Lucien Van Hamme

The p-adic Z-transform

Annales mathématiques Blaise Pascal, tome 2, no 1 (1995), p. 131-146

<http://www.numdam.org/item?id=AMBP_1995__2_1_131_0>
Abstract. Let $a + p^n \mathbb{Z}_p$ be a ball in \mathbb{Z}_p and assume that a is the smallest natural number contained in the ball. We define a measure μ_z on \mathbb{Z}_p by putting $\mu_z(a + p^n \mathbb{Z}_p) = \frac{z^a}{1 - z^{p^n}}$ where $z \in \mathbb{C}_p, |z - 1|_p \geq 1$. Let f be a continuous function defined on \mathbb{Z}_p. The mapping $f \mapsto \int_{\mathbb{Z}_p} f(x) \mu_z(x)$ is similar to the classical Z-transform. We use this transform to give new proofs of several known results: the Mahler expansion with remainder for a continuous function, the Van der Put expansion, the expansion of a function in a series of Sheffer polynomials. We also prove some new results.

1991 Mathematics subject classification : 46S10

1. Introduction

Let \mathbb{Z}_p be the ring of p-adic integers, where p is a prime. \mathbb{Q}_p and \mathbb{C}_p denote, as usual, the field of the p-adic numbers and the completion of the algebraic closure of \mathbb{Q}_p. $|\cdot|$ denotes the normalized p-adic valuation on \mathbb{C}_p.

We start by defining a measure on \mathbb{Z}_p.

Let $a + p^n \mathbb{Z}_p$ be a ball in \mathbb{Z}_p. We may assume that a is the smallest natural number contained in the ball. Our measure will depend on a parameter $z \in \mathbb{C}_p$.

Put $\mu_z(a + p^n \mathbb{Z}_p) = \frac{z^a}{1 - z^{p^n}}$.

It is well-known that this defines a distribution on \mathbb{Z}_p.

Let D denote the set \{ $z \in \mathbb{C}_p$ \mid $|z - 1| \geq 1$ \}.

An easy calculation shows that if $z \in D$ then $\left| \frac{z^a}{1 - z^{p^n}} \right| \leq 1$.

Throughout this paper we will assume that $z \in D$. Hence μ_z is a measure.

Now let $f : \mathbb{Z}_p \rightarrow \mathbb{C}_p$ be a continuous function.
If we associate with \(f \) the integral \(\int_{\mathbb{Z}_p} f(x) \mu_z(x) \) we get a transformation that we call the p-adic Z-transform since it is similar to the classical Z-transform used by engineers. The aim of this paper is to show how this transform can be used to obtain a number of results in p-adic analysis. In section 2 we start by studying the integral \(F(z) \). In sections 3 and 4 we use the p-adic Z-transform to give new proofs of several known results: the Mahler expansion with remainder for a continuous function, the Van der Put expansion, the expansion of a function in a series of Sheffer polynomials. In section 5 we use the results of section 2 to find approximations to the p-adic logarithm of 2. We prove e.g. that the following congruence is valid in \(\mathbb{Z}_p \)

\[
2 \left(1 - \frac{1}{p} \right) \log 2 \equiv \sum_{k=1}^{p^n} \frac{(-1)^{k+1}}{k} \equiv 4(-1)^n \cdot \sum_{k=0}^{\frac{p^n-1}{2}} \frac{(-1)^k}{2k+1} \quad (\text{mod } p^{2n} \mathbb{Z}_p)
\]

2. The integral \(\int_{\mathbb{Z}_p} f(x) \mu_z(x) \)

This integral has already been studied and used by Y. Amice and others in [1] and [4]. A fundamental property of this integral is

Proposition: \(F(z) \) is an analytic element in \(D \) (in the sense of Krasner).

This means that \(F(z) \) is the uniform limit of a sequence of rational functions with poles outside \(D \). But, by definition

\[
F(z) = \int_{\mathbb{Z}_p} f(x) \mu_z(x) = \lim_{n \to \infty} \sum_{k=0}^{p^n-1} f(k) z^k
\]

It is not difficult to show that the sequence in (1) is uniformly convergent. Since the zeroes of \(1 - z^{p^n} \) are outside \(D \), \(F(z) \) is an analytic element in \(D \).

Corollary: \(F \) satisfies the "principle of analytic continuation" i.e. if \(F(z) \) is zero on a ball in \(D \) it is zero in the whole of \(D \).

