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Matching Cells

Gaël Meigniez

Abstract

A (total) matching of the cells of a triangulated manifold can be thought as a combinatorial or discrete
version of a nonsingular vector field. This note gives several methods for constructing such matchings.

Cellules couplées
Résumé

Un couplage (total) entre les cellules d’une variété triangulée peut être pensé comme une version
combinatoire, discrète, d’un champ de vecteurs non singulier. Cette note décrit plusieurs méthodes pour
construire de tels couplages.

1. Introduction

On a polyhedral complex, a “partial matching” is a family of disjoint pairs of cells such
that in each pair, one of the two cells is a hyperface (a face of codimension 1) of the other.
Following Forman [5, 6, 7, 8], such objects are regarded as a combinatorial equivalent to
vector fields. In the literature, most attention has been given to “discrete Morse theory”,
which concerns partial matchings whith strongly constrained dynamics, and their relations
to the homology of the ambiant complex. The present note is about total matchings
involving all the cells, or whose unmatched cells constitute a prescribed subcomplex;
regardless of their dynamics; we are interested on the existence of such objects. We
provide some construction methods, mainly on triangulated manifolds, either allowing
oneself to subdivide the triangulation, or not. The author feels that the methods are more
important than the existence results themselves. A first approach is combinatorial and
linear-algebraic, making Hall’s “marriage theorem” play with cellular homology; two
other ones are geometric: a matching is deduced from an ambient nonsingular vector field
transverse to the cells, or from a round handle decomposition of the manifold.

Here are two results. All manifolds and triangulations are understood smooth (𝐶∞).

Theorem 1.1 (Rational homology sphere). Let 𝑀 be a rational homology sphere of odd
dimension.
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2020 Mathematics Subject Classification: 05C70, 05E45, 37C10, 37F20, 57Q15.

97



G. Meigniez

Then, every triangulation, and more generally every polyhedral cellulation of 𝑀 is
(totally) matchable.

Theorem 1.2 (Matchable subdivision). Let 𝑀 be a compact connected manifold with
smooth boundary, and let 𝜕0𝑀 be a union of connected components of 𝜕𝑀 such that
𝜒(𝑀, 𝜕0𝑀) = 0.

Then, every triangulation of 𝑀 admits a subdivision matchable rel. 𝜕0𝑀 .

See below for the meaning of relative matchings. Either of the two sets 𝜕0𝑀 and
𝜕𝑀 \ 𝜕0𝑀 may be empty, or both. In particular:

Corollary 1.3. Every closed connected manifold whose Euler characteristic vanishes
admits a (totally) matchable triangulation.

For manifolds of dimension 3, this is due to E. Gallais [9].

Question 1.4. Let 𝑛 be an odd integer. Is every triangulation of every closed 𝑛-manifold
(totally) matchable?

The question is open even for 𝑛 = 3.

2. Matching cells, and obstructions to do so

The rest of this note progressively investigates some methods to construct matchings, and
also some obstructions; starting with immediate, elementary remarks; and finishing with
the proofs of Theorems 1 and 2.

Notation 2.1. One denotes by |𝐴| the cardinality of the set 𝐴, by D𝑛 ⊂ R𝑛 the compact
unit disk, and by S𝑛−1 := 𝜕D𝑛 the (𝑛 − 1)-sphere.

In a first phase, manifolds are not mandatory, nor simplices. Consider generally a
polyhedral cellular complex 𝑋 (the cells are convex polyhedra, finiteness is understood
everywhere) and a subcomplex 𝑌 ⊂ 𝑋 . Call two cells incident to each other if one is a
hyperface of the other. Write Σ(𝑋,𝑌 ) (resp. Σ𝑛 (𝑋,𝑌 )) (resp. Σ0 (𝑋,𝑌 )) (resp. Σ1 (𝑋,𝑌 ))
for the set of the cells (resp. the 𝑛-dimensional cells) (resp. the even-dimensional cells)
(resp. the odd-dimensional cells) of 𝑋 not lying in 𝑌 .

