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LIMITED SPACES

N. De Grande-De Kimpe and C. Perez-Garcia *

Ann. Math. Blaise Pascal, Vol. 2, N° 1, 1995, pp.117-129

Abstract. We introduce and study two new classes of non-archimedean locally convex
Hausdorff spaces: the limited spaces and the BL-spaces. In particular we have:

E is nuclear ~ E is limited ~ E is BL.

We also characterize the nuclear spaces among the limited spaces and the limited spaces
among the BL-spaces. Finally we compare the non-archimedean results with the classical
(= real or complex) ones.

1991 Mathematics subject classification: 46S10.

1. PRELIMINARIES

Throughout this paper K is a non-archimedean valued field that is complete for the
metric induced by the non-trivial valuation ‘ . ~. Also, E, F are Hausdorff locally convex
spaces over K.

A subset A of E is called compactoid if for every zero-neighbourhood U in E there
exists a finite set S ~ E such that A C coS + U, where coS is the absolutely convex hull
of S. Every compactoid set is bounded.

An other interesting subclass of the bounded subsets of E consists of the limited sets
(Definition 2.1). It turns out that every compactoid subset is limited (2.2.ii)) and spaces in
which all the limited subsets are compactoid are called GP-spaces (they have been studied
in [9]).

By L( E, F) we will denote the vector space of all continuous linear maps (or operators)
from E into F. T E L(E, F) is called compact if there exists a zero-neighbourhood U in
E for which T(U) is a compactoid subset of F. Also, T is called compactifying if for every
bounded subset A of E, T(A) is a compactoid subset of F. By C(E, F) (resp. CF(E, F))
* Research paertially supported by the Spanish Direccion General de Inves-

tigacion Cientiflca y Tecnica (DGICYT, PS90-0100)
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we will denote the vector space of all compact (resp. compactifying) operators from E into
F (These spaces of operators and the relation between them were studied in [4]).

The compact (compactifying) operators between normed spaces form an operator ideal
(the concept of operator ideal is the same as in the classical theory, see e.g. [22]). Also,
the limited operators (Definition 2.1) constitute another interesting example of an operator
ideal, which has been studied in [10].

We finish this section with some facts concerning the normed spaces associated with
a locally convex space E.

i) For a continuous seminorm p on E we put Ep = E/Kerp and we denote by 03C0p the
canonical surjection 03C0p : E ~ Ep. Then Ep is a normed space for the norm ~ . ~p defined
by ~ 03C0p(x) ~p=p(x), x E E.

ii) If p, q are continuous seminorms on E with q > p then there exists a unique
continuous linear map 03C6pq : Eq ----> Ep with 03C6pq o 7r q = 03C0p.

iii) If U is a zero-neighbourhood in E and U° is the polar of U in E’ we put Euo =
UÀEK 03BBUo and for f ~ E’Uo we define !! f inf{| 03B1 |: f ~ 03B1Uo}. Then . ~Uo is

a Banach space.

iv) If U, V are zero-neighbourhoods in E with V C U we denote by 03C6UV the continuous
canonical injection 03C6UV : E’Uo, ~ . ~ uo ~ E’Vo,~ . ~ v°.

v) Let p be a continuous seminorm on E and put U = {x E E : p(~)  1}. Let

I p : E’Uo ~ (Ep)’ be defined by

= f E E’Uo.

Then Ip is a linear homeomorphism from EU° onto (Ep)’. So, E~° and (Ep)’ can be
identified as locally convex spaces.

vi) Let p, q be as in ii), U as in v) and V = {x E E : : q(x}  1~. Then, making the
identifications as in v), we have that 03C6UV = (ppq)* (the transposed of 03C6pq).

vii) .4 sequence ( f n)n in E’ is said to be locally convergent to zero if there exists a
zero-neighbourhood U in E such that (In) C E~° and limn ‘~ f n 0.

For unexplained terms and background we refer to [25] (normed spaces) and [23]
(locally convex spaces).

2. LIMITED SPACES

Definition 2.1:

i) (compare [18]) A bounded subset A of E is called limited in E if every equicontinuous
Q(E’, E)-null sequence in E’ converges to zero uniformly on A.

ii) (compare [3]) An operator T E L(E, F) is called limited if there exists a zero-

neighbourhood U in E such that T(U) is limited in F. We denote by Lim(E, F) the
vector space of all limited operators from E to F.

