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ARENS ALGEBRAS, ASSOCIATED WITH

COMMUTATIVE VON NEUMANN ALGEBRAS

ABDULLAEV R.Z., CHILIN V.I.

Ann. Math. Blaise Pascal, Vol. 5, N° 1, 1998, pp.1-12

1. Introduction. Let (~, ~, ~c) be a measurable space with a finite
measure, = ~, ~c) the Banach space of all p-measurable com-
plex functions on Q, integrable with the degree, p E [1,+~). R. Arens

[1] introduced and studied the set = n He showed,
l$poo .

in particular, that is a complete locally-convex metrizable algebra
with respect to "t" topology generated by the system of norms =

(03A9|f|p d )
1/p 

, p > l. Later G.R. Allan [2] observed that t) is a

GB*-algebra with the unit ball Bo = {f E L °° : 1}. Further inves-

tigation of properties of the Arens algebra was made by S.J. Bhaft
[3,4]. He described the ideals of the algebra and considered some
classes of homomorphisim of this algebra. B.S. Zakirov [5] showed that

is an EW*-algebra and gave an example of two measures, ~c and v~
on an atomic Boolean algebra, for which the algebras and Lw(v) are
not isomorphic. It is clear that the problem of complete classification of
the Arens algebras arises. Speaking more preciesly, what conditions should
be imposed on measures p and v for the corresponding Arens algebras to
be isomorphic? It is natural to solve this problem in the class of equiv-
alent measures. Therefore instead of a measurable space with a measure,
one should consider a commutative von Neumann algebra M with faithful
normal finite traces p and v on M and study the problem of *-isomorphism
of EW *- algebras LW(M; = n LP(M; ) and L03C9(M, v)

1~p~
The present article gives the complete solution of the mentioned prob-

lem, a classification of the normalized Boolean algebras from the book by
D.A. Vladimirov [6] being considerably used. All neccessary notations and
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results from the theory of von Neumann algebras are taken from [7] and the
theory of integration on von Neumann algebras is from [8]. .

2. Preliminaries. Let M be an arbitrary von Neumann algebra,  a
faithful normal finite trace on M, P(M) the lattice of all projections of M.
Let K(M, fl) be the *-algebra of all -measurable operators affiliated with
M [8) .. ,

In the commutative case, when M = L~(03A9, 03A3, ) and = J x d ,
03A9

where (03A9, 03A3, ) is a measurable space, the algebra K(M, p) coincides with
the algebra of all measurable complex functions on (0, E, ).

For every set A C K(M, p) we shall denote by Ah (respectively, by A+)
the set of all self-adjoint (respectively, positive self-adjoint) operators from
A. The partial order in Kh(M, generated by the positive cone K+(M, ~c)
will be denoted by x  y.

Put M(x) = y  x, y E M~ for every x E K+(M, ~C).
Let p E [l,oo) and = {x E  ~}, where |x| =
(~*~)1/2. The set LP(M, ~C) is a subspace in K(M, ~C) and the function
~x~p = (|x|p)1/p is a Banach norm on LP(M, ) [9]. Moreover,

1. ~x~p = ~x* ~p = ~xu~p for all x E LP(M, ) and a unitary element
uEM;

2. If Ixl  |y|, x E K(M, ), y E LP(M, ), then x E LP(M, and

~x~p ~ ~y~p;
3. If x E Lp(M, ), y E‘ Lq(M, ) with 1 p + 1 q = T, , 1  P, q, r  ~, then

xy E ) and ~x~p~y~q.
From these properties of the norm ~p it follows that the set LW (M, )

= n is a *-subalgebra in K(M, ~C), and M C ~c). It was
1~p~

shown in [5] that M = L03C9(M, p) if and only if dimM  ~. Furthermore,
since LW (M, ~) is a solid *-subalgebra in K(M, ~C) (e.g. the inequality 

x E K(M, ~), y E ~) implies x E LW(M, ~)), L"(M, ~,) is an

EW*-algebra, the bounded part of which coincides with M [10].
Now we cite from [6] some information which will be used in the seqnel.
Let X be an arbitrary complete Boolean algebra, e E X, Xe = [0, e] =

~g E  e}. The minimal cardinality of the set which is dense in Xe
in the (o)-topology will be denoted T(Xe). An infinite complete Boolean
algebra X is called homogeneous, if T(Xe) = for any non-zero e, g e
X. The cardinality of T(X) = r(X.) where I - is the unit of the Boolean
algebra X is called a weight of a homogeneous Boolean algebra J~. .
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Let  be a strictly positive countably additive measure on X. If (1) =
1, then the pair (X, ~) is called a normalized Boolean algebra. It was shown
in [6] that for any cardinal number T there existed a complete homogeneous
normalized Boolean algebra X with the weight r(X) = T. The next theorem
gives a criterion of isomorphism of two homogeneous normalized Boolean
algebras.