Definition 2.2. A matching on 𝑋 relative to 𝑌 , or a matching on the pair (𝑋,𝑌 ), is a
partition of Σ(𝑋,𝑌 ) into incident pairs.

For 𝑌 = ∅, we write Σ(𝑋) (resp. Σ𝑛 (𝑋)) (resp. Σ0 (𝑋)) (resp. Σ1 (𝑋)) instead of
Σ(𝑋, ∅) (resp. Σ𝑛 (𝑋, ∅)) (resp. Σ0 (𝑋, ∅)) (resp. Σ1 (𝑋, ∅)); and we speak of “a matching
on 𝑋”.
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The cases of the complexes of dimension 1 and of the triangulations of surfaces will
easily follow from a few general remarks.

Remark 2.3 (Euler characteristic). If (𝑋,𝑌 ) is matchable, then the relative Euler charac-
teristic 𝜒(𝑋,𝑌 ) = 𝜒(𝑋) − 𝜒(𝑌 ) vanishes.

Indeed, 𝜒(𝑋,𝑌 ) = |Σ0 (𝑋,𝑌 ) | − |Σ1 (𝑋,𝑌 ) |.

Remark 2.4 (Collapse). Every collapse of a polyhedral complex 𝑋 onto a subcomplex 𝑌
gives a matching on 𝑋 rel. 𝑌 .

Indeed, a collapse is nothing but a filtration of 𝑋 by subcomplexes (𝑋𝑛), where
0 ≤ 𝑛 ≤ 𝑁 , such that 𝑋0 = 𝑌 and 𝑋𝑁 = 𝑋; and that Σ(𝑋𝑛, 𝑋𝑛−1) consists, for each
1 ≤ 𝑛 ≤ 𝑁 , of exactly two incident cells.

(More precisely, an orbit in a matching is defined as a finite sequence

𝜎0, 𝜎1, · · · ∈ Σ(𝑋,𝑌 )
such that for every odd 𝑘 , the cells 𝜎𝑘−1 and 𝜎𝑘+1 are two distinct hyperfaces of 𝜎𝑘 , and
𝜎𝑘−1 is the mate of 𝜎𝑘 . A collapse of 𝑋 onto 𝑌 amounts to a matching of 𝑋 rel. 𝑌 without
cyclic orbit.)

Remark 2.5 (Top-dimensional cycle). Every cellulation of the circle admits exactly two
matchings.

More generally, let 𝑋 be a polyhedral cellulation of a manifold; let ℓ be a simple loop
in the 1-skeleton of the dual cellulation; let 𝑌 ⊂ 𝑋 be the union of the cells of 𝑋 disjoint
from ℓ. Then, 𝑋 admits exactly two matchings rel. 𝑌 .

This is obvious.

Example 2.6 (Graphs). Every connected graph whose Euler characteristic vanishes is
matchable.

Indeed, such a graph collapses onto a circle.

Example 2.7 (Surfaces). Let 𝑀 be a compact, connected 2-manifold such that 𝜒(𝑀) = 0.
Then, every polyhedral cellulation 𝑋 of 𝑀 is matchable absolutely, and relatively to 𝜕𝑀 .

Proof. First case: 𝑀 is the annulus or the Möbius strip. Then, the 1-skeleton of the
cellulation dual to 𝑋 contains an essential simple loop ℓ such that 𝑀 cut along ℓ is an
annulus or two annuli. So, the union 𝑌 ⊂ 𝑋 of the cells of 𝑋 disjoint from ℓ collapses
onto 𝜕𝑀. The pair (𝑋,𝑌 ) is matchable (Remark 2.5), the pair (𝑌, 𝜕𝑀) is matchable
(Remark 2.4), and 𝑋 |𝜕𝑀 is matchable (Remark 2.5).

