Stany De Smedt

Orthonormal bases for p-adic continuous and continuously differentiable functions

<http://www.numdam.org/item?id=AMBP_1995__2_1_275_0>
ORTHONORMAL BASES FOR P-ADIC CONTINUOUS AND
CONTINUOUSLY DIFFERENTIABLE FUNCTIONS

Stany De Smedt

Abstract. In this paper we adapt the well-known Mahler and van der Put base of the Banach space of continuous functions to the case of the n-times continuously differentiable functions in one and several variables.

1991 Mathematics subject classification : 46S10

1. Introduction

Let K be an algebraic extension of \mathbb{Q}_p, the field of p-adic numbers. As usual, we write \mathbb{Z}_p for the ring of p-adic integers and $C(\mathbb{Z}_p \rightarrow K)$ for the Banach space of continuous functions from \mathbb{Z}_p to K. We have the following well-known bases for $C(\mathbb{Z}_p \rightarrow K)$: on one hand, we have the Mahler base $\left(\frac{x}{n}\right)$ ($n \in \mathbb{N}$), consisting of polynomials of degree n and on the other hand we have the van der Put base $\{e_n \mid n \in \mathbb{N}\}$ consisting of locally constant functions e_n defined as follows: $e_0(x) = 1$ and for $n > 0$, e_n is the characteristic function of the ball $\{\alpha \in \mathbb{Z}_p \mid |\alpha - n| < 1/n\}$. For every $f \in C(\mathbb{Z}_p \rightarrow K)$ we have the following uniformly convergent series

$$f(x) = \sum_{n=0}^{\infty} a_n \left(\frac{x}{n}\right)$$

where $a_n = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} f(j)$

$$f(x) = \sum_{n=0}^{\infty} b_n e_n(x)$$

where $b_0 = f(0)$ and $b_n = f(n) - f(n-)$. Here n_- is defined as follows. For every $n \in \mathbb{N}_0$, we have a Hensel expansion $n = n_0 + n_1p + \ldots + n_sp^s$ with $n_s \neq 0$. Then $n_- = n_0 + n_1p + \ldots + n_{s-1}p^{s-1}$. We further put $\gamma_0 = 1$, $\gamma_n = n - n_- = n_sp^s$, $\delta_0 = 1$, $\delta_n = p^s$ and $n_- = n - \delta_n$. Remark that $|\delta_n| = |\gamma_n|$.

In the sequel, we will also use the following notation, for \(m, x \in \mathbb{Q}_p \), \(x = \sum_{j=-\infty}^{\infty} a_j p^j : m \triangleleft x \)
if \(m = \sum_{j=-\infty}^{i} a_j p^j \) for some \(i \in \mathbb{Z} \). We sometimes refer to the relation \(\triangleleft \) between \(m \) and \(x \) as "\(m \) is an initial part of \(x \)" or "\(x \) starts with \(m \)".

Let \(f : \mathbb{Z}_p \to K \). The (first) difference quotient \(\phi_1 f : \nabla^2\mathbb{Z}_p \to K \) is defined by \(\phi_1 f(x,y) = \frac{f(y) - f(x)}{y - x} \), where \(\nabla^2\mathbb{Z}_p = \mathbb{Z}_p \times \mathbb{Z}_p \setminus \{(x,x) \mid x \in \mathbb{Z}_p \} \). \(f \) is called continuously differentiable (or strictly differentiable, or uniformly differentiable) at \(a \in \mathbb{Z}_p \) if \(\lim_{(x,y) \to (a,a)} \phi_1 f(x,y) \) exists. We will also say that \(f \) is \(C^1 \) at \(a \). In a similar way, we may define \(C^n \)-functions as follows: for \(n \in \mathbb{N} \), we define \(\nabla^{n+1}\mathbb{Z}_p = \{(x_1, \ldots, x_{n+1}) \in \mathbb{Z}_p^{n+1} \mid x_i \neq x_j \text{ if } i \neq j \} \) and the \(n \)-th difference quotient \(\phi_n f : \nabla^{n+1}\mathbb{Z}_p \to K \) by \(\phi_0 f = f \) and
\[
\phi_n f(x_1, x_2, \ldots, x_{n+1}) = \frac{\phi_{n-1} f(x_2, x_3, \ldots, x_{n+1}) - \phi_{n-1} f(x_1, x_3, \ldots, x_{n+1})}{x_2 - x_1}.
\]

