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THE MACKEY-ARENS AND HAHN-BANACH THEOREMS

FOR SPACES OVER VALUED FIELDS

Jerzy Kakol

Astract. Characterizations of the spherical completeness of a non-archimedean complete
non-trivially valued field in terms of classical theorems of Functional Analysis are obtained.

1991 Mathematics subject classification : 46510

Spherical completeness

Throughout this paper K = (K, | . |) will denote a non-archimedean complete valued
field with a non-trivial valuation | . |. It is well-known that the absolute value function
| - | of the field of the real numbers IR or the complex numbers € satisfies the following
properties :

() 0< |z, |zl =0 iff z =0,

(i) |z + y| < |=| + [yl

(iii) |zy| = |zlly|, z,y € R or z,y €C.

If K is a field, then by a valuation on K we will mean a map | . | of K into IR satisfying
the above properties; in this case (K,| . |) will be called a valued field. We will assume
that K is complete with respect to the natural metric of K.

It turns out that if K is not isomorphic to IR or €, then its valuation satisfies the
following strong triangle inequality, cf. e.g. [12],

(it") |z + y| < max{|z|,|yl}, z,y € K.

A valued field K whose valuation satisfies (ii’) will be called non-archimedean and its
valuation non-archimedean.

Let us first recall the following well-known result of Cantor
Theorem 0 Let (X, p) be a metric space. Then it is complete iff every shrinking sequence
of closed balls whose radii tend to zero has non-empty intersection.
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Consider the set IN of the natural numbers endowed with the following metric p defined
by p(m,n) = 0if m =n and 1+ max(L, 1) if m # n.

Then the metric p is non-archimedean, i.e. p(m,n) = 0 iff either m = n, or
p(m,n) < max{p(m, k), p(k,n)}, for all m,n, k € IN.

It is easy to see that every shrinking sequence of balls in IN whose radii tend to zero
has non-empty intersection; note that every ball whose radius is smaller than 1 contains
exactly one point. On the other hand, the balls B;41(1),B141(2),.. ., form a decreasing
sequence and their intersection is empty. This suggests the following, see Ingleton [3] :

A non-archimedean metric space (X, p) will be said to be spherically complete if the
intersection of every shrinking sequence of its balls is non-empty.

Clearly spherical completeness implies completeness; the converse fails : The space

(IN, p) is complete but not spherically complete. We refer to [11] and [12] for more info-
mation concerning this property.

Theorem 1 Let (X,p) be a non-archimedean metric space. Then (X,p) is spherically
complete iff given an arbitrary family B of balls in X, no two of which are disjoint, then
the intersection of the elements of B is non-empty.

The aim of this note is to collect a few characterizations of the spherical completeness
of K in terms of the Mackey-Arens, Hahn-Banach and weak Schauder basis theorems,
respectively, see (5], [6], [7], [12].

The Mackey-Arens and Hahn-Banach theorems

The terms ” K-space”, "topology”,” seminorm or norm” will mean a Hausdorff locally

convex space (lcs) over K, a locally convex topology (in the sense of Monna) and a non-
archimedean seminorm (norm), respectively. A seminorm on a vector space E over K is
non-archimedean if it satisfies condition (ii’). Clearly the topology T generated by a norm
is locally convez. Recall that a topological vector space (tvs) E = (E,7) over K is locally
convez [10] if 7 has a basis of absolutely convex neighbourhoods of zero. A subset U of
E is absolutely convez (in the sense of Monna [10]) if az + By € U, whenever z,y € U,
a,B €, la] £ 1,|8| < 1. For the basic notions and properties concerning tvs and lcs over
K we refer to [10}, [11], [13].

A locally convex (lc) topology v on (E,7) is called compatible with 7, if T and v
have the same continuous linear functionals; (E,7)* = (E,v)*. (E,t) is dual-separating
if (E, )" separates points of E. If G is a vector subspace of E, 7|G and 7/G denote
the topology 7 restricted to G and the quotient topology of the quotient space E/G,
respectively. If a is a finer lL.c. topology on E/G, we denote by 7 := 7 V a the weakest
l.c. topology on E such that 7 < v, v/G = a, |G = 7|G, cf. eg. [1]. The sets
U N g~}(V) compose a basis of neighbourhoods of zero for v, where U,V run over bases
of neighbourhoods of zero for = and a, respectively, ¢ := EE/G is the quotient map. By
sup{r,a} we denote the weakest l.c. topology on E which is finer than 7 and «.