Second case: 𝑀 is the 2-torus or the Klein bottle. Then, the 1-skeleton of the cellulation
dual to 𝑋 contains an essential simple loop ℓ such that 𝑀 cut along ℓ is an annulus.
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Consider the union 𝑌 ⊂ 𝑋 of the cells of 𝑋 disjoint from ℓ. The pair (𝑋,𝑌 ) is matchable
(Remark 2.5) and the annulus 𝑌 is matchable (first case). □

Next, recall Hall’s so-called “marriage theorem”. Let Σ := Σ0 ⊔ Σ1 be a finite, Z/2Z-
graded set and let 𝐼 ⊂ Σ × Σ be a symmetric relation in Σ, of degree 1. For every subset
𝐴 ⊂ Σ, consider the subset 𝐼 (𝐴) ⊂ Σ of the elements 𝐼-related to at least one element of
𝐴. A matching on Σ with respect to 𝐼 is a partition of Σ into 𝐼-related pairs.

Theorem 2.8 (Hall [10]). The following properties are equivalent:

(1) The relation 𝐼 is matchable;

(2) One has |𝐴| ≤ |𝐼 (𝐴) | for every 𝐴 ⊂ Σ;

(3) |Σ1 | = |Σ0 | and one has |𝐴| ≤ |𝐼 (𝐴) | for every 𝐴 ⊂ Σ0.

Also recall that the Ford–Fulkerson algorithm [4, 3] computes a matching, if any, in
time 𝑂 ( |Σ |2 |𝐼 |), thus giving some (moderate) effectiveness to our existence results.

Coming back to polyhedral complexes, some examples of unmatchable complexes will
follow from the trivial sense of Hall’s criterion.

Example 2.9. A connected simplicial 2-complex whose Euler characteristic vanishes,
unmatchable as well as every subdivision.

Let
𝑋 := 𝑆2 ∨ 𝑆1 ∨ 𝑆1

be the bouquet, at some common vertex 𝑣, of a triangulated 2-sphere 𝑆2 with two
triangulated circles. Then, 𝜒(𝑋) = 0, but 𝑋 does not admit any matching. Indeed, for
𝐴 := Σ0 (𝑆2, 𝑣), one has 𝐼 (𝐴) = Σ1 (𝑆2), hence |𝐼 (𝐴) | = |𝐴| − 1. The same holds for any
subdivision of 𝑋 .

Example 2.10. Some unmatchable triangulated closed connected orientable manifolds,
whose Euler characteristic vanishes.

Let 𝑛 = 2𝑘 be even and at least 4. Start with a closed orientable 𝑛-manifold 𝑀 whose
Euler characteristic 𝜒(𝑀) is even, divided into two parts𝑀1,𝑀2 by a smooth hypersurface
𝑀0. Fix a triangulation 𝑋0 of 𝑀0.

Recall that by Poincaré duality, the Euler characteristic of every closed odd-dimensional
manifold vanishes. Moreover,

𝜒(𝑀) + 𝜒(𝑀0) = 𝜒(𝑀1) + 𝜒(𝑀2)
So, 𝜒(𝑀1) and 𝜒(𝑀2) share the same parity. Also recall that, 𝑛 being even, the Euler
characteristic of a connected sum of two 𝑛-manifolds 𝑉 , 𝑉 ′ is

𝜒(𝑉♯𝑉 ′) = 𝜒(𝑉) + 𝜒(𝑉 ′) − 2
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Since 𝜒((S1)𝑛) = 0 and 𝜒((S2)𝑘) = 2𝑘 , after modifying 𝑀 by some appropriate number
of connected sums with (S1)𝑛 and/or with (S2)𝑘 performed on both sides of 𝑀0, one can
give arbitrary values to 𝜒(𝑀1) and 𝜒(𝑀2) in the same parity class as before, without
changing 𝑀0. In particular, one can arrange that

𝜒(𝑀2) = −𝜒(𝑀1) > |Σ0 (𝑋0) | (2.1)

Finally, following Armstrong [1], extend 𝑋0 to some triangulation 𝑋1 of 𝑀1 and to some
triangulation 𝑋2 of 𝑀2, thus obtaining a global triangulation 𝑋 of 𝑀 .