The fact that \(F(z) \) is an analytic element in \(D \) is very useful in proving properties of the integral (1). As an example we prove that

\[
\int_{\mathbb{Z}_p} f(x) \mu_z(x) = f(0) + z \int_{\mathbb{Z}_p} f(x+1) \mu_z(x) \quad \text{in } D
\]

Proof: For \(|z| < 1 \) formula (1) reduces to

\[
\int_{\mathbb{Z}_p} f(x) \mu_z(x) = \sum_{k=0}^{\infty} f(k) z^k
\]
The trivial identity
\[
\sum_{k=0}^{\infty} f(k)z^k = f(0) + z \sum_{k=0}^{\infty} f(k+1)z^k \quad (|z| < 1)
\]

can be written as
\[
\int_{\mathbb{Z}_p} f(x) \mu_z(x) = f(0) + z \int_{\mathbb{Z}_p} f(x+1) \mu_z(x)
\]
This is a priori valid for $|z| < 1$. By analytic continuation it is valid in D.

We now list some properties of the integral $\int_{\mathbb{Z}_p} f(x) \mu_z(x)$. We only give a few indications about the proofs.

P1 \[
\int_{\mathbb{Z}_p} f(x) \mu_z(x) = \sum_{k=0}^{n-1} f(k)z^k + z^n \int_{\mathbb{Z}_p} f(x+n) \mu_z(x) \quad \text{in } D
\]
Proof: This follows by iterating (2)

P2 \[
\int_{\mathbb{Z}_p} f(x) \mu_z(x) = -\sum_{k=1}^{n} \frac{f(-k)}{z^k} + \frac{1}{z^n} \int_{\mathbb{Z}_p} f(x-n) \mu_z(x) \quad \text{in } D
\]

\[
= -\sum_{k=1}^{\infty} \frac{f(-k)}{z^k} \quad \text{if } |z| > 1
\]
Proof: Replace $f(x)$ by $f(x-1)$ in (2) to get
\[
\int_{\mathbb{Z}_p} f(x) \mu_z(x) = -\frac{f(-1)}{z} + \frac{1}{z} \int_{\mathbb{Z}_p} f(x-1) \mu_z(x)
\]
Iteration of this formula yields (5).

P3 \[
\int_{\mathbb{Z}_p} f(x) \mu_z(x) = \sum_{k=0}^{n-1} (\Delta^k f)(0) \frac{z^k}{(1-z)^{k+1}} + \frac{z^n}{(1-z)^n} \int_{\mathbb{Z}_p} (\Delta^n f)(x) \mu_z(x)
\]
\[
= \sum_{k=0}^{\infty} (\Delta^k f)(0) \frac{z^k}{(1-z)^{k+1}} \quad \text{in } D
\]
Here Δ is the difference operator defined by $(\Delta f)(x) = f(x+1) - f(x)$.

Proof: Write (2) in the form
\[\int_{\mathbb{Z}_p} f(x) \mu_z(x) = \frac{f(0)}{1 - z} + \frac{z}{1 - z} \int_{\mathbb{Z}_p} (\Delta f)(x) \mu_z(x) \]
then iterate.

Let E be the translation operator defined by $(Ef)(x) = f(x + 1)$ and put $Q = \Delta E^{-1}$ then

P4 \[\int_{\mathbb{Z}_p} f(x) \mu_z(x) = \sum_{k=0}^{n-1} \frac{(Q f)(-1)}{(1 - z)^{k+1}} + \frac{1}{(1 - z)^n} \int_{\mathbb{Z}_p} (Q^n f)(x) \mu_z(x) \] (7)

Proof: This follows from the obvious
\[\int_{\mathbb{Z}_p} f(x) \mu_z(x) = \frac{f(-1)}{1 - z} + \frac{1}{1 - z} \int_{\mathbb{Z}_p} (Q f)(x) \mu_z(x) \]

P5 \[\int_{\mathbb{Z}_p} f(x) \mu_z(x) + \int_{\mathbb{Z}_p} f(-x) \mu_{1/z}(x) = f(0) \text{ in } D \] (8)

Proof: Suppose first that $|z| > 1$ and use (5) for the first integral and (3) for the second integral. The formula then reduces to the obvious identity.
\[-\sum_{k=1}^{\infty} \frac{f(-k)}{z^k} + \sum_{k=0}^{\infty} \frac{f(-k)}{z^k} = f(0) \]
The formula is valid in D by analytic continuation.