The following properties of limited sets and operators will be needed in the sequel.
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Proposition 2.2:
i) A bounded subset ACE is limited in E iff for every T E L(E, co) T(A) is com-

pactoid in co. . In particular, if E is a normed space then the closed unit ball of E, BE, is
limited i"~ L(E, co) = C(E, co).

ii) Every compactoid set is limited and hence C(E, F) C Lim(E, F) for all locally
convex spaces E,F.

iii~ If A is limited in E and B C A then B is limited in E.

iv) If ACE, then A is limited in E iff A is limited on E (where E denotes the

completion of E~.
v) If ACE is limited in E and T E L(E, F), then ?‘(A~ is limited in F.

vi) If A is limited in E then its closure, A, is limited in E.

vii) If A, B ~ E are limited in E then A +B is limited in E.

viii ) If E,F are normed spaces and T E L(E, F) then, T is limited iff T* (the transposed
of T) transforms equicontinuous weak*-convergent sequences in F’ into norm-convergent
sequences in E’.

iz~ The limited operators between normed spaces form an operator ideal.

Proof: Properties i), ..., v) are proved in ~9J, 2.2, 2.3. Also, vi) and vii) follow directly
from i) and the properties of compactoid sets (see e.g. [6], 1.2). Finally, viii) and ix) are

proved in C10~, 4.10 and 4.12 respectively.

Definition 2.3: (compare [17]) We say that E is a limited space if for every continuous
seminorm p on E there exists a continuous seminorm q on E with q > p such that the

canonical operator 03C6pq : Eq - Ep is limited.

Applying 2.2 and similarly to Proposition 2.5 of ~7~, we can give the following charac-
terization of limited spaces in terms of operators.

Theorem 2.4: The following are equivalent.
i) E is limited.
ii) L(E,F) = Lim(E,F) for all Banach spaces F.
iii) L(E,F) = Lim(E,F) for all normed spaces F.
iv~ For every continuous seminorm p on E the canonical operator ~r~ : E -~-a Ep is

limited.

Corollary 2.5: If E is limited then
every bounded subset of E is limited. (*)
(spaces E with property (*) will be called BL-spaces. They are studied in section 3).
Proof: We have L(E, co) = Lim(E,co) and hence L(E,co) = C(E, co) ([9], 2.8.i)).
Then, apply 2.2.i).

Examples 2.6:
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i) Recall that E is nuclear if for every continuous seminorm p on E there exists a
continuous seminorm q on E with q ~ p such that the corresponding map ppq is compact.
Then, it follows directly from 2.2.ii) that every nuclear space is limited.

ii) If the valuation on K is discrete, then every locally convex space over K is GP ([9],
2.8.iii)) and so E is limited iff E is nuclear.

iii) If E is a normed space then E is limited iff L(E,co) = C(E, co) (apply 2.2, 2.4
and 2.5).

iv) If the valuation on K is dense then I°° is a limited (non-nuclear) space. Indeed,
by [25], 5.19 L{ I °°, co ) = C( I °°, co). Now apply iii).

Analogously, if K is small then = C(l~(I), c0) for all sets I ([21], 6.4)
and so is limited.

v) Let X be a zero-dimensional Hausdorff space and consider the following spaces of
continuous functions :

PC(X) = ~ f : X ---~ K : f is continuous and f (X’) is a precompact subset of h’ ~ ,
endowed with the supremum norm.

C(X ) = { f : X - h’ : f is continuous), endowed with the compact-open topology.
BC(X ) = ~ f : X -~-~ K : f is bounded and continuous }, endowed with the strict

topology. This is the topology generated by the semi norms p03C6(f) = supx~X | 03C6(x).f(x) |,
where § : X --3 h’ is a bounded function vanishing at infinity.

Then,
a) PC(X) is limited (resp. a BL-space) iff PC(X) is finite-dimensional (or equivalen-

tely, X is finite). Indeed, observe that PC(X) is a GP-space ([9], 3.1).
b) C(X) (resp. BC(.X ) ) is limited iff C(X) (resp. BC(X ) ) is nuclear. Even

more, C(X) (resp. BC{X ) ) is a BL-space iff it is nuclear (see [9], 3.7). For several

characterizations of the nuclearity of C(X) (resp. BC(.~) ) see ~7~, 3.3 (resp. [8], 3.4).

