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P-ADIC ALMOST PERIODICITY

AND REPRESENTATIONS

G. Rangan

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.237-243

Abstract- In the first international conference on p-adic functional analysis, the question
whether it is possible to get the structure of the Banach Algebra of p-adic valued con-
tinuous almost periodic functions on a totally disconnected topological IB-group G through
the structure of its non-archimedean Bohr compactification G was raised. We affirmatively
answer this question here. This structure of Ac(G) helps one to study the p-adic regular
representation of G using the known theory of representations for compact groups.

1991 Mathematics subject classification: 46S10

1 Introduction

Let G be a group and Ii a complete ultra-metric valued field. When G carries a
topology under which G is a topological group, we have studied in earlier papers Rangan (~~,
[6], [7] and [8] continuous almost periodic functions on G with values in Ii . In Rangan [8]
we conjectured that a structure theory for the Banach algebra A = Ac(G) of continuous al-
most periodic functions on G can be obtained using the known structure theory of the group
algebra of a compact group by going to the Bohr compactification G of G. In this paper we
give an affirmative answer to the conjecture. The observation that G is an IB-group if and
only if the Bohr compactification G is an IB-group or equivalently a p-free group, where p is
the characteristic of the residue class field of It , which is implicitly contained in the results
proved in Rangan [7], helps us to establish the conjecture.

When G is an arbitrary group and I~ is a locally compact field we consider the
subgroup topology on G defined by the normal subgroups of finite index in G under which
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G becomes a Q-dimensional group. The space of continuous almost periodic functions on G
described above coincides with the space of almost periodic functions AP(G --~ ]() defined
by Schikof [10] using compactoid. This enables us to prove that there exists an invariant
mean on AP(G -> K) or equivalently the pair (G, K) is a.p.i.m. in the sense of Diarra

[2](p.23, N.B.(i)) if and only if G is a IB-group or equivalently a p-free group (see Rangan
[7]). Thus in the case when the base field is locally-compact, the problem of characterising
(G, li ) pairs which are a.p.i.m posed by Diarra is solved. The problem still remains open
for non-locally compact fields. This also gives rise to the structure theory for AP(G --~ h)
which is got by going to its Bohr compactification.

The structure theory so arrived at for the algebra of almost periodic functions gives
rise to a study of representations of G taking the base space for representation to be the
space of almost periodic functions on G. This may give rise to an alternative approach to
representation theory developed by Diarra [1] using Hopf algebras. Ve intend discussing
the details in another paper. Using the structure theory of AP(G --~ I1 ), we prove that the
regular representation decomposes as a direct sum of finite-dimensional representations.

2 Notations and Definitions

G is a group and It is a complete ultra metric rank one valued field, p de-
notes the characteristic of the residue class field. For f : : G --~ Is , x, s E G we

put fs(x) : = f(s-1x), fs(x) : = f(xs), fv(x) : = f(x-1), fG = {fs : s E G} and
fG : = {fs : s ~ G}. A function f defined on G is called almost periodic if fG is pre-

compact or equivalently if for every f > 0 there exists a covering of G by a finite collection
of subsets A1, A2, ..., An such that for x, y E A; for i = 1, 2, ..., n |f(cxd) - f( cyd)1 |  E

for all c, d E G (See Maak [4]). Interestingly it turns out that for a given f > 0 and an

almost periodic function f on G, the covering consisting of minimum number of subsets
A1, A2 ..., An such that for If(cxd) - f(cyd)|  E for i = 1, 2, ..., n is the covering
by cosets of a suitable normal subgroup H( f, ~) called the E -kernel of finite index n in G. If

f is a continuous almost periodic function on a topological group G, H( f, , ~) is also an open
and closed subgroup of finite index in G. A (topological) group is called an IB-group (Index
Bounded group) if inf ~n~ > 0 , as n varies over all the indices of (closed) subgroups of finite
index of G. We take c = inf G is p-free if only if c = 1 or equivalently |n| = 1 for each
index n. There exists a Nlean At with J~ M ~j= 1 (sup norm) on Ac(G) if and only if G is a
p-free group.