A function \(f \) is called a \(C^n \)-function if \(\phi_n f \) can be extended to a continuous function \(\phi_n f \) on \(\mathbb{Z}_p^{n+1} \). Recall from [4],[5] that \(\phi_n f(x, x, \ldots, x) = \frac{f^{(n)}}{n!} \), for all \(x \in \mathbb{Z}_p \). The set of all \(C^n \)-functions from \(\mathbb{Z}_p \) to \(K \) will be denoted by \(C^n(\mathbb{Z}_p \to K) \). For any \(C^n \)-function \(f \), we define \(\|f\|_n = \max \{ \|\phi_j f\|_s \mid 0 \leq j \leq n \} \) where \(\| \cdot \|_s \) is the sup norm. (For \(f : X \to K, \|f\|_s = \max_{x \in X} |f(x)| \) \(\| \cdot \|_n \) is a norm on \(C^n \), making \(C^n \) into a Banach space.

2. Generalization of the Mahler base for \(C(\mathbb{Z}_p \to \mathbb{Q}_p) \)

One can construct other orthonormal bases of \(C(\mathbb{Z}_p \to K) \) by generalizing the procedure used to define the Mahler base as did Y. Amice. In general, we have the following characterization of the polynomial sequences \(e_n \in K[x], n \geq 0 \) such that \(\deg(e_n) = n \) and which are orthonormal bases of the space \(C(B \to K) \), where \(B = \{ x \in K \mid |x| \leq 1 \} \).

Theorem: Let \((e_n)_{n \geq 0} \) be a sequence of polynomials in \(K[x] \) of degree \(n \). They form an orthonormal base of \(C(B \to K) \) if and only if \(\|e_n\|_s = 1 \) and \(||e_n||_G = |\text{coeff } x^n| = |\pi^{-(n-s(n))}/(q-1)| \) where \(\pi \) is a uniformizing parameter of \(K \), \(q \) the cardinality of the residue class field of \(K \) and \(s(n) \) the sum of the digits of \(n \) in base \(q \). By the way, for a polynomial
\[
f(x) = \sum_{i=0}^{n} a_i x^i, \|f\|_G = \max_{i \leq n} |a_i|.
\]

Given an orthonormal base, we can construct other orthonormal bases by taking a certain linear combination of the given base as will be stated in the following theorem.

Theorem: Let \(e_n(n \in \mathbb{N}) \) be an orthonormal base of \(C(\mathbb{Z}_p \to K) \) and put \(p_n = \sum_{j=0}^{n} a_{n,j} e_j \) where \(a_{n,j} \in K \) and \(a_{n,n} \neq 0 \). The \(p_n(n \in \mathbb{N}) \) form an orthonormal base for
$C(\mathbb{Z}_p \to K)$ if and only if $|a_{n,j}| \leq 1$ for all $j \leq n$ and $|a_{n,n}| = 1$.

We can generalize the Mahler base also by changing the degree of the polynomials as follows.

Theorem: The polynomials $q_n(x) = \left(\frac{px}{pn}\right) (n \in \mathbb{N})$ form an orthonormal base for $C(\mathbb{Z}_p \to \mathbb{Q}_p)$ and every continuous function $f : \mathbb{Z}_p \to \mathbb{Q}_p$ can be written as a uniformly convergent series $f(x) = \sum_{n=0}^{\infty} a_{pn}\left(\frac{px}{pn}\right)$

with $a_{pn} = \sum_{k=0}^{n} (-1)^{n-k} \left(\frac{pn}{pk}\right) \alpha_{n-k}(p)f(k)$

and $\alpha_0^{(p)} = 1, \alpha_m^{(p)} = \sum_{1 \leq i_1 \leq \ldots \leq i_r \leq m, 0 \leq i_1 \leq \ldots \leq i_r \leq m} (-1)^{r+m} \left(\frac{pm}{p_1 \ldots p_r}\right)$

If we mix the Mahler and van der Put base together, we obtain a new orthonormal base.