Proposition 2.7: (Permanence properties)
i) If the valuation on K is discrete and E is a limited space over K, then every subspace

of E is a limited space.
ii) A subspace of a limited space is not in general a limited space.
iii) If {Ei : i E I} is a family of limited spaces, then the product E = 03A0i~I E= is a

limited space.

iv) If {En : n E a sequence of limited spaces, then the locally convex direct sum
E = ~n~N En is a limited space. However, the locally convex direct sum o f an uncountable
family of limited space3 does not need to be limited (e.g., take the locally convex direct sum

of an uncountable family of copies of K when K is discretely valued and apply.2.6.ii)).
v) If E is a limited space and M is a closed subspace of E, then the quotient E/M is a

limited space.

Proof: i) For discretely valued fields limited spaces coincide with nuclear spaces (2.6.ii)).
Now apply [6], 5.7.ii).
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ii) Suppose that the valuation on K is dense. Then, t°° is limited (2.6.iv)), and since
C(co, co) we have that co C I°° is not limited (see 2.6.iii)).

iii) Let F be a normed space and let T E L(E, F). We shall prove that T E Lim(E, F)
(see 2.4). Since T is bounded on some zero-neighbourhood of E we can assume that I is
finite. Now, applying 2.2.vii) and the fact that every E~ is limited we can easily see that
T E Lim(E, F).

iv) Let En, E be as in iv) and un : En ~ E, n = 1, 2, ... the canonical maps from

En into E. Let F be a normed space and take T E L(E, F). It suffices to prove that T

is limited (see 2.4). Again by 2.4 all the maps T o un, n = 1, 2, ... are limited. Hence,
for each n there exists a zero-neighbourhood Un in En such that (T o un)(Un) is a limited
subset of F contained in BF. Now choose E co and define U = co(Un un(03B4nUn)).
Then, U is a zero-neighbourhood in E. It is now left to prove that T(U) is limited in F,
or equivalently, that S(T(U)) is compactoid in co for every S E L( F, co) with (~ S 1

(2.2.i)). For such an S we have S(T(U)) C o Take f > 0. Then

there exists no E N such that o un)(Un))) C ~x E co :~~ ~ E~ = e) for all
n > no. Hence S(T(U)) C 03A3n=n0n=1 03B4n(S((T o un)(Un))) + e). Since the first term of
this sum is compactoid we are done.

v) Let F be a normed space and let T E L(E/M, F). Since E is limited, there exists
a zero-neighbourhood U in E such that (T o Q)(U) is limited in F (where ~ E ---~ E/M
is the canonical surjection). Then, T E Lim(E/M,F). By 2.4, ElM is limited.

We now characterize the nuclear spaces among the limited spaces.

Theorem 2.8: (compare 2.6.ii)) Suppose that the valuation on K is dense. Then, the
following are equivalent.

i) E is nuclear.
ii ) E is limited and of countable type (Recall that E is of countable type if for every

continuous seminorm p on E the normed space Ep is of countable type).
iii) E is limited and for every continuous seminorm p on E, Ep is a GP-space.

Proof: i) ==~ ii) It follows from 2.6.i) and [23], 1.3.
ii) ===~ iii) If E is of countable type, then for every continuous seminorm p on E, Ep is

a GP-space ([9], 2.8.i)).
iii) ===~ i) Direct consequence of the definition of nuclear space.

Remark 2.9:

i) In [11] we constructed an example of a non-nuclear Frechet space E of countable
type in which every bounded subset is compactoid (hence limited). By 2.8 this space is
not limited. Hence the converse of 2.5 does not hold in general.

ii) There is in general no relation between "E is limited" and "E is of countable type".
Indeed, 100 is limited when the valuation on K is dense (2.6.iv)). On the other hand,

Co is of countable type but not limited (2.8).
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iii) The space E is called quasinormable if for every zero-neighbourhood U in E there
exists a zero-neighbourhood V in E with V C U such that on U° the strong topology
03B2(E’,E) on E’ coincides with the topology induced by the norm ~ . ~Vo on E’Vo (where
,Q(E‘, E} is the topology of uniform convergence on the bounded sets of E ). One can

easily see that if E is polar (i.e., its topology is defined by a family II of seminorms such
that p = sup{1 f ~: fEE’, ~ p~ for all p E II ) then, E is quasinormable iff for
every zero-neighbourhood U in E there exists a zero-neighbourhood V in E with V C U
such that for non-zero  in K there exists a bounded set A in E with V C A+ .