Schikhof [10] calls a function f : G --> I~ almost periodic if fG is a compactoid in
B(G, I~), the space of bounded functions on G with the supremum norm. The set of all
almost periodic functions from G to K is denoted by AP(G ~ It ). The almost periodic
functions which are analogous of the classical case discussed earlier are called strictly almost
periodic and the space of such functions is denoted by SAP(G --~ When G is a topo-
logical group the space of continuous strictly almost periodic functions is the space Ac(G) of
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the earlier papers of the author. In general SAP(G -~ K) C AP(G --. A~) ; ; however when
the base field is locally compact SAP(G --> K) = AP(G ---~ I~). Diarra [1] has shown that
XN the characteristic function of a normal subgroup N belongs to AP(G -~ A") if and only
if N is of finite index in G.

3 Existence of Mean

Theorem 3.1 If G is a topological 0-dimensional group then G is an IB-group if and only
if its Bohr compactijication G is an IB-group or equivalently a p-free group.

Proof: Let G be an IB-group. Then Theorem 3.3. [5] implies that there exists a Mean VI on
Ac(G). Again by Theorem 3.8. [7] tyl defines an invariant integral for continuous functions
on G and so G is a p-free group or equivalently an IB-group.

Conversely if G is an IB-group or equivalently a p-free group, the integral on G induces
an invariant mean onAc(G). and so G is a p-free group or an IB-group with c = 1. N

Remark 1: When G is compact the collection of open and closed subgroups coincides with
the collection of closed subgroups of finite index in G and so the p-free condition in the usual
sense coincides with the IB-condition on G.

Remark 2: When the base field A’ is locally-compact Diarra has given (corollary 2, p.13,
[1]) several equivalent criteria for the existence of mean on AP{G -~ It ) in terms of almost
periodic representations, existence of Haar measure on the Bohr compactification etc. The
above theorem which gives a criterion for the existence of mean in AP(G --~ I~) enables one
to conclude that Diarra’s equivalent formulations holds when and only when the group is
p-free.

If G is an arbitrary group. Let TB be the subgroup topology on G for which the
collection of all normal subgroups of finite index is a fundamental system of neighbourhoods
at the identity of G. With this topology, G is a topological group..

Proposition 3.2 When Ii is locally compact and G is an arbitrary group, AP(G ~ K) =

SAP(G -+ !() = Ac(G), where is the space of all continuous (in the subgroup topology
defined above) of almost periodic functions in the sense of Maak.

Proof: When li is locally compact every closed bounded subset of li is compact and so

SAP(G ~ K) = AP(G ~ K) (See Schikhof [10], p.3); clearly Ac(G) C AP(G - K). If

f E AP(G -; It ), f E SAP(G --~ It ). Hence for E > 0, there exists a normal subgroup of
finite index H = H( f , E) such that
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( i ) G = ~ni=1Hxi,xi E G

(ii) for x, y E Hxi, i = 1, 2, ... , n

f(cyd)|  E for all c, d E G.

In particular for z, y E H, ~ f (x) - f (y))  E, i.e. f is uniformly continuous with respect to
the subgroup topology rB on G and so f E Ac(G). This proves the proposition..

The next theorem gives a necessary and sufficient condition for the existence of
Mean on AP(G --~ in tune with the earlier conditions for the existence of Haar measure
etc. (see van Rooij [8]) where G is an arbitrary group which solves the problem posed by
Schikhof [10] in the case of the locally compact base field Ii. See also Diarra [1] theorem 4
and Schikhof [10], Theorem 8.2.

Theorem 3.3 Let li be a locally compact field. An invariant Mean M on AP(G ~ Ii )
exists if and only if G is p-free.