Theorem: The sequence $g_n(x) = \left(\frac{x}{n}\right) \varepsilon_n(x) (n \in \mathbb{N})$ forms an orthonormal base for $C(\mathbb{Z}_p \to \mathbb{Q}_p)$. Moreover, every continuous function $f : \mathbb{Z}_p \to \mathbb{Q}_p$ can be written as a uniformly convergent series $f(x) = \sum_{i=0}^{\infty} a_i \left(\frac{x}{i}\right) \varepsilon_i(x)$

with $a_i = \sum_{j \varepsilon_i} \alpha_i f(j)$

and $\alpha_i, i = 1, \alpha_i,j = \sum_{j=k_0 \leq k_1 \leq \ldots \leq k_n=i} (-1)^n \left(\begin{array}{c} i \\ k_{n-1} \end{array}\right) \left(\begin{array}{c} k_{n-1} \\ k_{n-2} \end{array}\right) \ldots \left(\begin{array}{c} k_1 \end{array}\right)$

3. Differentiable functions

For C^n-functions the polynomials $\left(\frac{x}{i}\right) (i \in \mathbb{N})$ still remain a base, we only have to add the factor $\gamma_i^{-1} \gamma_{[i/2]} \ldots \gamma_{[i/n]}$ where $\gamma_i = i - i_-$ and $[\alpha]$ denotes the integer part of α, to obtain the orthonormal base $\gamma_i^{-1} \gamma_{[i/2]} \ldots \gamma_{[i/n]} \left(\frac{x}{i}\right)$. The proof is based on the following lemma in case $n=2$.

Lemma Let f be a continuous function with interpolation coefficients a_n. Then f is a C^2-function if and only if $\left|\frac{a_{i+j+k+2}}{(i+k+2)}\right| \to 0$ as $i + j + k$ approach infinity.

Corollary If f is a C^2-function, then $||\phi_2 f||_2 = \sup_n \left|\frac{a_n}{\gamma_{n+2}}\right|$.

A similar property does not hold for the van der Put base.

In case $n=1$, we know that $\{ \gamma_i \varepsilon_i(x) | i \in \mathbb{N} \} \cup \{(x-i) \varepsilon_i(x) | i \in \mathbb{N} \}$ is an orthonormal base for $C^1(\mathbb{Z}_p \to K)$. Therefore every continuously differentiable function f can be written
under the form $f(x) = \sum_{n=0}^{\infty} a_n e_n(x) + \sum_{n=0}^{\infty} b_n(x-n)e_n(x)$ where $a_0 = f(0)$, $a_n = f(n) - f(n_0) - (n - n_0) f'(n_0)$, $b_0 = f'(0)$ and $b_n = f'(n) - f'(n_0)$. For details we refer to [6]. The case $n = 2$, can be treated as follows.

Theorem: Let $f(x) = \sum_{n=0}^{\infty} a_n e_n(x) + \sum_{n=0}^{\infty} b_n(x-n)e_n(x) \in C^1(Z_p \to K)$.

$f \in C^2(Z_p \to K)$ if and only if $\lim \frac{a_n}{\gamma_n^2}$ and $\lim \frac{b_n}{\gamma_n}$ exist for all $a \in Z_p$, and $\lim \frac{b_n}{\gamma_n} = 2 \lim \frac{a_n}{\gamma_n^2}$.