Taking into account this fact in conjunction with [23], 5.8 we can prove, like in [14], 5.3
that

"If E is polar, then E is nuclear iff E is quasinormable and every bounded subset of E
is compactoid ".

However, there is in general no relation between "E is limited" and "E is quasi-
normable" (compare with 3.11).

Indeed, co is quasinormable (every normed space is quasinormable) but not limited.
On the other hand, suppose that the valuation on K is dense and consider the space E = Zoo
equipped with the topology defined by all the E*)-contiuous seminorms together with
the usual norm )) (where E* denotes the algebraic dual of E ). By 2.6.iv) this space is
limited. Also, E is a polar space for which every bounded set is compactoid ([23], Remark
following 10.11). But E is not nuclear, and hence E is not quasinormable.

Observe that this example also shows that the condition "E is of countable type" in
2.8.ii) cannot be substituted in general by "E is GP".

3. BL-SPACES

Recall (2.5) that E is called a BL-space if every bounded subset of E is limited in E.
Before characterizing BL-spaces we give the following Lemma wich will be very useful

in the sequel.

Lemma 3.1: If T is a linear map from E into co, then
i) T is continuous iff T can be written as

T(x) = (x E E)
where ( f n)n is an equicontinuous 03C3(E’,E)-null sequence in E’.

ii) T is compact iff T can be written as in i) with ( f n)n converging locally to zero.
iii) T is compactifying iff T can be written as in i) with ( f n)n converging to zero in

,~(~’, E). .
Proof: Properties i) and ii) are proved in [5], Lemma 2.

iii) Let T be written as in i). It follows from [20], 2.1 that T is compactifying iff for
every bounded subset A of E, (supx~A | fn(x) |)n is majorized by an element of co. But
this means that limn fn = 0 in ,Q(E’, E).

Theorem 3.2: The following are equivalent.
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i) E is a BL-space.
ii) Every equicontinuous a(E’, E)-null sequence in E’ converges to zero in ~(E’, E).
iii) L(E, co ) = CF(E, co ).
iv) If (Tn)n is an equicontinuous sequence in L(E,F), F any Banach space, such that

Tn(E) is of countable type for all n and Tn ---~ T pointwise, then T E CF(E, F).
If the valuation on K is dense, then properties i), . , . iv) are equivalent to

v) CF(E, co) is complemented in L03B2(E, co) (where co) denotes the vector space
L(E, co) endowed with the topology of uniform convergence on the bounded sets of E ).

Note that if the valuation on K is discrete then v) =~ iii) does not hold. Indeed,

CF(co,co) = C(co,co) ~ L(co,co). However (~25J, 4.14) C(co,co) is complemented in

L(co,co).
Proof: The equivalence i) ~ ii) follows directly from the definition of a limited set.
Also, ii) ~ iii) is a direct consequence of 3.1.

iii) ~ iv) Obviously T is continuous. Now, put Z = [Un Tn(E)] C F. Then Z

is of countable type, hence linearly homeomorphic to co and by iii) T : : E ----~ Z is

compactifying. Since T(E) C Z, we conclude that T E --~ F is compactifying.
Obviously iv) =~ iii) and iii) =~- v).
v) ==~ ii) If ii) does not hold, there exists an equicontinuous sequence ( f n)n in E’ with

limnfn = 0 in 03C3(E’, E), a bounded subset A of E, 03BB,  E K - and for all n an xn E A

suchthat A ~~ !) ~ ! for all n.
Assume that there exists a continuous linear projection Q : ~ L03B2(E,c0)

whose range is CF(E, co).
We now construct a continuous linear surjection P : : l °° ---~ co. This will give us a

contradiction by [25], 5.19. The map P will have the form P = L o H o Q o J, where
J : t°° ---~ H : ----~ J(co) and L : J(co) ---~ co, are defined as

follows.

