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WEIGHTED MEANS IN NON-ARCHIMEDEAN FIELDS

P.N. Natarajan

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.191-200

§1. INTRODUCTION.
In developing summability methods in non-archimedean fields, Srinivasan [6] defined

the analogue of the classical weighted means (N, pn) under the assumption that the se-

quence of weights satisfies the conditions :

|p0| I  |p1|  |p2|  ...  lpnl I  ... ; I (i)
and lim |pn| = ~. ( 2 )

n-oo

However, it turned out that these weighted means were equivalent to convergence. In the

present paper, an attempt is made to remedy the situation by assuming that the sequence
~pn~ of weights satisfies the conditions :

0, n = 0,1, 2, ... ; (3)

and |Pj|, i = 0, 1, 2, ..., j, j = O, l, 2, ... , (4)

where Pj = pk, j = 0,1, 2, .... Note that (3) and (4) imply Pn ~ 0, n = 0,1,2,....

(4) is equivalent to 
max |pi| ~ |Pj|, j = 0,1,2,....

Since the valuation is non-archimedean,

|Pj| (  

so that (4) is equivalent to ( = max |pj| = (4’)
o~~ 

’" ’ "
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The assumptions (3) and (4) make the method of summability arising out of the
weighted means non-trivial in certain cases (Remark 4) and further make it possible to
compare two regular weighted means (Theorem 3) or compare a regular weighted mean
with a regular matrix method (Theorem 4 and Theorem 5). This helps us to obtain (§4) a
strictly increasing scale of regular summability methods in Qp, the p-adic field for a prime
p; analogous to the scale of Cesaro means in IR (the field of real numbers). These arise
out of taking the weights

Pn = pnk, if n is odd;
= 1 pnk, if n is even ,

n = 0,1,2,..., k = 0, l, 2, .... °

For a knowledge of (N, pn) methods in the classical case, the reader may refer [2],[5]
and for analysis in non-archimedean fields [1]. .

§2. PRELIMINARIES .

Throughout this paper, K denotes a complete, non-trivially valued, non-archimedean
field and infinite matrices and sequences have their entries in K. Given an infinite matrix
A = n, k = 0, 1 , 2, ... and a sequence ~~k}, k = 0, 1 , 2, ... , by the .4-transform of
{xk} , we mean the sequence {(Ax)n} where

(Ax)n = 03A3 ankxk, , n = 0,1,2,..., ,
k=o

it being assumed that the series on the right converge. If lim (Ax)n = s , we say that {xk}
is A-3ummable (or summable by the infinite matrix method A) to s. If lim = s

n-oo

whenever lim xk = s, the matrix method A is said to be regular. It is well-known (seek~~

[3], [4]) that A is regular if and only if

(a) sup |ank|  ~ ;
n, k

(b) lim ank = 0, k = 0,1, 2, ... ;

and ~ (5)
00

(c) lim (03A3 ank) = 1 .
(cf. For criterion for the regularity of a matrix method in the classical case see [2], p.43,
Theorem 2). If a regular matrix A is such that lim = s implies lim x k = s, the

n~~ k-oo

matrix method A is said to be trivial. Given two infinite matrix methods A, B, we say
that A is included in B, written as A C B, if any sequence {xk} that is A-summable to s
is also B-summable to s. An infinite matrix A = (ank) is said to be triangular (or, more
precisely, lower triangular) if ank = 0, k > n, n = 0,1,2,....
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Definition 1. The method is defined by the infinite matrix where

ank = pk Pn, k ~ n ;  
(6)

= 0, ~ > n . . J
Remark 1. If > 1, n = 0, 1 ? ... and lim |Pn| = oo i.e. |Pn| strictly increases

n 1 > > a I I y

to infinity, then the method {N, pn) is trivial. For |pn| = |Pn - Pn-1 = |Pn|, since

|Pn| > So (1) is satisfied. Since lim |Pn| = oo, lim |pn| 1 = oo so that (2) is
n-oo n-oo

satisfied too. Hence (N, pn) is trivial because of Theorem 4.2 of [6].
In the sequel we shall suppose that the sequence {pn} of weights satisfies conditions

(3) and (4).
An example of such an method corresponds to defined by

pn = pn, if n is odd;

= 

1 pn , if n is even ,

where Ii = Qp. .

Remark 2. We note that (4) is equivalent to

|Pn+1| ~ |Pn|, n = o,1, 2, , . , .. (7)

Proof. Let (4) hold. Now

|Pn+1| = max |pi|

= max max |pi|, |pn+1|]
= max [|Pn|, |pn+1| ]

~ n = 0,1, 2, ....

