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ON THE GENERATING FUNCTIONAL OF A CONVOLUTION SEMIGROUP

ON A HILBERT-LIE GROUP

by Erdal Cogkun and Herbert Heyer

Abstract (English)

The authors establish a Lévy-Khintchine type representation for
the generating functional of a continuous convolution semigroup of
probability measures on a Hilbert-Lie group. The proof is inspired
by the one given in the case of a locally compact group the additional
technical problem to be handled being the construction of modified
canonical coordinates within an appropriate space of twice differen-
tiable functions on the group.

Abstract (French)

On établit une formule de représentation de type Lévy-Khinchine
pour la fonctionnelle génératrice d'un semi-groupe continu de con-
volution des mesures de probabilité sur un groupe de Lie-Hilbert.

La démonstration est stimulée par cette du cas d'un groupe localement
compact le probléme d resoudre étant la construction des coordonnées
canoniques modifiées audedans un propre espace des.fonctions deux fois

différentiables sur le groupe.

1. Preliminaries

For any topological group G whose topology admits a complete left
invariant metric d we ‘denote the Banach space of bounded left d-
uniformly continuous real-valued functions on G by Cu(G). Given any
real-valued function f on G and a€G the functions f*,fa:=Raf and

af:=L,f are defined for all b€G by f*(b):=f(b_1),fa(b):=f(ba) and
af(b) :=f(ab) respectively. In order to do measure theory on G we
consider the Banach algebra M(G) of real-valued measures on the
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Borel o-field B(G) of G, M(G) being furnished with total variation
and convolution. The symbols M+(G) and Ml(G) stand for the semi-
groups of positive measures and of probability measures on G re-
spectively.

In what follows G will always be a Hilbert-Lie group modelled
over a separable Hilbert space H. Interesting examples of Hilbert-
Lie groups are

1.1 the Sobolev groups Hk(M,G) introduced for a connected Riemannian
manifold M and a finite dimensional compact Lie group G such
that k> 3 dim M, and

2
1.2 the KXosyak groups GLz(a) for a.=(akn)€( IR:) z such that there

. . . 2
exists a constant c>o satisfying aanC %em %mn whenever k,n,m€ Z.

(See [1] and [ 4] respectively)

The tangent space Te of G which is isomorphic to H serves as the
domain of the exponential mapping Exp into G. Exp is an analytic
homeomorphism from a neighborhood NJ of oeTe onto a neighborhood
U, of e€G. The inverse of Exp considered as a mapping from U, onto
No will be denoted by Log. Given an orthonormal basis {Xi:ie IN}
of H one definies a system {ai:ie IN} of canonical coordinates
ai:Ue + IR such that

a = Exp( £ a,(a)X.)
pial 1 1

for all aGUe. In fact, for each i€IN we put ai(a) :=<Log(a) 'Xi>
whenever ane.

Given X€H a function feCu(G) is called Lleft differentiable at
a€G with respect to X if '

Xf(a) := lim (£ (Exp(tx)a)-£(a))
t+o

exists.f is called continuously left differentiable if Xf(a) exists for
all X€H, a€G and if a +—>Xf(a) as well as X +—>Xf(a) are continuous
mappings. Derivatives of higher order are defined inductively. Now,
let f€C, (G) be a twice continuously left differentiable function.
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For each a€G the mappings Df(a):X —> Xf(a) and sz(a):

(X,Y) +—> XYf(a) are continuous linear and symmetric continuous
bilinear functionals on H and H x H respectively. One has the
equalities <Df(a),X>=Xf(a) as well as <D2f(a)(x),Y>=XYf(a) whenever
a€G and X,YEH. Now the set C (G) of all twice continuously left

differentiable functions f€C (G) such that the mapping a 1——> sz(a)
is d-uniformly continuous, ‘|Df|| =sup eGIIDf(a)H<m and IID £l]:

=supaeG||D f(a)||<= turns out to be a Banach space with respect to
the norm

£ > |1£]1, := |£]1+]ID£] |+ D€l .

