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SOME HEAT OPERATORS ON P(Rd)

H.AIRAULT AND P.MALLIAVIN

ABSTRACT. To a diffusion on Rn, we associate a heat equation on the path space P(Rn)
of continuous maps defined on [0, 1] with values in Rn. The heat operator is obtained by
taking the sum of the square of twisted derivatives with respect to an orthonormal basis of
the Cameron-Martin space. We give the expression of this heat operator when it acts on
cylindrical functions defined on the Wiener space.
RÉSUMÉ. A une diffusion sur Rn, on associe une équation de la chaleur sur P(Rn), l’espace
des applications continues, définies sur [0, 1] à valeurs dans Rn. L’opérateur de la chaleur
est construit en prenant la somme des carrés des dérivées amorties par rapport à une base
de l’espace de Cameron-Martin. On exprime cet opérateur de la chaleur sur les fonctions
cylindriques définies sur l’espace de Wiener.
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§0: INTRODUCTION

Let n = be the Wiener space of continuous maps from ~0, l.j with values in Rri
and let 7 : ~ -~ be a map from S~ to itself. We assume that, for any T E [0,1], the
map w --> is differentiable on the Wiener space and that it is adapted. Given the
heat operator A on the Wiener space [See ~2~~, we construct a new operator A . .
The operator A is the image of the operator A through the map 1, and satisfy the identity

A(foI) = (Ãf)oI (0.1)

This allows to obtain a heat equation associated to the map I. The operator A is ob-
tained by taking the sum of the square of twisted derivatives with respect to a basis

of the Cameron-Martin space of the Wiener space. We express the op-
erator A when it is applied to cylindrical functions defined on the Wiener space P(RR).
The identity (0.1) extends to the Wiener space the elementary following computation:
Let A == ~y be the derivative of order 2 on R, viewed as the infinitesimal generator of
the brownian diffusion on R, and let ~ be a differentiable homeomorphism of R ; then

= holds where
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is the infinitesimal generator of a new diffusion on R. We explicit the computations when
the map I is the Ito map associated to the diffusion on R"

= dw(r) + b(x(T))dT (0.3)

This method extends when I is a map from to P(M) the path space of a Riemannian
manifold M; it allows to obtain new diffusions on the space P(M) . . See [3] for further
developments related to this subject.

§1 NOTATIONS AND DEFINITIONS

Let w be the brownian on R", and consider the’ diffusion given by the stochastic
diferential equation (0.3) where b is a differentiable map from RR to R" . We denote by

I : w --~ (1.1)

the Ito map and let 
’

(1.2)

be the dilation on The evaluation map ~pr at r is given by

= w~

and we put
cpr = 03C6oI (1.3)

We denote by  the Wiener measure on 03A9 = C([0,1], RR) and let vx = (Iogt) *  be the

image of the Wiener measure ~ by the map Iogt . The Cameron-Martin space H is the set
of differentiable functions h in ~2(~0,1]; R) such that fo h’(s)2ds  +oo. ~ We consider for

a basis of the Cameron-Martin space H, the functions defined by

ek,03B1() = 2 sin(k03C0 k03C0 ® Ea (1.4)

with k > 1 and

eo,a(T) = T ~ Cc.

where (~a)a=i,...,n is a basis of R" . We shall write
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Let h be an element of the Cameron-Martin space H and let f --3 R". We let

Dhf(03C9) = d d~|~=0f(03C9 + ~h) (1.5)

For s E [0,1], we define such that

= 10 Dsf(03C9)h’(s)ds (1.6)

Let

~f~w)~s) _ (1.7)

On the Cameron-Martin space H, denote ( ~ )H the scalar product given by (hi ~h2)x =
. We have

= (1.8)

and for fi and f2 defined on SZ with real values, we have

(~f1(03C9)|~f2(03C9)) = / (1.9)

§2 TWISTING AND INTERTWINNING IDENTITIES

Let b’ be the Jacobian map of b and let h in the Cameron-Martin space; we put

/3(T)(c.a) = / exp[sb’(03C9u)du]h’(s)ds (2.1)

Definition 2.1. . We call /3(r) the twisted vector field associated to the element h through
the diffusion (0.3).