Theorem ([6]). . Let (X, and (Y, v) be homogeneous normalized Boolean
algebras. The following conditions are equivalent:
) r(X) = T(Y);
2) There exists an isomorphism 03C6 : X -> Y for which v(cp(x)) = for

allxEX.

This theorem enables us to describe the class of von Neumann alge-
bras for which the existence of *-isomorphism between the Arens algebras
L03C9(M, ) and L"(N, v) is equivalent to isomorphism between M and N.

Proposition 1. Let M and N be commutative von Neumann algebras,
the Boolean algebras P(M) and P(N) of which are homogeneous, and let
Jl and v be faithful normal finite traces on M and N, respectively. The

following conditions are equivalent:
1) The Arens algebras ) and L03C9(N, v) are *-isomorphic;
2) The von Neumann algebras M and N - are *-isomorphic;
3) T(P(M)) = T(P(N)).

Proof. Sience L03C9(M, ) and v) are EW*-algebras the bounded
parts of which coincide with M and N respectively, restriction on M of
any *-isomorphism from ~c) on Lf.AJ(N, v) is a *-isomorphism from
M on N. On the other hand if the von Neumann algebras M and N are
*-isomorphic, then their Boolean algebras of projectors are also isomorphic
and therefore, in this case, T(P(M)) = T(P(N)).

Now suppose that T(P(M)) = T(P(N)) and assume ’(x) = (x)/ (1),
v’(y) = v(y)/v(I), x E M, y E N. According to the theorem 1, there
exists an isomorphism of Boolean algebras ~ : X 2014~ Y for which =

’(x) for all x EX. This isomorphism extends to a *-isomorphism 03A6 :
K(M, ~c) -> K(N, v) (See [11]): At the same time = v’(~(x)) for
all x E Since = = we have

~c)) = ~c’)) = LP(N, v’) = LP(N, v) for all p > l. Hence
~(L"(M, ~c)) = v).
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Corolary. Let M and N be non-atomic commutative von Neumann alge-
bras on separable Hilbert spaces,  and v faithful normal finite traces on
M and N, respectively. Then the Arens algebras L03C9(M, ) and LW(N, v)
are *-isomorphic.

Proof. At first, show that if M acts on a separable Hilbert space H,
then the Banach space (Lr(M, ’ ((T) is also separable. To start one
should note that in this case the strong topology is metrizable on the unit
ball Mi of the algebra M ([12] p.24). In addition, the convergence xa ~ 0
in the strong topology in Mi is equivalent to the convergence --~ 0

([12] p.130).
Thus, for any sequence of {xn} C M and x E M the convergence

implies sup ~xn~M  oo and ~xn - x~2 ~ 0, where ~.~M is a
C*-norm in M. Hence, on any ball Mn = {x E M|~x~M ~ n} the strong
topology coincides with the topology induced from L2(M, Since H is

separable, there exists a countable set Xn C M which is dense in Mn in’ 

00

the strong topology ([13], p.568). Hence the countable set X = U Xn is
n=l.

dense in M in the topology induced from L2(M, ~). Since M is dense in

(L2(M~ i~ ’ (~2)~ (L2(~~ /~), I) ’ ~~2) is separable.
There is one thing left to say: the (o)-topology in (P(M), coincides

with the topology induced from (L2(M, Therefore, the P(M) is a
non-atomic Boolean algebra which is separable in the (o)-topology. Hence
it is homogeneous [6]. Similarly, P(N) is a non-atomic Boolean algebra and
(P(M)) = T(P(N)). According to the proposition 1, the Arens algebras
L03C9(M, ) and v) - are *-isomorphic.