Theorem: $\{ \gamma_n^2 e_n(x), \gamma_n(x-n)e_n(x), (x-n)^2 e_n(x) \mid n \in N \}$ is an orthonormal base for $C^2(Z_p \to K)$ and for every $f \in C^2(Z_p \to K)$ we have

$$f(x) = \sum_{n=0}^{\infty} a_n e_n(x) + \sum_{n=0}^{\infty} b_n(x-n)e_n(x) + \sum_{n=0}^{\infty} c_n \frac{(x-n)^2}{2} e_n(x)$$

with

- $a_0 = f(0)$
- $a_n = f(n) - f(n_0) - (n - n_0) f'(n_0)$ for $n \neq 0$
- $b_0 = f'(0)$
- $b_n = f'(n) - f'(n_0) - (n - n_0) f''(n_0)$ for $n \neq 0$
- $c_0 = f''(0)$
- $c_n = f''(n) - f''(n_0)$ for $n \neq 0$

The construction of this orthonormal base, which is very technical, is based on the use of an antiderivation map $P_n : C^{n-1}(Z_p \to K) \to C^n(Z_p \to K)$ defined by $P_n f(x) = \sum_{m=0}^{\infty} \sum_{j=0}^{n-1} \frac{f(j)(x_m)}{(j+1)!} (x_{m+1} - x_m)^{j+1}$ with $x_m = \sum_{j=-\infty}^{+\infty} a_j p_j$ and on the two following lemmas.

Lemma: For $(t_1, \ldots, t_k) \in \nabla^k X = \{(x_1, x_2, \ldots, x_k) \mid x_i \neq x_j \text{ if } i \neq j \}$ with $t_1 = x, t_i = y$ and $t_k = z$, we have

$$\phi_2 f(x, y, z) = \sum_{j=2}^{k-1} \mu_j \phi_2 f(t_{j-1}t_j, t_{j+1})$$

with $\mu_j = \begin{cases} \frac{(t_{j+1} - t_{j-1})(t_1 - t_k)}{(z-x)(y-z)} & \text{for } j \geq i \\
\frac{(t_i - t_{j-1})(t_{j+1} - t_k)}{(z-x)(y-z)} & \text{for } j \leq i \end{cases}$

Moreover, $\sum_{j=2}^{k-1} \mu_j = 1$

Lemma: Let S be a ball in K and $f \in C(Z_p \to K)$.

Suppose that $\phi_2 f(n, n - \delta_n, n + p^k \delta_n) \in S$ for all $n \in N_0, k \in N$, then $\phi_2 f(x, y, z) \in S$ for all $x, y, z \in Z_p, x \neq y, x \neq z, y \neq z$.

4. **Several variables**

We can also construct the Mahler and van der Put base for functions of several variables. This brings us to the following results.
Theorem: The family \(\max\{\gamma_n, \gamma_m\}. (x_n, y_m) (n, m \in \mathbb{N}) \) forms an orthonormal base for \(C^1(\mathbb{Z}_p \times \mathbb{Z}_p \to K) \). The proof is based on

Theorem: \(f(x, y) = \sum_{n,m} a_{n,m} \binom{x}{n} \binom{y}{m} \) is a \(C^1 \)-function if and only if \(\left| \frac{a_{i+j+1,k}}{j+1} \right| \to 0 \)

and \(\left| \frac{a_{i,j+k+1}}{k+1} \right| \to 0 \) as \(i+j+k \) approach infinity or equivalently \(\left| \frac{a_{n,m}}{\gamma_n} \right| \to 0 \) and \(\left| \frac{a_{n,m}}{\gamma_m} \right| \to 0 \) as \(n+m \) approach infinity.

Starting with the van der Put base \(e_n(n \in \mathbb{N}) \) of \(C(\mathbb{Z}_p \to K) \), we get

Theorem: The family \(e_n(x)e_m(y), (x-n)e_n(x)e_m(y), (y-m)e_n(x)e_m(y) \)

\((n, m \in \mathbb{N}) \) forms an orthogonal base for \(C^1(\mathbb{Z}_p \times \mathbb{Z}_p \to K) \) and every \(C^1 \)-function \(f \) can be written as

\[
f(x, y) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i,j}e_i(x)e_j(y) + b_{i,j}(x-i)e_i(x)e_j(y) + c_{i,j}(y-j)e_i(x)e_j(y)
\]

with

\[
a_{0,0} = f(0,0)
\]

\[
a_{n,0} = f(n,0) - f(n_-,0) - \gamma_n \frac{\partial f}{\partial x}(n_-,0) \quad \text{for} \ n \neq 0
\]