We denote ~3‘(r) _ ~/3(T) the derivative of /3 as a function of r. By (2.1), we have

= ~~~T ~ + ~(~)~(r)(~) (2.2)

and
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Lemma 2.1. . Assume that ~ and h are related by (2.1), then the derivative of the evalu-
ation map (1.3) is

Dh(03C9) _ (2.3)

proof. Let la E H; from (1.2) and (0.3), the function

- (03C9 + ~h)

is solution of the stochastic equation

= d03C9() + + (2.4)

Taking the derivative with respect to e, we obtain that

,

satisfies

dz(T)(47) = + 

and

z(0)(c~) = 0

By (2.2), we obtain the identity (2.3).

Corollary. We have 
’ 

Dda(r)(w) = exp[sb’(x(u)(03C9))]du (2.5)

proof. means Thus, by (2.3) and (1.6), we have

03B2()(I03C9) = 0Dsx(03C9)h’(s)ds (2.6)

Then, we use (2.1). 
’

Remark: If we denote 03C6(03C9) = 03C9 then (2.6) can be written

(2.?)

Definition 2.2. We let 
’

+ ~~3(w)) (2.s)
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Lemma 2.2. If ,~ is the twisted vector field related to h through (2.1), the following
intertwinning relation holds

Dh(foI)(03C9) = (2.9)

proof.
d 

(foI)(03C9 + eh) (2.10)

We verify (2.9) when f = 03C8o03C6 where pr(w) = 03C9 and 03C8 : R" -. R. For the solution y~()
of (2.4), we have

+ Eh) (2.11)

We deduce that

d d~|~=003C8(y~()) = 03C8’(x)03B2()(I03C9) (2.12)

On the other hand

(D~/)(~) = ~(T))~(T)(~) (2.13)

By comparison of (2.13) and (2.12), we get (2.9).
Remark that (2.3) is the particular case of (2.9) when f = pr.

Definition 2.3. When h and /~ are related through (2.1), we define the twisted derivative
hf by

hf(03C9) = (2.14)

Lemma 2.3. We have

= Dy f oI) y) (2.15)

proof. From (2.14) and (2.9), we get .

(hf)(I03C9) = Dh(foI)(03C9) (2.16)

and

h(hf)(I03C9) = Dh((hf)oI)(03C9)

= Dh(Dh(foI))(03C9)

Thus, we obtain (2.15).
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§3 HEAT OPERATORS ON THE SPACE P(Rn)

We shall construct the heat operator on P( RR) using the Ito map.

Definition 3.1. . Let ek,a given by (1.4) and let Dek,03B1 the derivation in the direction ek,03B1
(See (1.~~ we define ~e second order operator

~=E ~ ~)

The operator A on P(R") does not depend on the basis of the Cameron-Martin space;
See [2]. .

Definition 3.2. Let be the ~wis~ed derivation, we define the twisted operator A by

~=E E ~ 
~

We verify that the definition (3.2) for the operator A on does not depend on
the basis of the Cameron-Martin space. ,

Lemma 3.1. . We have
. 

= (A/)o7 (3.3)

proof. This is a consequence of (2.15), (3.1) and (3.2).

We shall see in §4 that A corresponds to a change of variables on the Wiener space
analoguous to the elementary one (0.2) on R.

Definition 3.3. . We denote by  the Wiener measure on 03A9 = and let

~ = (3.4)
the image of the Wiener measure  through the map Iogt. See (1.2).

Theorem 3.1. . Let f be a regular function from P(RR) to R. We have

~ ~ = ~ (3.5)

proof. We verify (3.4) when = and 03C8 : Rn ~ R. In this case, we have

= 

= 

From the heat equation related to the brownian motion on P(R"), we know (see {2]) that

~ = / (3.6)

From (3.6) and (3.3), we deduce (3.5).
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§4 EXPRESSION OF THE TWISTED LAPLACIAN Ã ON CYLINDRICAL FUNCTIONS

Notation. Let Pi -~ R be the projection on the z component; we denote

= pio

and = (~i(r), ~(r),..., ~(r)) . We pu~ = 
,

From (1.9), we have

(4.1)

Theorem 4.1. Let 03C8 : Rn ~ R and = We have

Ã(03C8o03C6) =  (~xi()|~xj())H(I-103C9)~203C8~xi~xj(03C9) + A(xi())(I-1 03C9)~03C8~xi(03C9)
(4.2)

The proof of (4.2) will result from the following lemmas and definitions.

Remark: If we take a $ = (03A61, 03A62, ..., 03A6n) to be a differentiable homeomorphism of R"
and let

0394 = 
az;2

to be the usual Laplacian on R~, we have, for F R" 2014~ R

= (F)o03A6

with

A=~;(V$.)V~)($-~~))~-+ ~ (A$.)(~-~))~-
. J 

. ’ ~ !" ’

The theorem 4.1 is an extension of this remark to the Wiener space.