Definition of J: For a = (an)n E I°° we put J(a) = Ta where = (an f n(x)).n
(x E E). Then J is linear and by 3.1.i) it is well defined. Also, for every bounded subset
D of E and every a E t°° we have that

supx~Dsupn I an I . , |~ M. ~ a ~~,

where M = supx~Dsupn , fn(x) [ ~. Hence J is continuous.
For latter use we also prove that J : I°° --~ J(t°°) is an homeomorphism. To do that

observe that B = ~xl, x2, ...} is a bounded subset of E such that a ~ . ~~ a PB(J(a))
for all a E 100 (where pB is the seminorm on L(E, co) associated with B).

Also, note that for a E co we have that (an f n)n converges locally to zero and hence

(3.1.ii)) Ta E C(E, co) C CF(E, co).
Definition of H: Let T E CF(E, co). Then, there exists an equicontinuous sequence

(gn)n in E’ with limngn = 0 in ~(E’, E) such that T{x) = (gn(x))n for all x E E (see
3.1.iii)). Then (gn(xn))n E co and we define H(T) = J((gn(zn))n). Clearly H is well



124

defined and linear. Also, for every bounded subset D of E and every T E CF(E, co) we
have that pD(H(T))  s.pB(T) with B = {x1,x2,...} and s = supx~Dsupn | fn(x) | oo,
which implies that H is continuous.

De finition of L: For L we take the inverse of the linear homeomorphism J ( co : co --~
J(co).

It is now left to prove that the map P = LoH oQoJ is surjective. Take a = (Qn)n E co
and put Q = (03B1n/ fn(xn))n. Then!3 E co and from the above it follows that P(03B2) = a.

Remark 3.3: The equivalence iii) C~ v) of 3.2 constitutes an extension to locally convex
spaces of the result previously proved by T. Kiyosawa in [15], Theorem 14.
Examples 3.4:

i) Every limited space is a BL-space (2.5). But there are BL-spaces that are not
limited (see 2.9.i)).

ii) If E is a semi-Montel space (i.e., every bounded subset of E is compactoid), then
E is a BL-space.

iii) If E is a GP-space (e.g. when the valuation on K is discrete or when E is of
countable type, see [9], 2.8), then E is a BL-space iff E is a semi-Nlontel space.

iv) Suppose that the valuation on K is dense. Then. I°° is a (non semi-Montel) BL
space (see 2.6.iv)).

v) Finally recall that in 2.6.v) we studied when certain spaces of continuous functions
are BL-spaces.

Proposition 3.5: (Permanence properties~.
.i) If the valuation on K is discrete and E is a BL-space over K, then every subspace

of E as a BL-space.
ii) A subspace of a BL-space is not in general a BL-space.
iii) If {E= : i E I} is a family of BL-spaces, then the product 03A0i~IEi and the locally

convex direct sum ~i~I E= are BL-spaces.
iv ) A quotient of a BL-space by a closed subspace is not in general a BL- space.

Proof: The proof for subspaces and products follows, by 2.2 and 3.4, like in 2.7.
Let {Ei : i E I} be as in iii) and let A be a bounded subset in E=. Then, A

is contained in ~i~J Ei for some finite set J C I ([16], 18.5.4) and also bounded in that
space. Since is linearly homeomorphic to 03A0i~J E=, we conclude that A is limited
in ~i~J Ei and hence in ~i~I E;.

For iv), consider the example 4.1 in [11]. The space constructed there is a Frechet
BL-space of countable type. However, it has a quotient which is linearly homeomorphic to
co (which is not BL, 2.7.ii)). The proof is esentially the same as the classical theory (see
e.g. [16], 31.5) taking into account that the topology of a space of countable type is the
topology of uniform convergence on the subsets of E’ that are complete metrizable edged
and compactoid with respect to the topology u(E’, E) (~24~, 2.1).
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We now want to characterize the limited spaces among the BL-spaces. We therefore
need.

Definition 3.6: (compare 2.9.iii)) E is called sequentially-quasinormable (s.q. normable
in short) if for every zero-neighbourhood U in E there exists a zero-neighbourhood V in
E with V C U such that on U° the topology ~(E’, E) and the topology induced by the
norm on E~o have the same convergent sequences.