P6 If f is an even function then \[\int_{\mathbb{Z}_p} f(x) \mu_{-1}(x) = \frac{f(0)}{2} \] (9)

Proof: Put $z = -1$ in (8).

P7 If $F(z) = \int_{\mathbb{Z}_p} f(x) \mu_z(x), G(z) = \int_{\mathbb{Z}_p} g(x) \mu_z(x)$

then $F(z)G(z) = \int_{\mathbb{Z}_p} (f * g)(x) \mu_z(x)$ in D (10)

where $f * g$ the convolution of f and g. $f * g$ is by definition the continuous function with value equal to $(f * g)(n) = \sum_{k=0}^{n} f(k)g(n - k)$ if n is a natural number.
Proof: For $|z| \leq 1$ the equality $F(z)G(z) = \int_{\mathbb{Z}_p} (f * g)(x)\mu_z(x)$ is simply
\[
\left(\sum_{k=0}^{\infty} f(k)z^k \right) \left(\sum_{k=0}^{\infty} g(k)z^k \right) = \sum_{k=0}^{\infty} (f * g)(k)z^k
\]
which is obvious. The formula is valid in D by analytic continuation.

P8 \[\left| \int_{\mathbb{Z}_p} f(x)\mu_z(x) \right| \leq ||f|| \] (11)
where $||f||$ denotes the sup-norm.

Remark: It follows from (5) that \[\lim_{z \to \infty} zF(z)G(z) = -(f * g)(-1). \]
But \[\lim_{z \to \infty} zF(z)G(z) = -f(-1) \lim_{z \to \infty} G(z) = 0. \]
Hence we deduce the (known) fact that $(f * g)(-1) = 0$, i.e. the convolution of the two continuous functions is 0 at the point -1.

3. The p-adic Z-transform

Let $C(\mathbb{Z}_p)$ denote the Banach space of the all continuous functions from \mathbb{Z}_p to \mathbb{C}_p, equipped with the sup-norm.
Let (a_n) be a sequence in \mathbb{C}_p. A series of the form
\[
\sum_{k=0}^{\infty} a_k \frac{z^k}{(1 - z)^{k+1}} \quad \text{with} \quad \lim_{k \to \infty} a_k = 0
\] (12)
is convergent in D.

Let B be the set of all functions $F: D \to \mathbb{C}_p$ that are the sum of a series of the form (12) with $\lim_{k \to \infty} a_k = 0$.

If we define $||F|| = \sup_{z \in D} |F(z)|$ then B is a Banach space.

Formula (6) shows that $F(z) = \int_{\mathbb{Z}_p} f(x)\mu_z(x)$ belongs to B if $f \in C(\mathbb{Z}_p)$.

Hence it makes sense to consider the mapping
\[
T : C(\mathbb{Z}_p) \to B : f \to F(z) = \int_{\mathbb{Z}_p} f(x)\mu_z(x)
\]
We will call $F(z)$ the p-adic z-transform of f for the following reason. If $|z| < 1$ then
\[F(z) = \sum_{k=0}^{\infty} f(k)z^k. \] In applied mathematics it is customary to call the "generating function" \(F(z) \) the z-transform of \(f \).

We now examine the properties of the z-transform.

It is easily verified that \(T \) is linear and continuous.

If \(F(z) \) is identical 0 then \(\sum_{k=0}^{\infty} f(k)z^k = 0 \) for \(|z| < 1 \). Hence \(f(x) = 0 \).

This proves that \(T \) is injective.

\(T \) is also surjective. To see this we start from a given \(F(z) = \sum_{k=0}^{\infty} a_k \frac{z^k}{(1-z)^{k+1}} \) with \(\lim_{k \to \infty} a_k = 0 \). It follows from (6) that the z-transform of the function \(f(x) = \sum_{k=0}^{\infty} a_k \binom{x}{k} \) is equal to the given \(F(z) \) since \((\Delta^k f)(0) = a_k \).

Although we do not need it in the sequel we will also prove that \(T \) is an isometry. For this we need a lemma.