The Mackey-Arens and Hahn-Banach Theorems...

By the Mackey topology u(E, E*) associated with a lcs E = (E, ) we mean the finest
locally convex topology on E compatible with 7. In [14] Van Tiel showed that every lcs
over spherically complete K admits the Mackey topology.

In [3] Ingleton obtained a non-archimedean variant of the Hahn-Banach theorem for
normed spaces, where K is spherically complete.

Theorem 2 IfE = (E,| - ||) ts a normed space over K and K is spherically complete
and D is a subspace of E, then for every continuous linear functional g € D* there ezists
a continuous linear eztension f € E* of g such that ||g|| = || |-

This suggests the following : A lcs E will be said to have the Hahn-Banach Eztension
Property (HBEP) [9] if for every subspace D every g € D* can be extended to f € E*. It
is known that every lcs over spherically complete K has the HBEP, cf. e.g. [11].

The following theorem characterizes the spherical completeness of K in terms of clas-
sical theorems of Functional Analysis; cf. also [5], [6] and [12], Theorem 4.15. The proof
of our Theorem 3 uses some ideas of [4] extended to the non-archimedean case.

I (resp. co) denotes the space of the bounded sequences ( resp. the sequences of
limit 0) with coefficients in K.

Theorem 3 The following conditions on K are equivalent :
(i) K 1is spherically complete.
(ii) There ezists g € (I°)* such that g(z) =), T, for every z € cq.
(i) (1°°/co)® # 0.
(iv) Every lcs over K admits the Mackey topology.
(v) Every lcs over K (resp. K-normed space) has the HBEP.
(vi) The completion of a dual-separating lcs over K (resp. K-normed space) is dual-
separating.
(vii) Every closed subspace of o dual-separating lcs over K (resp. K-normed space) is
weakly closed.
(viil) For every lcs over K (resp. K-normed space) every weakly convergent sequence is
convergent.
(ix) Every weak Schauder basis in a lcs over K (resp. K-mormed space) is a Schauder
basis.
Proof By Theorem 4.15 of [12] conditions (i), (ii), (iii) are equivalent. (i) implies (iv):
[14], Theorem 4.17. (i) implies (v) : (3], [11]. The implications (v) implies (vi), (v)
implies (vii) are obvious. (i) implies (viii) : see [7]; Theorem 3, (2], Proposition 4.3. (viii)
implies (ix) is obvious.

(iv) implies (i) : Assume that K is not spherically complete and consider the space
[ of K-valued bounded sequences endowed with the topology 7 generated by the norm
llzll = sup, |Znl, * = (zn) € I®. Let f be a non-zero linear function on I*° with f|, = 0.
Set E := I and F := cg. Define a linear functional h on the quotient space E/F by
h(g(z)) = f(z), where ¢ : E — E/F is the quotient map. Let o be the quotient topology
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of E/F. Since (E/F,a)* = 0, see (iii) implies (i), F is dense in the weak topology o(E, E*)
(recall that E* = F, [12], Theorem 4.17). Observe that on E/F there exists a K-normed
topology B such that (E/F,a) and (E/F,f3) are isomorphic and A is continuous in the
topology sup{e, 3}. Indeed, choose zo € E/F such that h(z,) = 2 and define a linear map
T:E/F — E[F by T(z) := 2 — h(z)zo, = € E/F. Then T? = id. Define 8 := T(a) (the
image topology). Then h is continuous in the topology sup{a, 8}.

Set v4 := o(E,E*) V a, vg := o(E,E*)V B. Then v, and 74 are compatible
with o(E, E*), hence with 7. Assume that E admits the finest locally convex topology p
compatible with 7. Then o(E, E*) < sup{74,75} < .

On the other hand sup{va,7s}/F = sup{a, 8}. Therefore f is continuous in sup{ya, 5}
Since f is not continuous in ¢(E, E*) we get a contradiction. The proof is complete.