Examples 3.7:
i) Every quasinormable space is s.q.normable. In particular, every normed space is

s.q.normable.
ii) If E’, ~(E’, E) is metrizable then E is s.q.normable iff E is quasinormable. Note

that E’, p(E’, E) is metrizable if there is in E a fundamental sequence of bounded sets
(e.g. when E is the strong dual of a Frechet space).

iii) In general "s.q.normable" does not imply "quasinormable". Indeed, take E =

I°° endowed with the topology considered in 2.9.iii). Then E is limited (and hence sq-
normable, see 3.11), but not quasinormable.

However, we have.

Theorem 3.8: Let E be a Frechet space. Suppose E is strongly polar ~i.e., for every
continuous seminorm p on E, p = sup~~ f ~: f E E’, ( f ~ p}; e.g. if E is of countable

type or K is spherically complete, see ~23~). Then, the following are equivalent.
i) E is s.q.normable.
ii) E is quasinormable.
iii) C(E, co) = CF’(E, co).

Proof: Clearly ii) =~ i) (see 3.7.i)).
The proof of ii) ~ iii) is long and laborious but it is, mutatis mutandis, the same as

in the complex case (see [1]).
i) =~ iii) Assume E is s.q.normable. Let ( f n)n be a sequence in E’ with limn f n = 0

in E). Then, there exists a zero-neighbourhood V in E such that (f n)n converges to
zero in . ~Vo. It follows from 3.1 that CF(E, co) = C(E, co) .

In 2.9.i) we refer to an example of a non-nuclear semi-Montel Frechet space. Now, as
a consequence of 3.8 we can give the following description of the nuclearity of a Frechet
semi-Montel space.

Corollary 3.9: For a Frechet s pace E the following are equivalent.
i) E is nuclear.
ii) E is semi-MonteZ and C(E, co) = CF(E, co).
iii) E is semi-Montel and every o~(E’, E)-null sequence in E’ is locally convergent to

zero.
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Proof: i) t~ ii) Every Frechet semi-Montel space is of countable type (~11~, 3.1). Then
the conclusion follows from 3.8 and the characterization of nuclear spaces given in 2.9.iii)
(Recall that every space of countable type is polar [23], 4.4).

The equivalence ii) ~ i i i ) is a direct consequence of 3.1.

Remark 3.10: Applying 3.8 we deduce that the space E considered in 2.9.i) is not

s.q.normable.

Theorem 3.11: The following are equivalent.
i) E is limited.
ia) E is s.q.normable and BL.

Proof: i) ==~ ii) We only have to prove that E is s.q.normable (see 2.5).
Let U be a zero-neighbourhood in E. We can assume that U = {x E E : : p(x)  1}

for some continuous semi norm p on E. Take a continuous seminorm q on E with q > p
and such that : Eq --~ Ep is limited. Clearly V = {x E E : : q( x)  1} is a zero-

neighbourhood in E with V C U.
Now, let ( fn)n be a sequence in U° converging to zero in ,~(E’, E) (and hence,

Iirrzn f n(x) = 0 for all x E E). Then, (see Section l.v}) limn f n = 0 in Apply-
ing 2.2.viii) and Section 1.vi) we deduce that converges to zero in E’Vo. Therefore,
E is s.q.normable.

~ i ) Let p be a continuous semi norm on E and put U = f x E E p(x)  1 ~ . Then
take a zero-neighbourhood V in E with V C U as in the definition of s.q.normable space.
Then , there exists a continuous seminorm q on E with q > p such that W = {x E E : :
q(x)  1} C V and we shall prove that 03C6pq : Eq ~ Ep is limited, or that (see Section
1.vi) and 2.2.viii)) the canonical injection 03C6UW : E’Uo ~ Ewo transforms equicontinuous

Ep)-null sequences in EUo into null-sequences in E’Wo, ~ . ~Wo.
Let ( f n)n be an equicontinuous (and hence norm-bounded) sequence in E~o with

limn fn = 0 in 03C3(E’Uo, Ep) (and hence limn fn = 0 in a(E’, E)) and choose a E K - {0}
such that f n E 03B1Uo for all n. Since E is a BL-space we then have (see 3.2.i) ~ ii)) that
limn fn = 0 in ~(E’, E). By the choice of V we obtain that limnfn = 0 in But

VO C W° and so the canonical injection E~o ----; Ewo is continuous. Thus, limn fn = 0
in Etvo and we are done.