Clearly, 𝜒(𝑀) = 0. We claim that 𝑋 does not admit any matching.
Indeed, for 𝐴 := Σ0 (𝑋2, 𝑋0) one has obviously

|𝐴| = |Σ0 (𝑋2) | − |Σ0 (𝑋0) |

𝐼 (𝐴) = Σ1 (𝑋2)
Now, recall that

𝜒(𝑀2) = |Σ0 (𝑋2) | − |Σ1 (𝑋2) |
Together with the above inequation (2.1), it follows that |𝐼 (𝐴) | < |𝐴|: the triangulation 𝑋
is unmatchable.

Note that, after Theorem 1.2, 𝑋 admits a matchable subdivision.

Lemma 2.11 (Acyclic pair). If 𝐻∗ (𝑋,𝑌 ) = 0, then the pair (𝑋,𝑌 ) is matchable.

Rational coefficients are understood everywhere; one could as well use Z/2Z, or any
field.

Proof. This is an application of Hall’s criterion in the realm of elementary algebraic
topology. For 𝑛 ≥ 0, consider as usual the chain vector space 𝐶𝑛 (𝑋,𝑌 ) of basis Σ𝑛 (𝑋,𝑌 );
the differential

𝜕𝑛 : 𝐶𝑛 (𝑋,𝑌 ) → 𝐶𝑛−1 (𝑋,𝑌 )
and its kernel 𝑍𝑛 (𝑋,𝑌 ).

The following filtration of the pair (𝑋,𝑌 ) by subcomplexes 𝑋𝑛 ⊂ 𝑋 is classical. Put
𝑋0 := 𝑌 . For 𝑛 ≥ 1, let 𝑋𝑛 be the union of 𝑌 with the (𝑛− 1)-skeleton of 𝑋 and with some
𝑛-cells which span a linear subspace complementary to 𝑍𝑛 (𝑋,𝑌 ) in 𝐶𝑛 (𝑋,𝑌 ). Since
𝐻∗ (𝑋,𝑌 ) = 0, it is straightforwardly verified that 𝐻∗ (𝑋𝑛, 𝑌 ) = 0 for every 𝑛 ≥ 0. Then,
the long exact sequence for the relative homologies of the triad (𝑋𝑛, 𝑋𝑛−1, 𝑌 ) yields
𝐻∗ (𝑋𝑛, 𝑋𝑛−1) = 0 for every 𝑛 ≥ 1.

One is thus reduced to prove Lemma 2.11 in the case where moreover, the cells lying
in 𝑋 but not in 𝑌 are of only two dimensions:

Σ(𝑋,𝑌 ) = Σ𝑛 (𝑋,𝑌 ) ⊔ Σ𝑛−1 (𝑋,𝑌 )
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for some 𝑛 ≥ 1. The pair being acyclic, necessarily

|Σ𝑛 (𝑋,𝑌 ) | = |Σ𝑛−1 (𝑋,𝑌 ) |

For every 𝐴 ⊂ Σ(𝑋,𝑌 ), let
⟨𝐴⟩ ⊂ 𝐶∗ (𝑋,𝑌 )

denote the spanned linear subspace. If moreover 𝐴 ⊂ Σ𝑛 (𝑋,𝑌 ), recall the set

𝐼 (𝐴) ⊂ Σ𝑛−1 (𝑋,𝑌 )

of the cells incident to at least one cell belonging to 𝐴; hence

𝜕𝑛⟨𝐴⟩ ⊂ ⟨𝐼 (𝐴)⟩

Since 𝜕𝑛 is linear and one-to-one:

|𝐴| = dim(⟨𝐴⟩) = dim(𝜕𝑛⟨𝐴⟩) ≤ |𝐼 (𝐴) |

After the equivalence of (1) with (3) in the marriage theorem, the pair (𝑋𝑛, 𝑋𝑛−1) is
matchable. □

Corollary 2.12 (Subdivision). Let (𝑋,𝑌 ) be a pair of polyhedral complexes. Assume
that (𝑋,𝑌 ) is matchable.