We note that each fecz(G) has a Taylor expansion of second order
at e€G given by

f(a)=f(e)+2i21ai(a)Xif(e)+ % L. a,; (a)a (a)X X £(a)

i, 32171

for all a€U, and some Eeue

The next aim of our discussion is a two-stage modification of the
given canonical coordinate system {ai:ielN}. It is not difficult to
achieve an extension of {ai:ielN} to a canonical coordinate system
{b :i€ N} in C,(G). For the second modification which has been the
main work in [2] we start with a motivation valid for commutative G

over H. Given a complete orthonormal system {xi:lelN} of H and nEIN

. N .
we introduce Hn:=<{xl,...,xn}>. Then H/Hn and H . are isomorphic

1
spaces, Gn:=Exp Hn is a closed subgroup of G and G/Gn is a finite
dimensional Hilbert-Lie group. If P, denotes the canonical projec-

tion from G onto G/Gn and {b?:i=1,...,n} a canonical coordinate

system with respect to {x ..,Xn} (in Ci(G/Gn)) then the functions

1’
d2:=b? o pnecz(c) have the properties that xjd? exists and = o
for all j>n, i=1l,...,n. It is therefore reasonable to introduce
for any Hilbert-Lie group'G over H, any orthonormal basis

{xi:iEJN} of H and every n€IN the space C(z)'n(G) of functions

f€C2(G) satisfying the equalities Xif=o for all i>n and Xixjf=o
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for all i>n or j>n. The desired function space appears to be

Ci2) 8 = e nCi2),nl®-
Clearly, if G ist commutative,

C(2),n(® = {f 0 p EC,(G):£EC,(G/G)}

for each n€IN, and C )(G) coincides with its right counterpart

(2
A

C(2) (G) where differentiability is considered from the right rather
than from the left.

In order to obtain a modification of the given canonical coor-
dinate system {bi:iEIN} in C,(G) to a modified one {di:ieIN} in
C(z)(G) we proceed as follows: For each n€IN let {b?:i=l,...,n}
be a canonical coordinate system in CZ(G) (with resbect to

. n . >
{xl,...,xn}). Then, if biec(z)'n(c;) for all i=1,...,n and nzn

for some n_€IN then the system {di:ieIN} given by

n

b.° for all i=1,2,...,n
1 (]
d. :=
1 n
b for all n>n
n o]

lies in C(Z) (G). {di:ie IN} is called a modified canonical coordinate

system with respect to the basis {Xi:iGIN} of H.

Obviously every commutative Hilbert-Lie group and every finite
dimensional Lie group admit modified canonical coordinate systems.

In the finite dimensional case ng equals the dimension of the group.

For Hilbert-Lie groups G admitting a modified canonical coordinate

system one defines Hunt functions <bn by

for all a€G. Clearly, ¢ €C .,  (G), ¢ (a)>o for all a€G \[# =01,
!’

hence Xi<bn(e)=o and xiijn(e)=26ij whenever i,j=1,...,n (n€IN).

(cf. [3] , Lemma 4.1.9 and 4.1.10).
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2. The domain of the generating functional

For any measure u.GMl(G) one introduces the translation operator
Tu of p on Cu(G) by

Tuf := ffau(da)

for all fecu(G).
2.1 Properties of the translation operator
2.1.1 TuCu(G) c Cu(G)

_ . 1
2.1.2 Tu*v-TuTv if also veEM™ (G)

2.1.3 TuCZ(G)cz CZ(G), hence

2.1.4 TuC(Z)“” c C(Z)(G)-

A (continuous) convolution semigroup on G is a family {n, €IR } in

Ml(G) such that us*ut=u for all s,teIR: and lim =€e the

s+t t+ott™Ho

limit being taken in the weak topology in Ml(G).

2.2 Proposition. Any convolution semigroup {ut:telR+} in Ml(G)
admits a Lévy measure n on G defined as a o-finite measure in M+(G)
satisfying the properties n({e})=o and

L

im .o £

ffap, = Sfdn
valid for all fe€C (G) with e¢ supp(f).
For a proof see [6].

2.3 Corollary. For every neighborhood U of e
SUP, . % ut(cl”<“

Let {ut:tGIR+} be a convolution semigroup on G and {Tu :t€]R+}
t
the corresponding contraction semigroup on Cu(G) with (infini-

tesimal) generator (N,D(N)). The generating functional (A,D(A)) of
{ut:teIR+} is given by

1

Af := llmt+o ry

(T fle) - £(e))
B
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for all £ in the domain D(A) of A. Plainly Af=Nf(e) whenever £fE€D(N).