Lemma 1

If \(a = (a_k) \) is a sequence in \(C_\infty \), with \(\lim_{k \to \infty} a_k = 0 \), then

\[\sup |a_k| = \sup \{|a_0|, |a_0 + a_1|, |a_1 + a_2|, ..., |a_k + a_{k+1}|, ...\}. \]

Proof: Put \(||a|| = \sup |a_k|, ||a|| = \sup \{|a_0|, ..., |a_k + a_{k+1}|, ...\}. \)

Since \(|a_k + a_{k+1}| \leq \max \{|a_k|, |a_{k+1}|\} \leq ||a|| \) we see that \(||a|| \leq ||a||. \)

Put \(b_0 = a_0, b_1 = a_0 + a_1, ..., b_k = a_{k-1} + a_k, ... \)

Then \(a_k = b_k - b_{k-1} - b_{k-2} - ... \pm b_0. \)

Hence \(|a_k| \leq \max \{|b_0|, |b_1|, ..., |b_k|\} \leq ||a|| \)

thus \(||a|| \leq ||a|| \) and the lemma is proved.

Proposition: \(T \) is an isometry.

Proof: Let \(F(z) = \sum_{k=0}^{\infty} a_k \frac{z^k}{(1-z)^{k+1}} \) be the z-transform of \(f(x) = \sum_{k=0}^{\infty} (\Delta^k f)(0) \binom{x}{k}. \)

\[||f|| = \sup_k ||(\Delta^k f)(0)|| \] since the polynomials \(\binom{x}{k} \) form an orthogonal base for \(C(\mathbb{Z}_p) \)

\[= \sup |a_k| \]

\[= \sup \{|a_0|, |a_0 + a_1|, ..., |a_k + a_{k+1}|, ...\} \] by lemma 1

Writing \(u = \frac{x}{1-x} \) we observe that \(z \in D \) if and only if \(|u + 1| \leq 1 \).

Now
\[||f|| = \sup\{|a_0|, |a_0 + a_1|, \ldots, |a_k + a_{k+1}|, \ldots\} \]
\[= \sup \{a_0 + (a_0 + a_1)u + \ldots + (a_{k-1} + a_k)u^k + \ldots\} \]
\[= \sup \{a_0 + (a_0 + a_1)u + \ldots + (a_{k-1} + a_k)u^k + \ldots\} \]
\[= \sup_{z \in D} |F(z)| = ||F|| \]

We now show how the z-transform can be used in p-adic analysis.

Application 1 Mahler's expansion with remainder
We start from formula (6)
\[F(z) = \sum_{k=0}^{n-1} (\Delta^k f)(0) \frac{z^k}{(1-z)^{k+1}} + \frac{z^n}{(1-z)^n} \int_{\mathbb{Z}_p} (\Delta^n f)(x)\mu_z(x) \]
(6)

If \(f(x) = \left(\frac{x}{n-1} \right) \) all terms on the R.H.S. vanish except the term \(\frac{z^{n-1}}{(1-z)^n} \). This means that the z-transform of \(\left(\frac{x}{n-1} \right) \) is \(\frac{z^{n-1}}{(1-z)^n} \).

Hence every term of (3) is the transform of a function in \(C(\mathbb{Z}_p) \). Taking the inverse transform we get something of the form
\[f(x) = \sum_{k=0}^{n-1} (\Delta^k f)(0) \left(\frac{x}{k} \right) + r_n(x) \]
where \(r_n(x) \) is the inverse transform of
\[z^n \frac{z^{n-1}}{(1-z)^n} \int_{\mathbb{Z}_p} (\Delta^n f)(x)\mu_z(x) \]
(13)

Using (10) we see that \(r_n(x) = \left\{ \left(\frac{x}{n-1} \right) * \Delta^n f \right\}(x - 1) \).

The presence of the first factor \(z \) in the product (13) makes it necessary to evaluate the convolution of \(\left(\frac{x}{n-1} \right) \) and \(\Delta^n f \) at the point \(x - 1 \) instead of \(x \).

This gives Mahler's expansion with an expression for the remainder
\[f(x) = \sum_{k=0}^{n-1} (\Delta^k f)(0) \left(\frac{x}{k} \right) + \left\{ \left(\frac{x}{n-1} \right) * \Delta^n f \right\}(x - 1) \]

This was obtained in [5] by a different method.
Remark: Until now we have assumed that the functions of $C(Z_p)$ take their values in C_p. If we replace C_p by a field that is complete for a non-Archimedean valuation containing Q_p, the method still works. The only restriction is that we can no longer use any property whose proof uses analytic continuation.

Application 2 Van der Put’s expansion

Notation: If $n = a_0 + a_1p + \ldots + a_sp^s$ with $a_s \neq 0$ then we put $m(n) = s$ and $n_- = a_0 + a_1p + \ldots + a_{s-1}p^{s-1}$.