Then, every polyhedral subdivision (𝑋 ′, 𝑌 ′) of (𝑋,𝑌 ) is also matchable.

Proof. Consider a matching on (𝑋,𝑌 ). For each matched pair 𝜎, 𝜏 ∈ Σ(𝑋,𝑌 ) with 𝜏 ⊂ 𝜎,
consider the union

𝜕𝜎 := 𝜕𝜎 \ Int(𝜏)
of the other hyperfaces of 𝜎. The restriction

(𝑋 ′ |𝜎, 𝑋 ′ |𝜕𝜎)

is a pair of polyhedral complexes which does of course not always collapse, but which
always admits a matching, by Lemma 2.11. Clearly, the collection of all these partial
matchings constitutes a global matching for the pair of complexes (𝑋 ′, 𝑌 ′). □

Proof of Theorem 1.1. Let 𝑋 be a polyhedral cellulation of a rational homology sphere 𝑀
of odd dimension 𝑛. One can assume that 𝑛 ≥ 3. Fix a (𝑛− 1)-cell 𝜎 of 𝑋 and a hyperface
𝜏 ⊂ 𝜎. Consider in 𝑋 the union 𝑌 of 𝜏 with the cells of 𝑋 not containing 𝜏. First, the
pair (𝑋,𝑌 ) is matchable (Remark 2.5). Second, 𝐻∗ (𝑌, 𝜕𝜎) = 0, hence the pair (𝑌, 𝜕𝜎) is
matchable (Lemma 2.11). Third, the polyhedral complex 𝜕𝜎, being homeomorphic to the
(𝑛 − 2)-sphere, is matchable by induction on 𝑛. □

Corollary 2.13 (Betti number 1). Let 𝑀 be a closed connected 3-manifold whose first
Betti number is 1.

Then, every polyhedral cellulation 𝑋 of 𝑀 is matchable.
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Proof. The 1-skeleton of 𝑋 (resp. of the dual cellulation) contains a simple loop ℓ (resp.
ℓ∗) generating 𝐻1 (𝑀). Consider the union 𝑌 ⊂ 𝑋 of the cells of 𝑋 disjoint from ℓ∗. The
pair (𝑋,𝑌 ) and the circle ℓ are both matchable (Remark 2.5). Also, 𝐻∗ (𝑌, ℓ) = 0, hence
the pair (𝑌, ℓ) is matchable (Lemma 2.11). □

Now, consider a triangulation 𝑋 of a compact manifold 𝑀 of dimension 𝑛 ≥ 1 with
smooth boundary 𝜕𝑀 (maybe empty). If a nonsingular vector field ∇ on 𝑀 is transverse
to every (𝑛 − 1)-simplex of 𝑋 , we say for short that ∇ is transverse to 𝑋 . Note that in
particular, ∇ is then transverse to 𝜕𝑀; thus, 𝜕𝑀 splits as the disjoint union of 𝜕𝑠 (𝑀,∇),
where ∇ enters 𝑀 , with 𝜕𝑢 (𝑀,∇), where ∇ exits 𝑀 .

Theorem 2.14 (Transverse nonsingular vector field). If the nonsingular vector field ∇ is
transverse to the triangulation 𝑋 , then 𝑋 is matchable rel. 𝜕𝑢 (𝑀,∇).

Proof. Because of the transversality, for every simplex 𝜎 ∈ Σ(𝑋) of dimension less than
𝑛 and not contained in 𝜕𝑢 (𝑀,∇) (resp. 𝜕𝑠 (𝑀,∇)), there is a unique downstream (resp.
upstream) 𝑛-simplex 𝑑 (𝜎) (resp. 𝑢(𝜎)) ∈ Σ𝑛 (𝑋) containing 𝜎 and such that the vector
field ∇ enters 𝑑 (𝜎) (resp. exits 𝑢(𝜎)) at every point of 𝐼𝑛𝑡 (𝜎) := 𝜎 \ 𝜕𝜎. For 𝜎 ∈ Σ𝑛 (𝑋),
we agree that 𝑑 (𝜎) := 𝜎 and 𝑢(𝜎) := 𝜎.