From now on we assume G to be a Hilbert-Lie group (over a sepa-
rable Hilbert space H) admitting a system {di:iGJN} of modified
canonical coordinates (with respect to an orthonormal system
{Xi:ielN} of H). Moreover, let {ut:teIR+} be a convolution semigroup
on G.

2.4 Proposition. For every n€ IN

sup

1
= o _dp, <=,
te R t n't

X
+
Proof. As a consequence of the Banach-Steinhaus theorem tqgether
with the Hille-Yoshida theory (cf [3] , Lemma 4.1.11) we obtain
that for every fec(z)'n(s) and every €>o0 there exists a g:=g.
€C () o (G n D(N) such that llf—g||2<s, fle)=gle), X f(e)=X;g(e),

!
and Xixjf(e)=xixjg(e) for all i,j=1,...,n,n21l. Applying this state-
ment to ¢n€C(2),n(G) we obtain the existence of wnec(z),n(c)fw D (N)
satisfying ||¢n—Wnl|2<w,‘Fn(e)=¢n(e)=o, X;¥ (e)=X,¢ (e)=o, and
Xinﬂn(e)=xixj¢n(e)=ZGij for all i,j=1,...,n. But the Taylor expan-
sion of‘{in implies the existence of a constant 6n>o and a neigh-
borhod W of e such that

n 2
Wn(a)25n21=1 di(a)

valid for all a€W. Then

1
sup T/ Sndkecy

e X
te€IR,
and, since Qn is bounded, Corollary 2.3 yields the assertion. _ _
2.5 Theorem. C(z)(G) C D(a)

Proof. Let f€C n(G)(neIN) and put

(2)
n
g(a) := f(a)-fle) -1,_,z;(a)X;f(e)

for all a€G, where the functions z; are chosen in C(Z) n(G)n D (N)
’
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such that z; (e)=d, (e)=o0 and ij (e)= xjd (e)=¢ ij for all i,j=1,...,n
(See the proof of Pr09051tlon 2.4). Then gec(z) n(G) with g(e)=o0
and X, g(e)—o From an application of the Taylor expanSLQn of G in

a nelghborhood W of e we obtain a constant k GIR such that |g(a)l
=.klllgllz ,(a) for all a€W. Now Proposition 2.4 1mplies that

sup xl%—fwgdutl<m'

tGIR+

Since g is bounded, Corollary 2.3 provides a constant k2€IR: inde-
pendent of t such that

I '.]é ftwgdutISkz‘ lgl ‘2

for all t€IR:. Adding these two inequalities yields a constant

k3€2m: independent of t such that

1 l.n
I £ (T, () £(e))- ¢ Zi___lxif(e)Tutzi(e) lsky [ 1£1],
for all t€IR:. Since ziGD(N) and zi(e)=o there is a constant

k(n)GIR: depending only on n such that
1
1 E(Tutf(e)-f(e)HSk(n)l1f|\2

for aIll telR This inequality holds for all fec(z) (G) . From the
Banach- Stelnhaus theorem we finally conclude that Af exists for
all feC ,, (G). |

2.6 Corollary. For every n€IN the measures ¢n.n are bounded.
Proof. Let (fk)k>1‘be a sequence of functions in Cu(G) satisfying

osf, <1, e$supp(fk)(k21) and f *1 for k+= (where G :=G\{e}). Then,

k G

since eésupp(fk®n),
A(fk¢n) = ffk¢ndn,

and by the theorem A(f ] )SA(fk+1¢ )S...SA (lGx¢n)<m(k21). The
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monotone convergence theorem yields the assertion. __l

3. The representation of the generating functional

G remains to be a given Hilbert-Lie group over a separable
Hilbert space H. We assume the existence of a system {di:ieIN} of
modified canonical coordinates in C (G) . For every f€C (G)

(2) ,n (2),n

we define functions Dg on G by

n 1 -1

n e .
Df(a). if ¢n(a)>o

o otherwise.
They are measurable, continuous at e, and bounded in a neighborhood
of e. In fact, the Taylor expansion of f at e yields

f(a)=f(e)+22=1di(a)xif(e)+ 5 22 3= =194 (a)d (a)X; Xy fle)+o (a)8 (f,a)

for all a in a neighborhood W of e, where Sn(f,.) satisfies

lima+een(f,a)=:Gn(f,e)=o. Thus

f- en(f,a) if a€W\[¢n=o]
D} (a)= <
~ o if a€ [¢n=o]