Proof: we consider the subgroup topology TB on G given by the normal subgroups of
finite index as a neighbourhood base at the identity. By the earlier proposition 3.2,
AP(G -3 I1 ) = SAP(G -; Ii) = Ac(G). Now the Theorem follows from Theorem 3.3
of Rangan (5~ . 1

Example: Let G be any free-group. Then for every x E G, x different from the identity of G,
there exists a normal subgroup of finite index N, x ~ N. (See Hewitt and Ross [3]). Hence the
subgroup topology on G given by the family of normal subgroups of finite index as a neigh-
bourhood base is a Hausdorff topology on G. Hence AP(G -+ Ii ) = SAP(G ~ K) = Ac(G).
G is a maximally almost periodic group. An invariant Mean exists on AP(G --> I~) if and
only if G is p-free.

Remark: when It is locally compact for the study of continuous almost periodic functions
on a totally disconnected topological group, only the topology TB on G matters. For if (G, r)
be a totally-disconnected topological group. G is a totally disconnected topological group
also with respect to the topology TB defined by closed (in r) normal subgroups of finite index
in {G, r). The topology TB is weaker than T. By Theorem 4.1 Rangan [6], and proposition
3.2 above it follows that = Ac(G, B) = AP(G - K).

4 Structure of A = Ac(G)
Throughout this section we assume that I~ is locally compact and G is either a

totally disconnected topological group or an arbitrary group G considered as a topological
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group with respect to the subgroup topology TB defined by the normal subgroups of finite
index in G. So Ac(G, T) = Ac(G, TB) = AP(G --; K). We assume G to be a p-free group.

Theorem 4.1 The algebra A = Ac(G) is isometrically isomorphic to the group algebra L( G)
of the Bohr compactificationl G of G.

Proof: The map 9 : A -~ L( G) given by f --> f where f is the associated continuous function
on the compact group G to f (see Rangan [6], Theorem 4.4). If p is the homomorphism
which imbeds G in G, for x E G,f(x) = f (p(x)). B is one-to-one: For 6( f ) = 03B8(g) ~ f =
g ~ f(x) = g(x) for all x E G ~ f = g. 0 is onto: if h E L(G),h is a continuous function
on G. Define f(x) = h(p(x)) for x E G then j = h. 8 is an algebra homomorphism: For

f * 9(x) - 

= / G f(y)g(y-1x)dy = j * 9(x)
where the integral is the Haar integral and it exists since G is p-free, G being so.

8 is an isometry: ~Vhen G is p-free In =1 for every normal subgroup of finite index and so
c =1. Hence for f E A,

~ f ~ = sup |f(x)| = sup |(p(x))| = sup |f(t)|
sEG xEG xEG

sinc,e p(G) is dense in .

Proposition 4.2 A is the closure of the K-linear span of the idempotents of A.

Proof: Since A = Ac( G) = Ac(G, TB) = AP(G --~ h’) = SAP(G --~ ]() the proposition
follows from Lemma 4.4, Schikhof [10], which is now easily seen to be a restatement of the
approximation Theorem 7.4 of Rangan [5]..

Theorem 4.3 For a p-free group G, A = ~Ae where Ae = e * A is a finite-dimensional two
sided ideal of A and for every f E A,

f = 03A3 e * f and ~f~ = sup ~e * f~
~EE eEE

and every non-zero minimal two sided ideal in A is an A~ for a suitable e E E. If I is a

closed two sided ideal in A then
1= cl ~ A~

eEI

where E is the set of all minimal non-zero central idempotents of A.



242

Proof: Follows from 8.14 Theorem van Rooij [9] since by the earlier theorem A and L()
are isometrically isomorphic..

It is not difficult to prove, using the existence of the approximate identity (UH), (H
varying over the collection r~ of normal subgroups of finite index in G) that the closed ideals
in A are same as closed invariant subspaces. For f E A, defining (Laf)(x) = f(a-1x) for
x E G, we get the (left) regular representation a --~ La on G. Ae being invariant subspaces
in view of Theorem 4.3, La decomposes as a direct sum of finite-dimensional representations.
Thus we get the following result.

Theorem 4.4 The regular Representation decomposes as a direct sum of finite-dimensional
representations.
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