Let (X, ~c) be an arbitrary complete non-atomic normalized Boolean
algebra. It was shown in [6] that there is a sequence ~en ~ of non-zero pair-
wise disjoint elements for which the Boolean algebras [0, en] are homoge-
neous and Tn = T([0, en])  n =1, 2, ... This collection is determined
uniquely and the matrix

~ Tl 72 ...
~(02) ...y

is called the passport of the Boolean algebra (X, ~c)
The following theorem will be used for investigation of isomorphisms

of Arens algebra.
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Theorem 2 ~6~. . Let (X, ~c) and (Y, v) be complete non-atomic normalized
Boolean algebras. The following conditions are equivalent.

I. . There exists an isomorphism p J~ 2014~ Y for which = for
all x ~ X.

2. The passports of the Boolean algebras (X, J.l) and (Y, coincide.

3. Main results. A von Neuman algebra M is called a-finite if it
admits at most countable family of orthogonal projections. On any a-finite
von Neumann algebra M, , there exists a normal state, in particular, if M
is commutative, then its Boolean algebra of projections P(M) is a normed
one. The next theorem discribes the class of commutative a-finite von
Neumann algebras M for which the Arens algebras L03C9(M, ) and L03C9(M, v)
are *-isomorphic for any faithful normal finite traces of ~t and v on M.

Theorem 3. For a commutative a-finite von Neumann algebra M the
following conditions are equivalent:

1. . The Arens algebras L03C9(M, ) and L03C9(M, v) are *-isomorphic for any
faithful normal finite traces p and v on M.

2. M = Mo + 03A3ni=1 Mi, where Mo is a finite-dimentional commutative
von Neumann algebra, Mi is an infinite-dimensional commutative von
Neumann algebra in which the lattice of projections P(Mi) is a homo-
geneous Boolean algebra and Ti = (P(Mi)  Ti+1, , i = 1, ... , n -1
(the summand Mo are ~z ~ Mi may be absent).
Proof. 1) --~ 2). . Let A be the set of all atoms in P(M) and e = sup A.

Suppose that A is a countable set. Then Mo = eM coincides with the
algebra foo of all bounded sequences of complex numbers. Denote the atoms
in by q.~ = (o, ... , o,1, o, ...). Consider two faithful normal finite

traces p and v on M, for which = n-2, , v(qn) = e-2n and = v(x)
for all x E (I - e)M. Suppose, that a *-isomorphism 03A6 from L03C9(M, v) on
L03C9(M, ) exists. Since 03A6(M0) = Mo, we have 03A6(L03C9(M0, v) = L03C9(M0, ).
Choose x E K (Mo, v) such that xqn = 2n. The series

. °° 2pn e2n = 03BD(|x|p)
n~.l

converges for allp > 1. Therefore x E L03C9(M0, v) and, so E L03C9(M0, v).
Since Mo = l~, the *-isomorphism ~ is generated by some bijection 7r of
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the set of natural numbers. It means that ~(x) = ~(~2n~) _ ~2’~tn~~ = y E
~c). In particular,

oo

 o0

n =1

which is wrong. Hence, a set A is either finite or empty.
Now suppose that in the Boolean algebra P((I-e)M) there is a count-

able set {en} of disjoint elements, for which the algebras Xn = P(enM)
are homogeneous and Tn = T(Xn)  Choose two faithful normal
finite traces ~c and v on M such that = n-2, v(en) = e-~~ and

= for all x E Mo. Let 03A6 be a *-isomorphisms from LW(M, v)
on Then ~((I - e)M) = (I - e)M and, since weights Tn are
different, 03A6(enM) = en(M) (See [6]). Choose x E K((I - e)M, v) such that
xen = 2nen. Then x E e)M, v), = x and

oo

~(1~’(x)I) = 1 ~’~nw2 = ~~
n=1

i.e. does not belong to L03C9(M, v).
The obtained contradiction implies that the set {en ~ is at most count-

able. ’ 
n

2) --~ 1). Let M = Mo + E Mi, where Mo is finite-dimensional and
i=1 .

Mi is infinite dimensional commutative von Neumann algebra, the Boolean
algebra P(Mi ) being homogeneous, Ti  i =1, ... , , n -1.