\[
a_{0,m} = f(0,m) - f(0,m_-) - \gamma_m \frac{\partial f}{\partial y}(0,m_-) \quad \text{for} \ m \neq 0
\]

\[
a_{n,m} = f(n,m) - f(n_-,m) - f(n,m_-) + f(n_-,m_-) - \gamma_n \left(\frac{\partial f}{\partial x}(n_-,m) - \frac{\partial f}{\partial x}(n_-,m_-) \right) - \gamma_m \left(\frac{\partial f}{\partial y}(n,m_-) - \frac{\partial f}{\partial y}(n_-,m_-) \right) \quad \text{for} \ n \neq 0 \ \text{and} \ m \neq 0
\]

\[
b_{0,0} = \frac{\partial f}{\partial x}(0,0)
\]

\[
b_{n,0} = \frac{\partial f}{\partial x}(n,0) - \frac{\partial f}{\partial x}(n_-,0) \quad \text{for} \ n \neq 0
\]

\[
b_{0,m} = \frac{\partial f}{\partial x}(0,m) - \frac{\partial f}{\partial x}(0,m_-) \quad \text{for} \ m \neq 0
\]

\[
b_{n,m} = \frac{\partial f}{\partial x}(n,m) - \frac{\partial f}{\partial x}(n_-,m) - \frac{\partial f}{\partial x}(n,m_-) + \frac{\partial f}{\partial x}(n_-,m_-) \quad \text{for} \ n \neq 0 \ \text{and} \ m \neq 0
\]

\[
c_{0,0} = \frac{\partial f}{\partial y}(0,0)
\]

\[
c_{n,0} = \frac{\partial f}{\partial y}(n,0) - \frac{\partial f}{\partial y}(n_-,0) \quad \text{for} \ n \neq 0
\]

\[
c_{0,m} = \frac{\partial f}{\partial y}(0,m) - \frac{\partial f}{\partial y}(0,m_-) \quad \text{for} \ m \neq 0
\]

\[
c_{n,m} = \frac{\partial f}{\partial y}(n,m) - \frac{\partial f}{\partial y}(n_-,m) - \frac{\partial f}{\partial y}(n,m_-) + \frac{\partial f}{\partial y}(n_-,m_-) \quad \text{for} \ n \neq 0 \ \text{and} \ m \neq 0
\]

Remark: To obtain an orthonormal base, the \(e_i(x)e_j(y) \) should be multiplied by
max\{\gamma_i, \gamma_j\}; the \((x - i)e_i(x)e_j(y)\) by \(\text{max}\left\{\frac{1}{p^\gamma_i}, 1, \frac{\gamma_j}{p^\gamma_i}\right\}\) in case \(i \neq 0\) and by \(\gamma_j\) in case \(i = 0\) and analogous for \((y - j)e_i(x)e_j(y)\).

Generalization: The sequence \((x - i)^{k}(y - j)^{l}e_i(x)e_j(y)\) with \(0 \leq k + l \leq n, i \in \mathbb{N}\) and \(j \in \mathbb{N}\) forms an orthogonal base for \(C^n(\mathbb{Z}_p \times \mathbb{Z}_p \rightarrow K)\) whereby every \(C^n\)-function \(f\) can be written as \(f(x, y) = \sum_{i,j=0}^{\infty} \sum_{k+l=0}^{n} \frac{a_{i,j}^{k,l}(x-i)^{k}y^{-l}}{k!}e_i(x)e_j(y)\) with

\[
a_{i,j}^{k,l} = \frac{\partial^{k+l}f}{\partial x^k \partial y^l}(i,j) - \sum_{\alpha=0}^{n-k-l} \frac{\partial^{k+l+\alpha}f}{\partial x^k \partial y^l+\alpha}(i-,j)\frac{\gamma_i^\alpha}{\alpha!} - \sum_{\beta=0}^{n-k-l} \frac{\partial^{k+l+\beta}f}{\partial x^k \partial y^l+\beta}(i,j-,\beta)\frac{\gamma_j^\beta}{\beta!} +
\]