Conversely, let (7) hold. For a fixed integer j > o let 0  i  j. . Then

|pi| = I
 max [|Pi|, |Pi-1| ]
 IPil
 IPj 1 ,

by (7).
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§3. MAIN RESULTS.
Theorem 1. (N,pn) is regular if an only if

lim oo (8)
n-oo 

~’

Proof. Let the method be regular Using (6) and (5)(b), we note that (8) holds.
Conservely, let (8) hold. In view of (6) and (8) it follows that lim ank = 0, k = 0,1, 2, ....

n~~

Now, lankl = 0, k > n. If k ~ n, |ank| = |pk| |Pk| ~ 1, in view of (4).

Also  ank = 1, n = 0,1, 2, ... so that ank - 1. Thus, by (5) the method
(N,pn) is regular.

Remark 3. If ( ~V , pn ) is non-trivial, then ( 1 ) cannot be satisfied. Suppose ( 1 ) holds,
then = |Pn| so that (2) also holds. Thus (N,pn) is trivial by Theorem 4.2 of [6], a
contradiction. This establishes the claim.

Remark 4. There are non-trivial (N, pn) methods. Let a E K such that 0  c = ~  1,
this being possible since K is non-trivially valued. Let

{pn} = {03B1,1 03B12,03B13,1 03B14, ...}
and

~ = {~’~’ > ...
It is clear that {sn} does not converge. If {tn} is the transform of {sk},

|t2k| = 

|2k 03B1 + 1 03B12+ 03B13 +...+ 1 03B12k|
|2k|

" 

( c2k /
~ c2k

|t2k+1| ( = |2k + 1 03B1 + 1 03B12 + 03B13+...+ 1 03B12k + 03B12k+1|
|2k  + 1|

’ 

(C2k)
~ c2k
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so that lim tn = 0. Thus {~n}? though non convergent, is summable ( in fact, to
n~~

0). This establishes our claim.

Theorem 2. (Limitation theorem) If is summable to s, then

|sn - s| = o( 2014’-), , n ~ oo.B p~ t /

Proof. If is the transform of {~}, then

|pn(sn - s) Pn| 
= |pnsn - pns) pn |
= |Pntn 

- Pn-1tn-1 - s (Pn - Pn-1 |
= |Pn(tn - s) - Pn-1(tn-1 - s) Pn
~ max [|tn - s|, |Pn-1 Pn| |tn-1 - s| ]L n J

~ max [ |tn - s|, |tn-1 - s! j ]

since )  1 , by (7) . Since lim tn = s, it follows that lim |pn(sn - s) Pn| = 0. Thus

|Pn pn| ), n~~.

Theorem 3. . (Comparison theorem for two regular weighted means). If (N, pn), (N, qn)
are two regular methods and if

)  ~=0.1,2,.... (9)
Pn qn

oo

where H > 0 is a constant and Qn = 03A3 qk, then C (N, qn).
~=0

Proof. Let, for a given sequence {sn},

tn = 
p0s0 + p1s1 + ... + pnsn Pn

,

un = q0s0 + q1s1 +...+ qnsn Qn, n = 0, 1, 2,... .
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Then p0s0 " P0t0, pnsn = Pntn - Pn-1tn-1, ’l " l, 2, .... Now,

un = 1 Qn[q0 p0P0t0 + q1 p1(Ptt1 - P0t0) + ... + qn pn(Pntn - Pn-tn-1)]

= 03A3cktk, 
’

k=0

where 
cnk = (qk pk - qk+1 pk+1) Pk Qn, k  n;

= qk pk Pk Qk, > k = n;Pk k
= 0, k > n.

Since lim |Qn| = ~, lim cnk = 0, k = 0, 1, 2, .... If sn = I , n = 0, 1 , 2, ... ,
m oa

tn = Un = I, n = 0, 1, 2, ... so that £ cnk = I, n = 0, 1, 2, ... and so lim (03A3 cnk) = 1.
Let k  n.

|cnk| j _ {qk pk - qk+1 pk+1| |Pk Qn |
 max I 
 maX ( ) |qk pk| |Pk Qk |, |qk+1 pk+1 | |Pk+1 Qk+1 | ]
 H ,

bY (9) , since k  n implies |Qk|, |Qk+1l  |Qn| and so )  £, , £ and |Pk| ~ |Pk+1|.n k k+I

If k = n, |cnn| = |qn pn Pn Qn )  H and |cnk| = 0  H, k > n. Consequently sup |ank| ~ H..Pn Qn n,k

The method (cnk) is thus regular, using (5) and so (N, pn) c (N, qn) . The proof of the
theorem is now complete.

Remark 5. Note that the classical counterpart of Theorem 3 (see [2], p.58, Theorem
14) has an additional hypothesis.

Theorem 4. (Comparison theorem for a regular (N, pn ) method and a regular matrix).
Let (N, pn) be a regular method and A be a regular matrix. If

lim ankPk pk = 0, n * 0, 1, 2, ... j ( 10)

and 

sup| I (ank pk - an,k+1 pk+1)Pk|  o* , (11)
n,k Pk Pk+1
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then (N,Pn) C A.