Take $f \in C(Z_p)$ and let f_r denote the locally constant function defined by

$$f_r(k) = f(k) \quad \text{for } k = 0, 1, \ldots, p^r - 1$$

$$f_r(x) = f_r(x + p^r)$$

By induction on r we can verify that

$$\sum_{0 \leq n < p^r} (f(n) - f(n_-)) \frac{z^n}{1 - z^{m(n)}} = \sum_{n=0}^{p^r-1} f(n)z^n \frac{1}{1 - z^{p^r}} \quad (14)$$

Using the definition (1) we see that the R.H.S. of (14) is the z-transform of f_r. In the same way we can verify that $\frac{z^n}{1 - z^{m(n)}}$ is the z-transform of the function

$$\epsilon_n(x) = 1 \quad \text{if } |x - n| < \frac{1}{n}$$

$$\epsilon_n(x) = 0 \quad \text{if } |x - n| \geq \frac{1}{n}$$

The inverse transform of (8) gives the identity

$$\sum_{0 \leq n < p^r} [f(n) - f(n_-)]\epsilon_n(x) = f_r(x)$$

If $r \to \infty$ we recover the Van der Put expansion of $f(x)$.

Application 3

If we put $f(x) = \binom{x + n}{n}$ in (7) we see that z-transform of $\binom{x + n}{n}$ is $\frac{1}{(1 - z)^{n+1}}$. The inverse of (7) yields

$$f(x) = \sum_{k=0}^{n} (Q^k f)(-1) \binom{x + k}{k} + \left\{ \binom{x + n}{n} * Q^{n+1} f \right\}(x) \quad Q = \Delta E^{-1}$$
4. The expansion of a continuous function in a series of Sheffer polynomials

In this section we will use the p-adic z-transform to generalize the main theorem of [6]. We first recall a few elements of the p-adic umbral calculus developed in [6].

Let R be a linear continuous operator on $C(\mathbb{Z}_p, K)$, where K is a field containing \mathbb{Q}_p that is complete for a non archimedean valuation. If R commutes with E it can be written in the form $R = \sum_{i=0}^{\infty} b_i \Delta^i$ where (b_i) is a bounded sequence in K. The result that we want to generalize is the following.

Proposition [6]

If $Q = \sum_{i=0}^{\infty} b_i \Delta^i$ is a linear continuous operator on $C(\mathbb{Z}_p, K)$ such that $b_0 = 0, |b_1| = 1, |b_i| \leq 1$ for $i \geq 2$ then

a) there exists a unique sequence of polynomials $p_n(x)$ such that

$$Qp_n = p_{n-1}, \deg p_n = n, p_n(0) = 0 \text{ for } n \geq 1 \text{ and } p_0 = 1$$

b) every continuous function $f : \mathbb{Z}_p \rightarrow K$ has a uniformly convergent expansion of the form

$$f(x) = \sum_{n=0}^{\infty} (Q^n f)(0)p_n(x) \quad (15)$$

With an operator $R = \sum_{i=0}^{\infty} b_i \Delta^i$ we can associate a measure on \mathbb{Z}_p by means of the functional sending a $f \in C(\mathbb{Z}_p, K)$ to $(Rf)(0)$.

Example: Take $R = \frac{1}{1-Ez}$ with $z \in D$. Then

$$R = \frac{1}{1-z+\Delta z} = \sum_{k=0}^{\infty} \Delta^k \frac{z^k}{(1-z)^{k+1}}$$

Formula (6) shows that the measure obtained in this way is the measure introduced in section 1.

Now let $Q = \sum_{i=0}^{\infty} b_i \Delta^i$ and $S = \sum_{i=0}^{\infty} s_i \Delta^i$ be two operators commuting with E where S is invertible.
If \(b_0 = 0 \), any operator \(R \), commuting with \(E \), can be written in the form

\[
R = \sum_{n=0}^{\infty} r_n Q^n, \quad r_n \in K
\]

We can see this as an equality between operators or as an identity between formal power series in \(\Delta \). If we take \(R = \frac{S}{1 - Ez} \) the coefficients \(r_n \) will depend on \(z \). Let us write it in the form

\[
\frac{S}{1 - Ez} = \sum_{n=0}^{\infty} \frac{T_n(z)}{(1 - z)^{n+1}} Q^n
\]

(16)

Writing out everything as a powerseries in \(\Delta \) and comparing the coefficient of \(\Delta^n \) we see that \(T_n(z) \) is a polynomial of degree \(n \) in \(z \). If, moreover, \(|b_1| = 1 \) the sequence is bounded.