\[
\sum_{\alpha+\beta=0}^{n-k-l} \frac{\partial^{k+l+\alpha+\beta}f}{\partial x^k \partial y^l+\alpha+\beta}(i-,j-,\alpha+\beta)\frac{\gamma_i^\alpha \gamma_j^\beta}{\alpha!\beta!}
\]

for \(i \neq 0\) and \(j \neq 0\)

\[
a_{i,0}^{k,l} = \frac{\partial^{k+l}f}{\partial x^k \partial y^l}(i,0) - \sum_{\alpha=0}^{n-k-l} \frac{\partial^{k+l+\alpha}f}{\partial x^k \partial y^l+\alpha}(i-,0)\frac{\gamma_i^\alpha}{\alpha!}
\]

for \(i \neq 0\)

\[
a_{0,j}^{k,l} = \frac{\partial^{k+l}f}{\partial x^k \partial y^l}(0,j) - \sum_{\beta=0}^{n-k-l} \frac{\partial^{k+l+\beta}f}{\partial x^k \partial y^l+\beta}(0,j-,\beta)\frac{\gamma_j^\beta}{\beta!}
\]

for \(j \neq 0\)

and \(a_{0,0}^{k,l} = \frac{\partial^{k+l}f}{\partial x^k \partial y^l}(0,0)\)

The previous theorems show that \(C^n(\mathbb{Z}_p \times \mathbb{Z}_p \rightarrow K)\) is not the complete tensor product of \(C^n(\mathbb{Z}_p \rightarrow K)\) with \(C^n(\mathbb{Z}_p \rightarrow K)\) as one may expect, considering the case \(C(\mathbb{Z}_p \rightarrow \mathbb{K})\).

Therefore we define a finer structure for functions of two variables.

Definition:

\(\phi_{0,0}f(x_0, y_0) = f(x_0, y_0)\)

\(\phi_{1,0}f(x_0, x_1, y_0) = \frac{f(x_0, y_0) - f(x_1, y_0)}{x_0 - x_1}\) for \(x_0 \neq x_1\)

\(\phi_{0,1}f(x_0, y_0, y_1) = \frac{f(x_0, y_0) - f(x_0, y_1)}{y_0 - y_1}\) for \(y_0 \neq y_1\)

\(\vdots\)

\(\phi_{i,j}f(x_0, x_1, \ldots, x_i, y_0, y_1, \ldots, y_j)\)

\(= \phi_{i-1,j}f(x_0, \ldots, x_{i-2}, x_{i-1}, y_0, \ldots, y_j) - \phi_{i-1,j}f(x_0, \ldots, x_{i-2}, x_{i-1}, y_0, \ldots, y_j)\)

\(= \phi_{i,j-1}f(x_0, \ldots, x_i, y_0, \ldots, y_{j-2}, y_{j-1}) - \phi_{i,j-1}f(x_0, \ldots, x_i, y_0, \ldots, y_{j-2}, y_{j-1})\)

for \((x_0, x_1, \ldots, x_i, y_0, y_1, \ldots, y_j) \in \mathbb{V}^{i+1}\mathbb{Z}_p \times \mathbb{V}^{j+1}\mathbb{Z}_p\) is the difference quotient of order \(i\) in the first variable and order \(j\) in the second variable of the function \(f\) from \(\mathbb{Z}_p \times \mathbb{Z}_p\) to \(K\).

Definition: \(f : \mathbb{Z}_p \times \mathbb{Z}_p \rightarrow K\) is \(m\) times strictly differentiable in his first variable and \(n\) times strictly differentiable in his second variable (for short: a \(C^{m,n}\)-function) if and
only if \(\phi_{m,n} \) can be extended to a continuous function \(\overline{\phi_{m,n} f} \) on \(\mathbb{Z}_p^{m+n+2} \). The set of all \(C^{m,n} \)-functions \(f : \mathbb{Z}_p \times \mathbb{Z}_p \to K \) is denoted \(C^{m,n}(\mathbb{Z}_p \times \mathbb{Z}_p \to K) \). For \(f : \mathbb{Z}_p \times \mathbb{Z}_p \to K \), set \(\|f\|_{m,n} = \max_{0 \leq i,j \leq m} \|\phi_{i,j} f\|_s \).