. n _ n o -
for all a€W and llma»e Df(a)—o, hence supaewlDf(a)l< . The meas

urability of D? is clear.

f
Also note that there exist a neighborhood V of e with Vo W and
a function Z€C (G) with 0sgsl, ¢(V)={1} and z([ W) =({o}. The func-

tions B?:=D2 are also measurable, continuous at e and bounded with

Bg(e)=o, and they satisfy

= (f- _ g -1
B = (f-fle) - Iy,

l «n
lx f(e) 5_2 i,j= 1dldjx1x]f(e))°

on V\[¢n=o].
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We are returning to the discussion of a convolution semigroup
{ut:tGIR+} on G with associated Lévy measure néM_(G).

3.1 Proposition. For every fec(z)(c) the integral

1
< (£-£(e) ZiZldixif(e)_ 5 ,3>1d1d3x1x3f(e))d”
exists.
Proof. Let f€C (G) for some n€EIN. By Corollary 2.6 together

(2),n
with the properties of Bﬁ we obtain that

/ Bf a(e .n)<e=.
G\[¢ =d

Now, let V be a neighborhood of e chosen as in the definition of

Bim Without loss of generality we assume that n (dV)=o. Then

-f(e)-5gD I A
fvx(f fle)-2y_1a;X;£(e)- 5 Ty 419544 lx]f(e))dn

=/ B d(¢_.n)<e
VN [ —o]

Applying Corollary 2.3 we also obtain that

- -zn -1l;n ®,
f[v(f fle)-I;_1d;X;fle)- 5 Iy 4 =19;95%; Xy f(e))dn<

hence that the integral in question exists. __|

3.2 Proposition. Let n€IN. Then

(i) for feC {(G) the integral / fdn is

(2),n VAL =0 -
bounded provided f¢ “1 is bounded on V\[® —o]

(ii) For every bounded measurable function £ on G which is
continuous at e, (¢n.n)—a.e. continuous and satisfies £ (e)=o,

lim 1/ £ dut =/

£ _dn.
G G n

t+o t X
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Proof. (i) follows from

! |£lan = f |£]e- a(e_.n)
V\[e =o] VA[¢_=o] "

fhg a(e .n)<=,

. n, _ -1 . . .
since hf. lV\[¢n=o]f¢n is lower sem;conﬁlnuous and bounded on G.

(ii) By Corollary 2.6 the measure vn:=¢n.n is bounded on G . On the
other hand we infer from Theorem 2.5 that for the measures vﬁ:

_l : .
—(t¢n).ut(t>o) the inequalities

. n X _ > n X
llmt*ovt(G ) = A(¢n)-v (G)
hold. It follows that v"(G')Sc:=sup  ,VI(G)<=. If £ is a bounded

teIR+
measurable function on G which is vP-a.e. continuous and satisfies
e¢supp (f) then clearly
lim

n _ n
t+offd\)t = [fdv .

A slightly more sophisticated argument yields the validity of this
limit relationship also for bounded measurable functions f that are

n . . .
v''-a.e. continuous, continuous at e and satisfy fl(e)=o. __I

3.3 Corollary. For every n€IN

1 n - n
T fo ¢ndut / _B

llmt+o Gx £ ¢ndn.

The proof follows from the discussion preceding Proposition 3.1
together with (ii) of the Proposition. |

3.4 Theorem. Let G be a Hilbert-Lie group over a separéble Hilbert
space H. We assume that there exists a modified canonical coor-
dinate system {di:ieIN} with respect to an orthonormal basis {Xi:
ie N} of H. On G we are given a convolution semigroup {ut:teIR+}
with Lévy measure n and generating functional A.
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Then there exist a vector r=(r.) in mM and a symmetric

i€IN
positive-semidefinite matrix a-(alJ i, JGINGIM(IN,IR) such that

for all fec(z)(G) one has

Af = L., X.f(e) + Zl j21 lJx X . f(e)
+fo(f'f(e) - L, i214;¥%;f(e))dn.
Proof. Let fec(z)(G), hence ec(z) n(G) for some n€E IN. Then by
’

Corollary 2.6 together with the discussion preceding Proposition
3.1 we obtain that for the function g:=32 ¢n the integral

fxgdrl"—‘f @dn
G
exists. From Corollary 3.3 we infer that

= 14 1
fogdn = lim., £ ngdut.