Definition 4.1. Let 

6~)du] (4.3)

From (2.5), we see that
(4.4)



8

Lemma 4.2. We assume that we have a one dimensional diffusion, i.e. n = 1 in (0.3).
For k > 1, let

03B2k()(03C9) = 0 M(s, r)(ca)f cos(k03C0s)ds (4.5)

and

= (4.6)

We have

03B2k()2(03C9) = exp[2 s b’(03C9u)du]ds (4.7)

proof. For fixed r, let g be the even function which is periodic, of period 2 and given by

= 1s~ exp[s b’(03C9u)du] (4.8)

Its development in Fourier series, for s  T is equal to ,

03B2o() + 03A3 203B2k()cos(k03C0s) = g(s) (4.9)
k>1

From Parseval’s identities, we obtain

2 J 1 g(s)2ds = 2 03A3 03B2k()2 (4.10)10 k>0

This proves (4.7~.

Lemma 4.3. The line vectors of the matrix M(s,T)(Iw) are the vectors Dax=(T)(w). See
(4.4). For n = 1, we get

~ = (4.m)
>o

proof.
By (3.1), we have

Dh(03C9) = 0 exp[s b’(xu)du]h’(s)ds (4.12)

thus, from (2.5), we get

Ds(03C9) = exp[s b’(xu)du]1s~r (4.13)
This proves the first assertion. Then, we deduce (4.11) from (4.7) and (1.9).
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Proposition 4.4. The second order term in Ã(03C8o03C6) is given by

(wr) (4.14)

proof. We have to calculate taking care that 
,

03B2()(03C9) = 0 exp[s b’(03C9u)du]h’(s)ds
depends on c~ when the gradient of b is not constant. We have

(4.15)

and
’ + ~4.16~

We obtain (4.14) from (4.11), (4.16) and (3.2) as follows: Let

03B2k,03B1()(03C9) = 0 exp[s b’(03C9u)du]e’k,03B1(s)ds
= f T e’k(s)exp[s b’(03C9u)du](~03B1)ds

= / r )(~03B1)ds
JO

See (4.3). We put
- 

j

We obtain 

, 

° ~ J T 1~"~ 
_

We denote 

= 0 e’k(s)Aj03B1(s,)ds (4.17)

We have 

03C8"(03C9)[03B2k,03B1()(03C9), 03B2k,03B1()(03C9)]
CY=1

a n

=E ~ )
Qf=l 
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On the other hand,

n

(~xj1()|~xj2())H = [kBj103B1()kBj203B1()]
This proves (4.14).

We shall now evaluate the first order term on cylindrical functions.

Lemma 4.5. Let and given by (4.5)-(4.6~ and n = 1, we have

~ DRr ~~~E(T )(W )~ = J r J r (4.18)
~ J.

proof. By (2.2), we have 

03B2()(03C9 + ~03B2(03C9)) = + (4.19)

We deduce

aE |~=003B2()(03C9 + ~03B2(03C9))

= 0 M(s,)(03C9) sb"(03C903B1)03B2(03C903B1)03B2(03B1)(03C9)h’(s)d03B1ds

= 0 M(s,)(03C9) s b"(03C903B1) 0 M(u,03B1)h’(u)h’(s)duds

(4.20)

where, at the second step, we have replaced by its expression (2.1). We have to
evaluate the sum 

J =  e’k(s) 0 e’k(v)gs(v)dv (4.21)

where 

gd(v) - J /’ r (4.22)
sup(s,v)

J is the sum of the Fourier series of g at the point v = s. We deduce (4.18).
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Proposition 4.6. Let A be the Laplacian (3.1). The first order term in (4.2) is given by

~(T))(7-~)J~) (4.23)

proof. We do the proof when n = 1. We calculate

(4.24)
k

We have

Dkx()(03C9) = 0 exp[ s b’(xu(03C9))du]h’(s)ds
and

D2hx()(03C9) = 
d 

Dhx()(03C9 + eh)

= 0 ds M(s,)(I03C9)h’(s) J r du 0 d03B3 M(03B3,u)(I03C9)h’(03B3) (4.25)

After changing the order of integration in (4.25), we calculate the sum (4.24) as the sum
of a Fourier series. We obtain that the sum (4.24) is equal to

0 M(s,)(I03C9) J s r (4.26)

We compare with (4.18) and it yields (4.23).
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