Consider any 𝑛-simplex 𝛿 ∈ Σ𝑛 (𝑋) and any face 𝜎 ⊂ 𝛿 (the case 𝜎 = 𝛿 is included.)
We call 𝜎 stable (resp. unstable) with respect to 𝛿 if 𝜎 does not lie in 𝜕𝑢 (𝑀,∇) (resp.
𝜕𝑠 (𝑀,∇)) and if 𝑑 (𝜎) = 𝛿 (resp. 𝑢(𝜎) = 𝛿). Note that

• Every hyperface of 𝛿 is either stable or unstable;

• 𝛿 has at least one stable hyperface and at least one unstable hyperface (for degree
reasons);

• 𝜎 is stable if and only if every hyperface of 𝛿 containing 𝜎 is stable.

Next, for each 𝛿 ∈ Σ𝑛 (𝑋), pick arbitrarily a base vertex 𝑣(𝛿) in the intersection 𝜕−𝛿 of
the unstable hyperfaces of 𝛿 (here of course, it is mandatory that 𝛿 is a simplex rather than
a general convex polytope.) To this choice, there corresponds canonically a matching, as
follows. For every simplex 𝜎 ∈ Σ(𝑋, 𝜕𝑢 (𝑀,∇)), define its mate 𝜎 by:

(1) If 𝑣(𝑑 (𝜎)) ∈ 𝜎 then 𝜎 is the hyperface of 𝜎 opposed to 𝑣(𝑑 (𝜎));

(2) If 𝑣(𝑑 (𝜎)) ∉ 𝜎 then 𝜎 is the join of 𝜎 with 𝑣(𝑑 (𝜎)).

These rules do define a matching on the pair (𝑋, 𝜕𝑢 (𝑀,∇)): the point here is that 𝜎 is
also a stable face of 𝑑 (𝜎). Indeed, if not, then 𝜎 would be contained in some unstable
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hyperface 𝜂 of 𝑑 (𝜎); but in both cases (1) and (2) above, this would imply that 𝜎 itself
would be contained in 𝜂, a contradiction. In other words, 𝑑 (𝜎) = 𝑑 (𝜎). It is now clear
that the map 𝜎 ↦→ 𝜎 induces locally, for each 𝑛-simplex 𝛿, an involution in the set of the
stable faces of 𝛿; and thus globally a matching on Σ(𝑋, 𝜕𝑢 (𝑀,∇)). □

Remark 2.15. It can be suggestive, for 𝑛 = 2 and 𝑛 = 3 and for each 0 ≤ 𝑖 ≤ 𝑛 − 1, to
figure out in R𝑛, endowed with the parallel vector field ∇ := −𝜕/𝜕𝑥𝑛, a linear 𝑛-simplex
𝛿 in general position with respect to ∇ and such that dim(𝜕−𝛿) = 𝑖; to list the stable faces
and the unstable faces; to choose a base vertex 𝑣 ∈ 𝜕−𝛿; and to compute the corresponding
matching between the stable faces.

Remark 2.16. We feel that the preceding natural construction is of special interest with
respect to Forman’s general question “Which smooth vector fields can be triangulated?”
([7, §3]).

Remark 2.17. In particular, the Hall cardinality conditions also constitute some com-
binatorial necessary conditions for a triangulation to admit a transverse nonsingular
vector field. For example, in Example 2.10, not only 𝑋 does not admit any transverse
nonsingular vector field (which is obvious since such a field would be transverse to 𝑀0,
in contradiction with 𝜒(𝑀1, 𝑀0) ≠ 0), but this holds also for every triangulation of 𝑀
combinatorially isomorphic with 𝑋; and in particular, for every jiggling of 𝑋 .