Multiplying (16) with \(S^{-1} \) and applying the operators on both sides to a function \(f \in C(\mathbb{Z}_p, K) \) we get the series

\[
F(z) = \sum_{n=0}^{\infty} (S^{-1} Q^n f)(0) \frac{T_n(z)}{(1 - z)^{n+1}}
\]

(17)

This series is uniformly convergent since \(\lim_{n \to \infty} (S^{-1} Q^n f)(0) = 0 \).

The idea is now to take the inverse z-transform of (17).

Now the z-transform of \(\binom{x}{n} \) is \(\frac{z^n}{(1 - z)^{n+1}} \). Hence the z-transform of a polynomial of degree \(n \) is of the form \(\frac{P_n(z)}{(1 - z)^{n+1}} \) where \(P_n(z) \) is also a polynomial of degree \(n \).

Taking the inverse transform of (17) we get

\[
f(x) = \sum_{n=0}^{\infty} (S^{-1} Q^n f)(0)t_n(x)
\]

(18)

where \(t_n(x) \) is a polynomial of degree \(n \).

This is the expansion we wanted to obtain.

To see that (18) is a generalization of (15) take \(S \) equal to the identity operator and take \(f \) equal to the polynomial \(p_n \) in (15). (18) then reduces to \(p_n(x) = t_n(x) \).

In the general case the polynomials \(t_n(x) \) are called "Sheffer polynomials" in umbral calculus.
Remark

It is possible to work in an even more general situation. Let $Q_1, Q_2, \ldots, Q_n, \ldots$ be a sequence operators satisfying the same conditions as the operator Q above. There exists a sequence of polynomials $T_n(z)$, $\deg T_n = n$, such that

$$\frac{S}{1 - Ez} = \sum_{n=0}^{\infty} \frac{T_n(z)}{(1 - z)^{n+1}} Q_1 Q_2 \ldots Q^n$$

5. A formula for $\lg 2$

The formula

$$2(1 - \frac{1}{p})\lg 2 = \frac{\lg 2}{p}$$

In this section we show that it is possible to refine this result using the properties of the integral studied in section 2.

Let $f(x) = 0$ for $|x| < 1$

$$= \frac{1}{x} \quad \text{for } |x| = 1$$

In [1] (lemma 6.4, chapter 12) it is proved that, for $z \in D$,

$$\int_{\mathbb{Z}_p} f(x)\mu_z(x) = \frac{1}{p} \lg \frac{1 - z^p}{(1 - z)^p}$$

(19)

If $U_p = \mathbb{Z}_p \setminus p\mathbb{Z}_p$ denotes the group of units of \mathbb{Z}_p the integral can be written as

$$\int_{U_p} \frac{\mu_z(x)}{x} = \frac{1}{p} \lg \frac{1 - z^p}{(1 - z)^p}$$

Putting $z = -1$ we get

$$\int_{U_p} \frac{\mu_{-1}(x)}{x} = -(1 - \frac{1}{p})\lg 2$$

(20)
The idea is to construct approximations for the integral on the LHS of (20). This will yield the following theorem.

Theorem: If \(p \neq 2 \) then

\[
\begin{align*}
\text{a)} & \quad 2(1 - \frac{1}{p}) \log 2 \equiv \sum_{k=1, (k, p) = 1}^{p^n} \frac{(-1)^{k+1}}{k} \pmod{p^{2n}} \\
\text{b)} & \quad 2(1 - \frac{1}{p}) \log 2 \equiv 4\varepsilon_n \sum_{k=0}^{\frac{p^n-3}{2}} \frac{(-1)^{k+1}}{2k+1} \pmod{p^{2n}}
\end{align*}
\]

where \(\varepsilon_n = (-1)^{n \frac{p-1}{2}} \)

\[
\begin{align*}
\text{c)} & \quad -2(1 - \frac{1}{p}) \log 2 \equiv \sum_{k=1, (k, p) = 1}^{p^n} \frac{(-1)^{k+1}}{k} - 8\varepsilon_n \sum_{k=0}^{\frac{p^n-3}{2}} \frac{(-1)^{k+1}}{2k+1} \pmod{p^{4n}}
\end{align*}
\]

For the proof we need the value of a few integrals. We collect these results in the following lemma. \(i \) denotes a square root of \(-1\).

