \mu(q_n)$, $\nu_n = \nu(q_n)$, $n = 1, 2, \ldots$ Then, the Arens algebras

10

 $L^{\omega}(N,\mu)$ and $L^{\omega}(N,\nu)$ are *-isomorphic only in the case when there are such $p, q \in (1,\infty)$ and permutation π of a set of natural numbers, that

$$\sum_{n=1}^{\infty} \mu_n^p \nu_{\pi(n)}^{1-p} < \infty, \quad \sum_{n=1}^{\infty} \nu_{\pi(n)}^q \mu_n^{1-q} < \infty, \quad \text{in the case} \quad p, q \in (1,\infty)$$

and $\sup_{n\geq 1} |\mu_n \nu_n^{-1}| < \infty$ if $p = \infty$, $\sup_{n\geq 1} |\nu_n \mu_n^{-1}| < \infty$ if $q = \infty$.

3. Any von Neumann algebra M is represented as $M = M_1 + M_2$, where M is an atomic von Neumann algebra and M_2 is a non-atomic von Neumann algebra. Moreover, if Φ is a *-automorphism of M, then $\Phi(M_1) = M_1$ and $\Phi(M_2) = M_2$. Therefore theorem 5 and Remark 2 give criterion of isomorphism of Arens algebras for arbitrary commutative σ -finite von Neumann algebras

References

- 1. Arens R. The space L^{ω} and convex topological rings. Bull. Amer. Math. Soc. 1946. v.52 p.931-935.
- Allan G.R. On a class of locally convex algebras. Proc. London Math. Soc. 1967. v.17, n.3, p.91-114.
- 3. Bhatt S.J. On Arens algebras L^ω Glas. Mat. 1980, v.15, n.35, p.305-312.
- 4. Bhatt S.J. On Arens algebras L^{ω} II. Glas. Mat. 1981. v.16, n.36, p.297-306.
- 5. Zakirov B.S. Non-commutative Arens algebras (Russian). Uzbekski Matematicheski Jurnal. 1997. N 1.
- Vladimirov D.A. The Boolean algebras (Russian). "Nauka". Moskow. 1969.
- 7. Takesaki M. Theory of operator algebras I. New York. Springer. 1979. 415 p.
- 8. Fack T., Kosaki H. Generalized *s*-numbers of τ -measureables operator Pacific J. Math. 1986, v.123, p.269-300.
- Inone A. On a class of unbounded operator algebras II. Pacific J.Math. 1976, v.66, n.2, p.411-431.
- 10. Chilin V.I., Zakirov B.S. The abstract characterization of EW*-algebras (Russian). Funct. analys i ego prilozh. 1991, V.25, p.76-78.

- 11. Sarymsakov T.A., Ajupov Sh.A., Hadzhiev Dzh., Chilin V.I. The ordered algebras (Russian). Tashkent, "Fan". 1984
- 12. Stratila S., Zsido L. Lectures on von Neumann algebras. Abacus Press 1979, 480 p.
- 13. Naimark M.A. The normed rings (Russian). Moskow, "Nauka". 1968.
- 14. Schaeffer H.H. Topological vector spaces. Mc. Millan. London. 1966

ABDULLAEV R.Z. 700077, Tashkent, Svoboda 33, Ouzbekistan. CHILIN V.I. 700095, Tashkent-95, Niazova 19,52, Ouzbekistan.

Manuscrit reçu en Avril 1998