(vi) implies (i) : Assume that K is not spherically complete. By the Baire category
theorem we find a dense subspace G of E with dim(E/G)=dim(E/F), where E and F are
defined as above. Indeed, let {z,},cs be a Hamel basis of E and (S,) a partition of S
such that $ = U S and card S,=card S, n € IN.

n€EN
For every n € IN, we denote by G, the vector space generated by the elements z, when

n
s runsin U Sk. Then we have E = U Gnand dim G, = dim (E/G,) = dim E,n € N.
k=1 n€N

Then there exists m € IN such that G,, is dense in E. Hence we obtain a subspace G
as required. Let a be a K-normed topology on E/G such that the spaces (E/G,a) and
(E/F,7/F) are isomorphic. Then the topology 7 := 7 V a is compatible with 7 and
strictly finer than 7. Let Ey be the completion of the dual-separating K-normed space
(E,7). Choose x € Eo\E. There exists a sequence (z,) in E and y € E such that z, — =
in Eg and z, — y in (E,7). Then f(z —y) = 0for all f € E} but z —y # 0. This
completes the proof.

(vii) emplies (i) : Assume that K is not spherically complete. The space G constructed
in the previous case is closed in (E,v) and dense in (E,o(E, E*)), where E* := (E, v)*.

(v) implies (i) : Assume that K is not spherically complete. Let (e,) be the sequence
of the unit vectors in E, where E is as above. Then e, — 0 in o(E, E*), [13]. Clearly
(en) is a normalized Schauder basis in F. If z = (z,) € F, then z = 3 _zne,. Set
g(z) =3, zn. Then g is a well-defined continuous linear functional on F. Suppose that
¢ has a continuous linear extension f to the whole space E. Then f(e,) — 0 but g(e,) =1
for all n € IN, a contradiction.

(viii) implies (i) : See the proof of the previous implication.

(ix) implies (i) : Assume that K is not spherically complete. The sequence (e,) is a
Schauder basis in (E,o(E, E*)) but it is not a Schauder basis in the original topology of
E. The second part of this sentence follows from the fact that E is not of countable type,
cf. e.g. [12]. On the other hand, by Theorem 4.17 of [12] (and its proof) the space E is
reflexive and for every g € E* there exists (an) € F such that g(z) = Y, zna, for every
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z = (z,) € E. Since (E,o(E, E*)) is a sequentially complete lcs [12], Theorem 9.6, then
3 k=1 Tkex weakly converges to z = (z,).

Remark In [9] Martinez-Maurica and Perez-Garcia proved that whenever K is spher-
ically complete, then the local convexity is a three space property, i.e. if E is an A-Banach
tvs over K and F its subspace such that F and E/F are locally convex, then E is locally
convex. Is the converse also true?

By L(E, F) we denote the space of all continuous linear maps between lcs E and F.
A topology a on E will be called compatible with the pair (E, L(E, F)) if L((E,a),F) =
L(E,F); if F =, as usual we shall say that a is compatible with the dual pair (E, E*),
where E* := L(E,K).

A lcs space F will be said to have the Mackey-Arens property (MA-property) if for
every lcs space E the finest topology u(E, L(E, F)) compatible with (E, L(E, F)) exists,
[7]-

As we have already mentioned Van Tiel [14] proved that if K is spherically complete,
then K has the MA-property, i.e. every K-space E over spherically complete K admits the
finest topology w(E, E*) compatible with the dual pair (E, E*). We have already proved
the converse : If K is not spherically complete, then £>° does not admit the Mackey
topology u(£%°,(£>)*). Hence

Corollary K is spherically complete iff it has the MA-property.

On the other hand one has the following
Theorem 4 FEvery spherically complete normed K-space F = (F,||.||) has the MA-
property.