Now let V be a neighborhood of e chosen as in the definition of

Bg. Since for all i,j=1,...,n the functions didj¢;1 are bounded

X .
and continuous on V :=V\{e} the integrals

_ -1
[ didsan = o 0=l a;d e *a(e .n)

v

exist, as follows from (i) of Proposition 3.2. Moreover we have

dxf(e)-%z’.‘. a.4.X.X.£(e)

. _‘ _ _ n
g = £-f(e) L3 i,3=17173%4%;

i=1
on V, hence
lim,, = /. gd
tvo t ‘v IV

=/ (f-f(e)- zl a,x, f(e))dn——-zl lf d.d.X.X.f(e)dn.

V 1 j= X1 ] i73
Consequently,
lim .o € t fv(f-f(e))du.t
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n ; 1
= fvxgdn + Eisilllmt*o t deidut)Xif(e)

1 o0 . 1
o 57, 5ap (Mimg, o § Jydd de ) XX Ee).

On the other hand, since n(3V)=o, we obtain that

n
I}, 5=14;d5%;X £ (e))dn

-

n
d.xif(e)

-1
i=1"1 2

Cv(f—f(e) -z

I R

= lim , ¢ fcv(f fle))dn,

- lim, L spo (R d.X.fle) - £ . _.d.d.X.X.f(e))du
tvo € (v “i=1%"1 i,3=1%1%374% t

which altogether implies that

= i 1ln
Af = L, ,A(d )X fle) + 3 Zi’j=1A(didj)xixjf(e)
n
+ [  (f-fle) - I _,d;X f(e))dn

G

D n
5 bx(zi,j=ldidjxixjf(e))dn'

Defining r2:=A(di) and

n ._1 -
afy = 3(Ald 5 =S ddgan)

for i,j=1,...,n we then arrive at the representation

_ <n n n ‘n
Af = Zi=1rixif(e) + Zi,j=1aijxixjf(e)

+ 1 (f-£(e) - I]_ X f(e))dn.
G

As in the proof of Theorem 4.2.4 in [ 3] one shows that the matrix
n n
o = (a,

i34,4=1,...,n .
definite. Moreover, from the definition of the system {di:leIN}

€IM(n, IR) is symmetric and positive-semi-

of modified canonical coordinates we conclude that r2=r2+1 and
n __n+l s s .
ij‘aij for all i,j=1,...,n and n€IN. Since fec(z)(c) was chosen

arbitrarily, there exist a vector (ri)iemeIRm and a symmetric
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positive-semidefinite matrix a:=( ) €IM(IN, IR) such that

%i5)i,jem

ri=r2 and aij=a2j for all i,j=1,...,n,nEIN. The proof is com-
plete. _ |

3.5 Remark. If G is commutative one can show that the space C(2)(G)
which in this case coincides with its right counterpart & )(G) is

(2
contained in the domain D(N) of the generator N of the given con-

volution semigroup {ut:teIR+} on G, and a representation of N
analoguous to that of A is available. As for finite dimensional
Lie groups also for Hilbert-Lie groups G Gaussian semigroups can
be defined and characterized by the locality of their generators.
(c£.03],8 6.2).

3.6 Remark. In the special case that G itself is a separable Hilbert
space H the representation of the generator N of a convolution semi-
group {ut:t€]R+} on H has been established previously in[ 5] and [7 1.

In fact, in [5] the space Céz)(H) of all twice Fréchet differen-
tiable functions f€C, (H) such that ]If']l:=supx€H||f'(x)||<m,

lIf"ll:=supXeH||f"(x){l<m and f'' is uniformly continuous has

been introduced, and it has been shown that Céz)(H)C: D(N). Note that

_~{2)
C(Z)(H)C.Cz(G)—Cu

of [5] at least for functions in C(z)(H).

(H), and that our result yields the representation
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