Lemma 2

\[
\begin{align*}
\text{(1)} & \quad \int_{U_p} \frac{\mu_{-1}(x)}{x^2} = \int_{U_p} \frac{\mu_{-1}(x)}{x^4} = 0 \\
\text{(2)} & \quad \int_{U_p} \frac{\mu_i(x)}{x^2} + \int_{U_p} \frac{\mu_{-i}(x)}{x^2} = 0 \\
& \quad \int_{U_p} \frac{\mu_i(x)}{x^4} + \int_{U_p} \frac{\mu_{-i}(x)}{x^4} = 0 \\
\text{(3)} & \quad \int_{U_p} \frac{\mu_i(x)}{x} = \int_{U_p} \frac{\mu_{-i}(x)}{x} = -\frac{1}{2} \left(1 - \frac{1}{p} \right) \log 2 \quad \text{for } p \neq 2 \\
\text{(4)} & \quad \int_{U_p} \frac{\mu_i(x)}{x^3} = \int_{U_p} \frac{\mu_{-i}(x)}{x^3} = \frac{1}{8} \int_{U_p} \frac{\mu_{-1}(x)}{x^3}
\end{align*}
\]

Proof of the lemma

(1) These are special cases of formula (9).
(2) These are special cases of (8) with \(z = i \).
(3) Suppose first that $p \equiv 1 \pmod{4}$. Then $i^p = i$, hence

$$\int_{U_p} \frac{\mu_i(x)}{x} = \frac{1}{p} \log \frac{1-i}{(1-i)^p} = -(1 - \frac{1}{p}) \log(1-i)$$

Since $(1-i)^2 = -2i$ and $\log i = 0$ we see that $\log(1-i) = \frac{1}{2} \log 2$ and the assertion is proved. If $p \equiv 3 \pmod{4}$ we have $i^p = -i$ and we get

$$\int_{U_p} \frac{\mu_i(x)}{x} = \frac{1}{p} \log \frac{1+i}{(1-i)^p}$$

Since $\frac{1+i}{1-i} = i$ and $\log i = 0$ we conclude that

$$\frac{1}{p} \log \frac{1+i}{(1-i)^p} = -(1 - \frac{1}{p}) \log(1-i) = -\frac{1}{2} \left(1 - \frac{1}{p}\right) \log 2$$

The integral $\int_{U_p} \frac{\mu_{-i}(x)}{x}$ is calculated in the same way.

(4) Let k be a natural number and let $\zeta(s)$ be the Riemann zeta function. It is well-known that the numbers $\zeta(-k)$ are rational and that the sequence $k \to (1 - p^k)\zeta(-k)$ can be interpolated p-adically. This can be deduced from the following formula (see [1] p. 295).

$$(1 - p^k)\zeta(-k) = \frac{1}{q^{k+1}-1} \sum_{\substack{\theta \text{ prime to } p \\theta \neq 1 \\text{ and } q}} \int_{U_p} x^k \mu_\theta(x)$$

(21)

The sum is extended over all primitive q-th roots of unity θ with $\theta \neq 1$. q is an integer prime to p.

In [1] the author supposes that q is a prime but this restriction is not necessary. Clearly the LHS of (21) is independant of q. Taking respectively $q = 2$ and $q = 4$ we get

$$\frac{1}{2^{k+1}-1} \int_{U_p} x^k \mu_{-1}(x) = \frac{1}{4^{k+1}-1} \left\{ \int_{U_p} x^k \mu_{-1}(x) + \int_{U_p} x^k \mu_i(x) + \int_{U_p} x^k \mu_{-i}(x) \right\}$$

or

$$2^{k+1} \int_{U_p} x^k \mu_{-1}(x) = \int_{U_p} x^k \mu_i(x) + \int_{U_p} x^k \mu_{-i}(x)$$

(22)
If k remains in a fixed residue class mod $(p - 1)$ the LHS of (21) is a continuous function of k. Hence (21) and (22) remain valid for negative integers (except possibly for $k = -1$). Taking $k = -3$ we get

$$4 \int_{U_p} \frac{\mu_{-1}(x)}{x^3} = \int_{U_p} \frac{\mu_i(x)}{x^3} + \int_{U_p} \frac{\mu_{-i}(x)}{x^3}$$

Since (8) implies that

$$\int_{U_p} \frac{\mu_i(x)}{x^3} = \int_{U_p} \frac{\mu_{-i}(x)}{x^3}$$

the last assertion of lemma 2 is proved.