Take arbitrary faitful normal traces p and v on M. As dim Mo 
oo, ) = Mo = L03C9(M0, v). According to the proposition 1 a *-
isomorphism 03A6i from L03C9(M, ) on L03C9(Mi, v) exists. Each element x from
L03C9(M, ) is represented as x = xo + xi, where xo E Mo = ),’" 

n

xi E L03C9(Mi, ), 2 .=1, ..., n. It is obvious that = xp + 03A303A6i(xi) is a
i=l

*-isomorphism from L03C9(M, ) on v). The theorem is proved.
Using theorem 3, it is easy to construct an example of a non-atomic

commutative von Neumann algebra M with traces p and v, such that the
Arens algebras L03C9(M, ) and L03C9(M, v) are isomorphic, while there is no
*-isomorhism c~ from M on M, for which v o ~p = ~c. Indeed, assume that
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M = Ml + M2, where are non-atomic commutative a-finite von
Neumann algebras in which the lattice of projections form homogeneous
Boolean algebras and r(.P(Mi))  r(jP(M2)). Identify M1 with the subal-
gebra eiMi and M2 with (I - ei)Mi , e1 E P(M). Let  be an arbitrary
faithful normal finite trace on At, = 1. Assume that

v(x) = p( (e1)-1 (xe1) + q( (I - e1))-1 (x(1 - e1)),

x E M, p, q > 0, p + q = 1. It is evident that v is a faithful normal finite
trace on M. Choose p and q such that (e1) ~ v(e1) = p, - el) ~
v(I - el) = q. According to the theorem 2, there is no *-isomorphism
~ : : M --~ M for which v o cp = /~. At the same time, according to the
theorem 3, the Arens algebras and v) are *-isomorphic.

Now, let us find out when the Arens algebras coincide for different
traces. Let  and v be two faithful normal finite traces on a commutative
von Neumann algebra M. Denote by h === ~ the Radon-Nikodim derivate
of the trace ~ relative v, i.e. h is the element from L+(M, v) for which
(x) = v(hx) for all x E M.

It is clear that the element x from K(M, ) belongs to L1(M, ) if and

only if hx E L1(M, v). In this case the equality p(x) = v(hx) holds.

Proposition 2. . L03C9(M, v) C L03C9(M, ) if only if

h E U LP(M, v),
1~p~~

where LOO(M, v) is identified with M.

Proof. Let L"(M, v) C C Then = v(hx) for
all x E L03C9(M, v), and  is a positive linear functional on L03C9(M, v). Since
L03C9(M, v) is a complete metrizable locally-convex algebra with respect to
the t-topology generated by the system of norms {~x~p = (v(|x|p))1/p}

p~1
(see [3]) and involution in L03C9(M, v) is continuous in this topology,  is con-
tinuous [14]. It was shown in [3] that the dual space of (LtJJ(M, v)t) may be
identified with U LP(M, v). Hence one can find such y E LP(M, v) for

1p~~
some p E (1, ~] that v(hx) = p,(x) = v(yx) for all x E v). It means

that h = y and h E U LP(M, v).
1p~~
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Conversely, if h 6 for some p (1,~], then is a t-
continuous linear functional on and therefore =

 oo for any x E and q > 1; we recall that |x|q 
v) for all .r 6 v) and q > 1. Thus,

q~1

The following criterion of coincidence of the algebras and

v) arises from the proposition 2.
Theorem 4. Let , v be faithful normal finite traces on a commutative
von Neumann algebra M. Then p) = only if

d  d03BD ~ U U Lp(M, ).

Remarks.
1. In the example constructed after theorem 3 p) = L~(M, x/) since

Now everything is ready to obtain the criterion of *-isomorphism of the
Arens algebras p) and x/). Let M be an arbitrary non-atomic
commutative a-finite von Neumann algebra. According to [6] the Boolean
algebra P(M) of projections M possesses uniquely determined collection

of non-zero pairwise disjoint elements for which the Boolean algebras
Xn = {e 6 P(M) : e ~ en} are homogeneous and  (Xn+1).
Assume that the collection is infinite otherwise all Arens algebras

are *-isomorphic (see theorem 3).
Theorem 5. Let /~ and f/ be faithful normal finite traces on a non-atomic
commutative 03C3-finite von Neumann algebra M. The following conditions
are equivalent:
~ The Arens algebras ~) and v) are *-isomorphic;
2 ) There are such p, q (1, oo] that

oo oo

yt=l ~==1
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in the case p ~ oo, oo, and sup ~  oo if p = oo, sup ~! (
n>1 n>1

 oo lf , q = oo . 
_ _

Proof. 1) ~ 2). Let $ be a *-isomorhism from L03C9(M, ) on v).
Since all T(xn) are different, 03A6(en ) = 