Proof. Let {sn} be any sequence , {tn}, {Tn} be its A transforms respectively
so that

tn = 

p0s0 + p1s1 + ... + pnsn Pn,

00

rn - ~ anksk, n = 0,1, 2, ....
k=0

Now,

Pn

oo

Let lim tn = s. Tn = ~ anksk exists , n = 0,1,2... and in fact

n = anksk = ank{Pktk - Pk-1tk-1}
k=0 k=0 pk

00

= 
,

k=0 pk pk+I

since lim 0 by (10) and using the fact that {tk} is convergent and so
k-’oo pk+1

bounded and |Pk Pk+1|~ 1. We can now write

Tn = Y~ bnktk ,
where k=0

bnk = (ank pk - an,k+1 pk+1 Pk.

By (11) , sup |bnk|  oo. Since A is regular , lim ank = 0, k = 0,1,2,... so that

lim bnk = 0, k =0,1,2,.... Let sn = 1, n = 0,1, 2, .... Then tn = 1, ~ = 0,1, 2, ....
n~~

’

00 00 00

It now follows that 03A3 bnk = 03A3 ank, n = 0,1,2,.... Consequently lim 
k=0 k=0 k=0

00

lim (Y~ ank)= 1. The method (bnk) is thus regular and so lim tn = s implies lim Tn =

k=0

s. I.e. (N,pn) C A.

Theorem 5. (11r, pn) is a regular method and A = (ank) is a regular triangular matrix.
Then (N,Pn) C A if and only if ( 11 ) holds.
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Proof . . Let (11) hold. Since A is a triangular matrix, (10) clearly holds. In view of
Theorem 4, we have C A. Conversely, let C .4. Following the notation of
Theorem 4, let lim tn = s. As in the proof of Theorem 4,

n~~

Tn == anksk = bnktk,
~=0 ~=0

where

.

Since for every sequence {~} with lim t k = s, lim r~ = s. This means that
k~~ n-oo

( bnk) is a regular matrix and so (11) holds. This complices the proof.

§4. A SCALE OF STRICTLY INCREASING WEIGHTED MEANS.
We conclude the present paper by obtaining a strictly increasing scale of regular

summability methods in Qp. We define, for k = 0,1,2,..., the method (~p~) by
p(k)n = pnk, if n is odd ;
= 

1 pnk
, if n is even ;

We now establish that

. (~,~)~(F,p~i)). (12)

We apply Theorem 3 to prove this assertion. For convenience, let p~ = and

~=p~B n=0,l,2,.... If n is odd,

|Pn Pn| = 1 c(n-1)k . 1 cnk 
= 1 c(2n-1)k

|Qn qn| = 1 c(n-1)(k+1) . 1 cn(k+1) = 1 c(2n-1)(k+1), c = |p|  1,

so that 
p 

so that 

|Pn pn| )  |Qn qn||qn| |qn|

If n is even, 

|Pn pn| = 1 cnk.cnk = 1
|Qn qn| = 1 cn(k+1).

cn(t+1) = 1
Thus |Pn | 

~ |Qn |Pn " ~
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in this case too. Consequently, by Theorem 3, (N, C (.N,p~k+l~). Let now

sn = 0, if n is even ; ;

= is odd. °

Let ~Tn} be the (N, qn) transform of ~sn}.
If n is odd,

|n| = |0 + pk+1 . 1 pk+1 + 0 + p3(k+1) . 1 p3(k+1)+2k +...+ 0 + pn(k+1) . 1 pn(k+1)+k(n-1) 1 + pk+1 + 1 p2(k+1) + ... + 1 p(n-1)(k+1) + pn(k+1)
1

ck(n-1)
- 

i

e(k+1)(n-1)

= en-1

If n is even,

I = |0 + pk+1 . 1 pk+1 + 0 + p3(k+1) . 1 p3(k+1)+2k + ... + 0 )

j +p (n-~)(k+1) , (n--1)(k+~)’~’k(w2) + O j
1 + pk+1 -+- 1 p2(k+1) + ... + p(n-1)-(k+1) + 1 pn(k+1)

1

= ck(n-2) 1

en(k+l)
= cn+2k

In both the cases , lim Tn = 0 . Thus is summable (N, qn) to 0. Let, now, ~tn} be
n~~

the (N,pn) transform of {sn}.
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If n is odd

|n| = |0 + pk . 1 pk+1 + 0 + p3k . 1 p3(k+1)+2k + ... + 0 + pnk . 1 pn(k+1)+k(n-1) 1+pk+1 p2k + ... + 1 p(n-1)k+pnk
1

- cn+k(n-1)
_ 

1

c(n-1)k

1
- ’ 

~n

Since - > 1, lim |tn| = oo that {tn} cannot converge. Thus {sn} is not (N, pn) summable
and consequently { 12 ) holds.
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