As a direct consequence of 3.8 and 3.11, we derive.

Corollary 3.12: (compare 2.9.iii)) If E is a strongly polar Fréchet space then: E i9
limited =~ E is quasinormable.

4. COMPARISON WITH THE COMPLEX CASE

B. Josefson [13] and N. Nissenzweig [19] proved that if E is a Banach space over the real
or complex field such that every (1( E’, E)-null sequence in E’ converges to zero in /?(E~, E)
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(or equivalently, every bounded subset of E is limited), then E is finite-dimensional. H.
Jarchow ([12], p. 247) asked if this result can be extended to Fréchet spaces. This question
has been solved in a positive way. Some of the more important generalizations of the
Josefson-Nissenzweig theorem appearing in the archimedean literature are collected in the
following result.

Theorem 4.1: Let E be a locally convex space over the real or complex field.
a) (see [17]) The following are equivalent.
i) E is Schwartz.
ii) E is limited.
iii) E is quasinormable and BL.
b) (see [2]) Suppose that E is a Fréchet space. Then,
i) E is semi.MonteZ E is BL.

ii) E is Schwartz iff every 03C3(E’, E)-null sequence in E’ is locally convergent to zero.

The non-archimedean counterpart of this theorem is not true in general when the
valuation on K is dense. Indeed, I°° is a quasinormable and limited space (2.6.iv)) that
is not nuclear. Also, the space E considered in 3.7.iii) provides an example of a non-
quasinormable limited space.

However, when the valuation on K is discrete the situation is completely different.
The non-archimedean version of 4.1 holds in this case, and we have.

Theorem 4.2: Let E be a locally convex space over a discretely valued field K.
a) The following are equivalent.
i) E is nuclear.
ii) E is limited.
iii) E is quasinormable and BL.
b) Suppose that E is a Fréchet space. Then,
a) E is semi-Montel iff E is BL (i. e., every 03C3(E’, E)-null sequence in E’ converges to

zero in 03B2(E’, E)).
ii) E is nuclear every ~(E’, E)-null sequence in E’ is locally convergent to zero.

Proof: a) The equivalence i) ~ it) was proved in 2.6.ii). For the proof of i) ~ iii)
apply the characterization of nuclearity given in 2.9.iii) and the fact that every locally
convex space over K is GP ([9], 2.8.iii)) and polar ([23], Remark preceding 4.1).

b) Property i) follows directly from 3.4.iii). -

To prove ii), suppose that every ~(E’, E)-null sequence in E’ is locally convergent to
zero. Then, L(E, co) = C(E, co) (see 3.1) and by 3.2, E is a BL-space. Since E is GP we
derive that it is a semi-Montel space and so E is of countable type ( ~I1J, 3.1 ). Now the
conclusion follows from (23J, 1.3.

Remark 4.3:

i) The crucial fact to prove 4.1.a) is that
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"The product of three limited operators between Banach spaces over the real or complex
field, is a compact operator" ([17], Theorem 1).

In the non-archimedean case this result remains true when the valuation on K is
discrete (In this case Lim(E, F) = C(E, F) for all Banach spaces E, F over K [9], 2.8.iii)).
However, for densely valued fields the result is false in general (e.g., by 2.6.iv) the identity
map Id on I°° is a limited operator such that Id3 is clearly a non compact operator).

ii) Also, the crucial fact to prove 4.1.b) is that
"Every Fréchet BL-space over the real or complex field is reflexive "
We have again that this result remains true in the non-archimedean case when the

ground field K is discretely valued (Every Frechet BL-space over K is semi-Montel and
hence reflexive [23], 10.3). However, for densely valued fields the result is false in general
(e.g., I°° is a BL-space which is not reflexive if K is spherically complete [25], 4.16).

iii) It follows from 4.2.b).i) that the condition "E is of countable type" in 3.3.iv) of
[11] can be eliminated when the valuation on K is discrete.
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