’

Denote by N the atomic von Neumann subalgebra of all elements x
from M, for which xen = ~~ for some complex numbers An , n = 1,.... It is
evident that N is identified with the algebra l~ of all bounded sequences of
complex numbers. Since ~(en) = en, n = 1,2,...,it follows that ~(z) = z
for all z E N. If z E L‘~ (N, ~c) n 1~(N, ~) = > 0, then z =

sup en, , and en) E N+. Therefore,
m>1

m m

= sup = sup z 03A3en = z. .m>1 n=1 m>1 n=1

Thus the restriction of $ on L03C9(N, ) coincides with the identity map-
ping. It means that L03C9(N, v) = 03A6(L03C9(N, )) = L03C9(N, ).

Therefore, according to the theorem 4 h E U LP(N, v), and h~1 E
1p~~

U Lp(N, ), where h is the Radon-Nikodym’s derivative of the trace 
1p~~
relative the trace v, being considered in N. So using the equality hen =

n03BD-1nen, n = 1, 2, ..., the required inequalities follow from the condition
2).

2) -~-~ 1). Let the inequalities from the condition 2) hold. Consider the
faithful normal finite trace on M given by the equality

00

À(x) = Z~ r 6 M.

n=l

Since .r~ is a homogeneous Boolean algebra and a(en) = vn = v(en),
using the proof of proposition 1, construct a *-isomorphism n v)
~ K(enM, 03BB) for which v(y) = 03BB(03A6n(y)) for all y E L1(enM, v). For each
x E K(M, v) denote by ~(a) such an element from K(M, a) for which

n(enx). It is evident that 1/; is a *-isomorphism from K(M, v)
on K(M, A). At the same time, if x E L1+(M, v), then

00 00

v(x) = L v(enx) = ‘ =

Tt==l n=l
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00

~ = ~(~(x)),
n=l

therefore v)) = Lw(M, a). ,

Let is show that LW(M, A) = ~c). Let h be such an element from
k’(M, ) that hen = n03BDn-1nen. For every x E M we have

00 00

À(hx) = L 03BB(henx) = 03A3 n03BD-1n03BB(enx) =
n=1 n=1

00

= , (enx) = 
n=1

therefore h = ~ . According to the inequalities from the condition 2, we
obtain that

h-1 ~ U LP(M, ).
1p~~

If sup( n03BD-1n)  00, then hEM.
n>_1

Suppose that  oo for some p E (1, oo). Then

00 

° 

00

~1 h~) = -  0~.

n-1 7~=1

Thus,

h ~ U Lp(M, 03BB)
1p~~

and, using the theorem 4, we get LW(M, A) = L03C9(M, ).
Therefore 03C8(L03C9(M, v)) = LW(M, ).
Remarks 2. Repeating the argument from the proof of the theorem

5, it is easy to obtain the following criterion of *-isomorphism of the Arens
algebras ~c) and v) :

Let  and v be faithful normal finite traces on a infinite dimensional
atomic commutative von Neumann algebra N, the set of all atoms
in P(N), n = (qn), Vn = v(qn), , n = 1 > 2 .... Then, , the Arens algebras
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and v) are *-isomorphic only in the case when there are
such p, q ~ (1, ~) and permutation 7r of a set of natural numbers, that

00 00

~’ 1~  oo, in th case p, q E (1, )
n =1 

_

and sup | n03BD-1n| [  oo if p = oo, sup |03BDn -1n|  oo if q = oo .
n>1 n>1
3. Any von Neumann algebra M is represented as M = Mi + M2,

where M is an atomic von Neumann algebra and M2 is a non-atomic von
Neumann algebra. Moreover, if ~ is a *-automorphism of M, then =

Mi and ~(M2) - M2. Therefore theorem 5 and Remark 2 give criterion
of isomorphism of Arens algebras for arbitrary commutative a-finite von
Neumann algebras
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