Proof of Theorem 1.2. Since 𝜒(𝑀, 𝜕0𝑀) = 0, there is on 𝑀 a nonsingular vector field ∇
transverse to 𝜕𝑀 , which exits 𝑀 through 𝜕0𝑀 , and which enters 𝑀 through 𝜕𝑀 \ 𝜕0𝑀 .
Let 𝑋 be any triangulation of 𝑀. Then, by W. Thurston’s famous Jiggling lemma [11],
one has on 𝑀 a triangulation 𝑋 ′ which is combinatorially isomorphic to some (iterated
crystalline) subdivision of 𝑋 , and which is transverse to ∇. By Theorem 2.14, 𝑋 ′ is
matchable. □

Another proof of Theorem 1.2 in high dimensions. Finally, we give an alternative con-
struction for Theorem 1.2; this construction works in every dimension, but 3. Note that,
by Corollary 2.12 and the Hauptvermutung for smooth triangulations, it is enough to
construct one triangulation of 𝑀 matchable relatively to 𝜕0𝑀 .

After Asimov [2], since 𝑛 ≥ 4 and 𝜒(𝑀, 𝜕0𝑀) = 0, the pair (𝑀, 𝜕0𝑀) admits a “round
handle decomposition”. For each 0 ≤ 𝑖 ≤ 𝑛 − 1, the round handle of dimension 𝑛 and
index 𝑖 is defined as

𝐻𝑛
𝑖 := S1 × D𝑖 × D𝑛−𝑖−1

and one puts
𝜕0𝐻

𝑛
𝑖 := S1 × S𝑖−1 × D𝑛−𝑖−1
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(one agrees that S−1 = ∅). By a round handle decomposition for 𝑀 , one means a filtration
of 𝑀 by submanifolds dimension 𝑛, with boundaries and corners:

𝜕0𝑀 × [0, 1] = 𝑀0 ⊂ 𝑀1 ⊂ · · · ⊂ 𝑀ℓ = 𝑀

such that, for each 1 ≤ 𝑘 ≤ ℓ, one obtains 𝑀𝑘 by attaching to 𝑀𝑘−1 a round handle of
dimension 𝑛 and of some index 0 ≤ 𝑖 ≤ 𝑛 − 1; the attachment map is an embedding

𝜕0𝐻
𝑛
𝑖 ↩→ 𝜕𝑀𝑘−1 \ (𝜕0𝑀 × 0)

Fix such a decomposition. Then, choose a triangulation of 𝑀 for which each handle is
a subcomplex. One is thus reduced to the two cases

(1) 𝑀 = 𝜕0𝑀 × [0, 1]; or

(2) 𝑀 = 𝐻𝑛
𝑖

and 𝜕0𝑀 = 𝜕0𝐻
𝑛
𝑖
, for some 0 ≤ 𝑖 ≤ 𝑛 − 1.

In case (1), any triangulation of 𝑀 is matchable rel. 𝜕0𝑀 (Lemma 2.11).
In case (2), one has a deformation retraction of D𝑖 × D𝑛−𝑖−1 onto its subset

𝐾 (𝑛, 𝑖) := (D𝑖 × 0) ∪ (S𝑖−1 × D𝑛−𝑖−1)
Hence, 𝐻𝑛

𝑖
retracts by deformation onto S1 × 𝐾 (𝑛, 𝑖). We choose a triangulation of 𝑀

such that S1 × 𝐾 (𝑛, 𝑖) is a union of cells of the triangulation. Applying Lemma 2.11
to the pair (𝑀, S1 × 𝐾 (𝑛, 𝑖)), the proof is reduced to the case where 𝑀 = S1 × D𝑖 and
𝜕0𝑀 = S1 × S𝑖−1. In that case, let 𝑋 be any triangulation of 𝑀 . The 1-skeleton of the dual
subdivision contains a simple loop ℓ homologous to the core S1 × 0. Consider the union
𝑌 ⊂ 𝑋 of the cells of 𝑋 disjoint from ℓ. On the one hand, the pair (𝑋,𝑌 ) is matchable
(Remark 2.5). On the other hand, since 𝐻∗ (𝑌, 𝜕0𝑀) = 0, the pair (𝑌, 𝜕0𝑀) is matchable
(Lemma 2.11). □
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