Proof of the theorem

Starting from (1) we have

$$\int_{U_p} \frac{\mu_z(x)}{x} = \sum_{(k,p)=1}^{p^n} \frac{z^k}{k} \cdot x + z^p \int_{U_p} \frac{\mu_z(x)}{x + p^n}$$

Now

$$\frac{1}{x + p^n} = \frac{1}{x} - \frac{p^n}{x^2} + \frac{p^{2n}}{x^3} - \frac{p^{3n}}{x^4} + \frac{p^{4n}}{x^4(x + p)}$$

Integrating this over U_p and observing that (11) implies

$$\left| \int_{U_p} \frac{\mu_z(x)}{x^4(x + p^n)} \right| \leq 1$$

we see that the (p-adic) value of

$$\left(1 - z^p\right) \int_{U_p} \frac{\mu_z(x)}{x} - \sum_{(k,p)=1}^{p^n} k + z^p \left[p^n \int_{U_p} \frac{\mu_z(x)}{x^2} - p^{2n} \int_{U_p} \frac{\mu_z(x)}{x^3} + p^{3n} \int_{U_p} \frac{\mu_z(x)}{x^4} \right]$$

is $\leq \frac{1}{p^4}$.

For $z = -1$ the first assertion of lemma 2 implies that two of these integrals are zero. Since the other integrals clearly lie in \mathbb{Z}_p we obtain the following congruence in \mathbb{Z}_p

$$2 \int_{U_p} \frac{\mu_{-1}(x)}{x} \equiv \sum_{(k,p)=1}^{p^n} \frac{(-1)^k}{k} - p^{2n} \int_{U_p} \frac{\mu_{-1}(x)}{x^3} \pmod{p^{4n}}$$

(24)
If we compare this with (20) we see that point (a) of the theorem is proved.
In order to prove (b) note that $i^p = (-1)^{\frac{p-1}{2}}$ and hence $i^p = \varepsilon_n i$.

Now put $x = i$ in (23). This gives

$$\left| (1 - \varepsilon_n i) \int_{U_p} \frac{\mu_i(x)}{x} - \sum_{\substack{k=1 \atop (k,p)=1}}^{p^n} \frac{i^k}{k} + p^n \varepsilon_n i \int_{U_p} \frac{\mu_i(x)}{x^2} - p^{2n} \varepsilon_n i \int_{U_p} \frac{\mu_i(x)}{x^3} + p^{3n} \varepsilon_n i \int_{U_p} \frac{\mu_i(x)}{x^4} \right| \leq \frac{1}{p^4}$$

Replace i by $-i$ and subtract. When the integrals are replaced by their values given in lemma 2 we obtain the congruence

$$\varepsilon_n (1 - \frac{1}{p}) \log 2 \equiv 2i \sum_{k=0}^{2^n} \frac{(-1)^k}{2k+1} + \varepsilon_n i p^{2n} \int_{U_p} \frac{\mu_1(x)}{x^3} \left(\text{mod } p^{4n} \right) \quad (25)$$

Neglecting the last term we see that (b) is proved.
To obtain (c) it is sufficient to take a linear combination of (24) and (25) such that the integral $\int_{U_p} \frac{\mu_1(x)}{x^3}$ disappears.

We can deduce the following purely arithmetical result from the theorem.

Corollary

For $p \neq 2$

$$2^{(p-1)} - 1 \equiv 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots - \frac{1}{p-1} \quad \left(\text{mod } p^2 \right)$$

$$\equiv 4(-1)^{\frac{p-1}{2}}(1 - \frac{1}{3} + \frac{1}{5} - \ldots \pm \frac{1}{p-2}) \quad \left(\text{mod } p^2 \right)$$

Proof: Since $2^{(p-1)} p \equiv 1 \quad \left(\text{mod } p^2 \right)$ we have

$$p(p-1) \log 2 = \log(2^{(p-1)} p - 1 + 1) \equiv 2^{(p-1)} p - 1 \quad \left(\text{mod } p^4 \right)$$

and hence
(1 - \frac{1}{p^4}) \log 2 \equiv \frac{2^{(p-1)p} - 1}{p^2} \pmod{p^4}

Combining this with the congruences (a) and (b) of the theorem (for n = 1) we see that the required congruences are established.

REFERENCES

[5] L. VAN HAMME : Three generalizations of Mahler's expansion for continuous functions on \(\mathbb{Z}_p \).

[6] L. VAN HAMME : Continuous operators which commute with translations on the space of continuous functions on \(\mathbb{Z}_p \).

Vrije Universiteit Brussel
Faculty of Applied Sciences
Pleinlaan 2
B - 1050 Brussels
Belgium