For these functions, we get the following equivalent of the Mahler base.

Theorem: The family \(\gamma_i \gamma_{[i/2]} \cdots \gamma_{[i/m]} \gamma_j \gamma_{[j/2]} \cdots \gamma_{[j/n]} \left(\begin{array}{c} x \\ i \\ \end{array} \right) \left(\begin{array}{c} y \\ j \\ \end{array} \right) \) \((i,j \in \mathbb{N})\) forms an orthonormal base for \(C^{m,n}(\mathbb{Z}_p \times \mathbb{Z}_p \to K) \).

Since it can be easily seen that there is an isometry between the complete tensor product \(C^m(\mathbb{Z}_p \to K) \otimes C^n(\mathbb{Z}_p \to K) \) and \(C^{m,n}(\mathbb{Z}_p \times \mathbb{Z}_p \to K) \), the van der Put base for \(C^{m,n} \)-functions is given as follows.

Theorem: The family \(\gamma_i^{m-k} (x-i)^k \gamma_j^{n-l} (y-j)^l e_i(x)e_j(y) \) with \(0 \leq k \leq m, 0 \leq l \leq n, \) \(i \in \mathbb{N} \) and \(j \in \mathbb{N} \) forms an orthonormal base for \(C^{m,n}(\mathbb{Z}_p \times \mathbb{Z}_p \to K) \) whereby every \(C^{m,n} \)-function \(f \) can be written as \(f(x,y) = \sum_{i,j=0}^m \sum_{k=0}^n \sum_{l=0}^n a_{i,j}^{k,l} (x-i)^k (y-j)^l e_i(x)e_j(y) \) with

\[
\begin{align*}
a_{i,j}^{k,l} &= \frac{\partial^{k+l} f}{\partial x^k \partial y^l} (i,j) - \sum_{\alpha=0}^{m-k} \frac{\partial^{k+l+\alpha} f}{\partial x^k+\alpha \partial y^l} (i-\alpha,j) \frac{\gamma_{i-\alpha}^\alpha}{\alpha!} - \sum_{\beta=0}^{n-l} \frac{\partial^{k+l+\beta} f}{\partial x^k \partial y^l+\beta} (i,j-\beta) \frac{\gamma_j^\beta}{\beta!} \\
&\quad + \sum_{\alpha=0}^{m-k} \sum_{\beta=0}^{n-l} \frac{\partial^{k+l+\alpha+\beta} f}{\partial x^k+\alpha \partial y^l+\beta} (i-\alpha,j-\beta) \frac{\gamma_i^\alpha \gamma_j^\beta}{\alpha! \beta!} \\
&\quad \text{for } i \neq 0 \text{ and } j \neq 0.
\end{align*}
\]

\[
\begin{align*}
a_{i,0}^{k,l} &= \frac{\partial^{k+l} f}{\partial x^k \partial y^l} (i,0) - \sum_{\alpha=0}^{m-k} \frac{\partial^{k+l+\alpha} f}{\partial x^k+\alpha \partial y^l} (i-\alpha,0) \frac{\gamma_{i-\alpha}^\alpha}{\alpha!} \quad \text{for } i \neq 0 \\
\end{align*}
\]

\[
\begin{align*}
a_{0,j}^{k,l} &= \frac{\partial^{k+l} f}{\partial x^k \partial y^l} (0,j) - \sum_{\beta=0}^{n-l} \frac{\partial^{k+l+\beta} f}{\partial x^k \partial y^l+\beta} (0,j-\beta) \frac{\gamma_j^\beta}{\beta!} \quad \text{for } j \neq 0 \\
\end{align*}
\]

\[
\begin{align*}
a_{0,0}^{k,l} &= \frac{\partial^{k+l} f}{\partial x^k \partial y^l} (0,0)
\end{align*}
\]

REFERENCES

Vrije Universiteit Brussel,
Faculteit Toegepaste Wetenschappen,
Pleinlaan 2
B 1050 BRUSSEL,
Belgium