We shall need the following

Lemma 1 Let E, F be two vector spaces over K, where F is endowed with a norm
Il.Il and p,q are seminorms on E. Let T : E — F be a linear map such that ||(T(z))|| <
max(p(z), q(z)). If F is spherically complete, then there ezists two linear maps T; : E — F,
i=1,2, such that T =Ty + T and ||(T1(2))]| < p(z), [(T2(2))|| < ¢(z), z € E.
Proof Set P(z,z) = T(z), U(z,y) = max{p(z),q(y)}, z,y € E. Then U(z,y) is a
seminorm on E x E and ||(P(z,2))|| = [(T(2))|| £ max{p(z),q¢(z)} = U(z,z). Since F is
spherically complete, then by Ingleton theorem, cf. e.g. [6], Theorem 4.18, there exists a
linear map Py : E x E — F extending P such that ||(Py(z,y))|| £ U(z,y), z,y € E. To
complete the proof it is enough to put Ti(z) = Py(z,0), To2(z) = Py(0, z).

We shall also need the following lemma. Its proof uses some ideas of (1] and [4].
Lemma 2 Let E, F be two dual-separating K -spaces over non-spherically complete K
and such that F is complete and E is an infinite dimensional metrizable and complete.
Then E admits two topologies Ty and 7, strictly finer than the original one of E and com-
patible with the pair (E,L(E, F)) and such that the topology sup{T1, 72} is not compatible
with (E, L(E, F)).
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Proof : Observe that E contains a dense subspace G with dim(E/G)=dim(I®°/c,). Let
h be a non-zero linear functional on E vanishing on G. As above we construct on E two
topologies 71 and r; strictly finer than the original one 7 of E such that 7;|G = 7|G
and (E/G,7;/G) is isomorphic to the quotient space /¢y, j = 1,2, and h is continuous
in sup{ry,72}. We show that the topologies 7, j = 1,2, are compatible with the pair
(E,L(E,F)). Fix j € {1,2} and non-zero T € L((E,7}),F). There exists zo € E and
f € F* such that f(T(zo)) # 0. Suppose that T|G = {0}. Then the map ¢(z) — f(T'z))
defines a non-zero continuous linear functional on (E/G,7;/G), ¢ : E — E/G is the
quotient map. Since (I°/co)* ={0}, [12], Corollary 4.3, we get a contradiction. Hence T|G
is non-zero. Since G is dense in E and t and 7; coincide on G, there exists a continuous
linear extension W of T to E. It is easy to see that T = W. Hence T € L(E, F). Finally
the map z — h(z)y, for fixed y € F, defines a 7-discontinuous linear map H of E into F
such that H € L((E,sup m,72), F).

Proof of Theorem 4 Let E = (E,7) be a lcs and F the family of all topologies on E
compatible with (E, L(E, F)). It is enough to show that the topology u := sup F belongs
to 7. Let T : (E,p) — F be a continuous linear map. There exist seminorms p; on
E, j =1,...,n, continuous in topologies v; (y; € F), respectively, and M > 0 such that
(Tz)| £ M ;28X P ;j(z) for every z € E. Using Lemma 1 one shows that T is T-continuous.

Remarks (1) There exist complete normed K-spaces having the MA-property which
are not spherically complete. In fact, assume that K is spherically complete; then £ is
spherically complete [12], p. 97; hence £> has the MA-property (by our Theorem 4). On
the other hand there exists on the space £ another norm v which is equivalent with the
usual norm, such that (£*°,v) is not spherically complete {12], p. 50 and p. 98. On the
other hand the space (£°°,v) has the MA-property.

(2) Let E be an infinite dimensional normed and complete K-space. Since F :=
I1,.Ex/ @D, En, where E, = E for every n € I, is spherically complete for any K [12],
Theorem 4.1, then by our Theorem 4 the space F has the MA-property. For concrete spaces
put E = £%°; then F = €*°/cy. If K is not spherically complete, then by Lemma 2 the space
£°° does not admit the Mackey topology (£, (£%°)*) but £°°/c, has the MA-property. In
particular there exists on £ the finest topology p compatible with (£%°, L(£%°,£%°/c,)).

(3) Let E and F be K-spaces and assume that E admits the Mackey topology p =
u(E, E*). Then the finest topology on E compatible with ((E, ), L((E, ), F')) exists and
equals 4.

(4) In [13], Corollary 7.9, Schikhof proved that for polarly barrelled or polarly bornolog-
ical K-spaces (E, ) where K is not spherically complete, the finest polar topology u(E, E*)
compatible with (E, E*) exists and equals 7.
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